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Connected vehicles (CVs) are becoming increasingly prevalent in today’s transportation systems, and understanding their
behavior in mixed trafc fow is crucial for enhancing trafc efciency and safety. Tis paper presents a comprehensive study
investigating the impact of CV drivers’ compliance and aggressiveness on mixed trafc fow through simulation experiments. Te
unique contribution of this research lies in the adoption of a clustering method to classify CV drivers’ compliance and ag-
gressiveness based on trajectory data captured by Unmanned Aerial Vehicles (UAVs). Tis approach allows for the accurate
calibration of car-following and lane-changing models, surpassing previous methodologies. Te study outlines two primary
methods: the intelligent driver model (IDM) with driver compliance (CVs-IDM) and the lane-change 2013 model with drivers’
style.Tese methods are applied to simulate various scenarios of mixed trafc fow, considering diferent CV penetration rates and
driver types.Te pivotal fndings reveal that higher CV penetration rates lead to reduced trafc fow disturbance, improved safety,
and enhanced efciency. Specifcally, CV drivers exhibiting high compliance and normal aggressiveness demonstrate optimal
performance in terms of disturbance reduction, safety, and overall efciency. Tis research ofers valuable insights for poli-
cymakers and practitioners. It recommends increasing the CV penetration rate in mixed trafc fow to enhance overall efciency.
Moreover, selecting the appropriate CV driver type based on the penetration rate can further optimize trafc fow, positively
impacting transportation systems and promoting safer and more efcient mixed trafc environments.

1. Introduction

With the advances in Information and Communication
Technologies (ICT), it allows the transportation community
which includes vehicle-to-vehicle and vehicle-to-infras-
tructure or vehicle-to-everything communications to
foresee dramatic improvements in the next few years in
terms of a more efcient, environmentally friendly, and
safe trafc management. Guériau et al. [1] believed that the
connected vehicles could exchange information with in-
frastructure and realized vehicle-to-vehicle communica-
tion. Previous studies generally believed the connected
vehicles (CVs) could improve the safety and efciency and
decrease the disturbance in trafc fow and decrease
emission [2–6].

Te current studies on mixed trafc fow are mainly
divided into the following categories: automated vehicles
(AVs) and traditional vehicles (TVs) [7–10], connected and
automated vehicles (CAVs) and TVs [11–14], adaptive
cruise control (ACC) and TVs [15], and CVs and TVs
[16–24]; Saifuzzaman and Zheng, 2014; [12, 25–28]. Te
mixed trafc fow mentioned later in this study represents
the mixed trafc fow of CVs and TVs.

Te research of Rahman et al. [18] showed that net-
worked and connected and autonomous vehicles (CAVs)
can be connected to each other. Terefore, CV is expected to
reduce human driver errors and improve trafc efciency
and safety. Te use of connected vehicles (CVs) can sig-
nifcantly increase the expected capacity, which will also
enable more efcient use of the existing transportation
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infrastructure, resulting in reduced trafc congestion and
time loss, which in turn improves the quality of trafc fow
[19, 20, 22–24]. Te research of Van Arem et al. [21] showed
that CV mixed trafc will be able to promote more efcient
trafc and the penetration of CV vehicles will also reduce
congestion [29–32]. Ni et al. [32] modifed the reaction time
parameters of the car-following model to distinguish CVs
and TVs by numerical simulation of mixed trafc fow and
showed that higher CV proportion leads to higher lane
capacity. Zheng et al. [5] introduced the prospect theory
based on IDM (a car-following model) to model the CVs
drivers’ compliance to continuous information. Tis study
divided CVs drivers’ compliance into two types: high
compliance and low compliance, and got the way to calibrate
the parameters in car-following model based on two types of
compliance. Based on previous study on drivers’ compli-
ance, Zheng et al. [4] analyzed the impact of CV proportion
and spatial arrangement of mixed trafc fow on mixed
trafc fow disturbance, efciency, and safety and showed
that the best spatial arrangement for mixed trafc fow and
higher CV proportion lead to smaller disturbance, higher
efciency, and higher safety.

However, few studies considered the combination be-
tween car-following and lane-changing behaviors and de-
gree of desire for lane-changing of CVs. And present studies
lack efective methods to calibrate the parameters in the car-
following and lane-changing models. Besides, most of the
simulation scenes set in previous studies are too simple to get
more specifc, systematic conclusions. But in real condition,
the conclusion drawn by simulation experiments should be
used in complex scene, such as multilane and multiway
sections. Last but not least, very few previous studies
established suitable evaluation models to qualify the overall
efciency of mixed trafc fow in each case designed in
experiment.

Motivated by the limitations and gaps mentioned above,
this study used a multivariate clustering method to classify
the diferent degrees of compliance and aggressiveness of CV
drivers and further calibrate the parameters of the three
compliance levels of the car-following model (CVs-IDM
(high compliance), CVs-IDM (average compliance), and
CVs-IDM (low compliance)) and lane-changing model
(aggressive-LC2013, average aggressive-LC2013, and nor-
mal-LC2013). Based on calibration results, we set up mixed
trafc fow for the simulation experiment.Ten, we designed
two simulation experiments to investigate the impact of
lane-changing trafc on trafc fow disturbance, safety, and
efciency of mixed trafc fow on three tested lanes.
Moreover, we set up eight cases for the simulation experi-
ment according to the diferent behaviors of CV drivers and
the diferent spatial arrangement of mixed trafc fow.Ten,
we established the collaborative evaluation model to cal-
culate the values of overall efciency corresponding to eight
cases and selected the case which has highest value of overall
efciency when the CV proportion is 80% and 20%, re-
spectively. At last, we deduced the car-following and lane-
changing models that CV drivers should obey under dif-
ferent CV proportions in mixed trafc fow, through further
experiments.

2. Methodology

2.1. Car-Following Model with Driver Compliance. Te in-
telligent driver model (IDM) is employed to model car-
following behavior of TVs which is widely used in various
trafc simulation software programs. IDM belongs to the
category of desired measures models and assumes that the
acceleration is a continuous function of driver’s spacing and
speed to the leader (which is represented in equation (1)),
and speed diference between the leader and the follower
(which is represented in equation (2)).
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where the parameters δ, V0, T, s0, a, and b represent free
acceleration exponent, desired speed of vehicles, desired
time interval, standstill distance, maximum acceleration,
and desired deceleration of vehicle, respectively. Besides, an

represents the IDM acceleration, s∗ represents the desired
spacing, Vn represents the speed, ΔVn represents the relative
speed between leader’s speed and follower’s speed, and Sn

represents the space interval between leader and follower.

However, diferent drivers have diferent degrees of
compliance to continuous information. And the continuous
information includes space interval and relative speed be-
tween two vehicles and is delivered from the leader to the next
follower, which has a signifcant efect on reducing trafc
accidents. Based on the above diference, we further establish
IDM with driver compliance (CVs-IDM) which is applied in
CVs in this study. Te CVs-IDM is presented as follows:
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Diferent from IDM, we multiply (1 + UT(hobs)) and
time interval parameters TVn to measure the degree of
driver’s compliance. Refer to Sharma et al. [33]; UT(hobs) is
the utility value calculated at hobs using prospect theory
shape parameters α, c, and λ. hobs is the observed headway
between the follower and the leader measured at the time
when the messages are received by the followers. So, we
divide high compliance (HC), low compliance (LC), and
average compliance (AC) by setting parameter α, c, and λ
values according to Sharma et al. [33]. Figure 1 shows the
usefulness curves for high\average\low compliance drivers,
which are developed by formulation:

V hobs(  �
1

1 + e
λ ahobs-1( ) 

(5)

Tis formulation shows that the usefulness of contin-
uous information to drivers depends on hobs. Besides, we can
learn from Figure 1 that high compliance driver has a higher
usefulness value than low compliance driver with the same
observed headway.

2.2. Lane-Changing Model with Drivers’ Style

2.2.1. LC2013Model. In this study, we choose LC2013model
as the basic lane-changing model which is suitable for
multilane autonomous driving simulation. Similar to IDM,
we apply this calibrated lane-changing model to TVs. Dif-
ferent from other micro-lane-changing models, the LC2013
model clearly distinguishes four diferent lane-changing
motives: strategic change, cooperative change, tactical
change, and obligatory change.

(1) Strategic Change. Strategic change mainly includes
two steps: evaluating subsequent lanes and de-
termining urgency lane. First, there are two types of

lane information that can be evaluated, i.e., for every
lane on the current edge, a sequence of lanes that can
be followed without lane changing up to the next
dead end or to a maximum distance and for every
lane on the current edge, the trafc density along the
best lanes and for every lane on the current edge, the
ofset in the lane index to the lane which is strate-
gically advisable. Besides, the method to determine
urgency is shown in equation (6); if this equation
holds true, we can determine this urgency lane.

d − o< lookAheadSpeed × |BestLaneOffset| × f,

(6)

where d represents the distance between vehicle and
the end of dead lane; o is determined by lane oc-
cupation; and f is the time required to change lane.

(2) Cooperative Change. In some practical situations, the
main purpose of a vehicle performing lane-changing
is to help another vehicle change lanes. In the
LC2013 model, the vehicle is notifed by other ve-
hicles that it is blocking the following vehicle. If there
is no strategic reason against changing lanes, the
vehicle can change in any possible direction to create
space interval for blocked vehicles.

(3) Tactical Change. Tactical lane change is when the
vehicle tries to avoid following the slow leader and
performing lane-changing, the purpose of which is to
increase the own speed. In the LC2013 model, pa-
rameter speedGainProbability is produced to mea-
sure the likelihood of a vehicle changing lane to
increase speed. Tis parameter is incrementally
updated in each simulation step and reset when
changing lane to prevent oscillation. Tis parameter
is calculated by equations (7) and (8):

speedGain Probability ≔ speedGain Probability +
(v − u)

v
, (7)

speedGain Probability ≔ speedGain Probability −
(v − u)

v
, (8)

where v represents the desired speed in right lane and
u represents the desired speed in left lane. If the
desired speed in left lane is faster than that in right
lane, we use equation (7) to update the parameter.
On the contrary, if the desired speed in left lane is
slower, we use equation (8) to update the parameter.

(4) Obligatory Change. Obligatory change can also be
called Obligation to clear the overtaking lane, which
refers to avoiding forced lane changes and helping
other faster vehicles in lane. In the LC2012 model,
parameter keepRightProbability is produced to
measure the likelihood of keeping the vehicle on the
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right lane, which is updated in each simulation step.
Tis parameter is calculated by the following
equation:

keepRight Probability ≔ keepRight Probability −
(t × L)

(V × v × T)
, (9)

where L represents the max speed permitted in lane;
V is the max desired speed in lane; v represents the
current speed; and T is calibration parameter which
is set to 5 in this study.

2.2.2. LC2013 Model with Drivers’ Style. During the total
lane-changing process, the performance of drivers can be
divided into two parts: aggressive and normal. And the
diference between drivers’ lane-changing style is a signif-
cant factor afecting the driving safety of vehicle. So, we
introduce the drivers’ style to CVs’ lane-changing model
(CVs-LC2013) to simulate the trafc process of CVs.
Aggressive-LC2013 model and normal-LC2013 model are,
respectively, applied in above two kinds of CVs, in this study.
According to the demands of the control group in the ex-
periment, we further establish the average aggressive-
LC2013 model.

2.3. Calibration of CVs’ Car-Following and Lane-Changing
Models

2.3.1. Study Scene. In this study, a 210-meter section located
on Qujiang interchange in Wuhan, Hubei, was used (Fig-
ure 2). Te study scene was divided into two parts: a 70-
meter trafc fow input section and a 140-meter trafc fow
test section. Trafc fow input consists of one General
Purpose Lane (GPL) and two Managed Lanes (MLs). Trafc

fow test section consists of two General Purpose Lanes
(GPLs) and two Managed Lanes (MLs).

2.3.2. Parameter Calibration Based on Trajectory Indicator
Clustering. Tis study got the indicators values which is re-
lated to drivers’ compliance when performing car following (in
Table 1) and aggressiveness when performing lane changing
(in Table 2) by using of the UAV’s capture of CVs trajectory
data in the study scene. Tables 1 and 2, respectively, list the
indicators connected to CVs drivers’ compliance and ag-
gressiveness. Ten, we clustered the above indicator values in
the trajectory data, respectively (set the number of clusters to
3), to distinguish the high compliance (HC), low compliance
(LC), and average compliance (AC) and aggressive, normal,
and average aggressive behaviors of drivers. Furthermore, we
can control and refect the driver’s style (compliance and
aggressiveness) by setting the size of the parameters in Tables 1
and 2. For example, higher compliance of drivers corresponds
to lower Δv′ (the diference between the minimum and
maximum speed of CV during the driving on the section).

Te smaller the indicators values in Tables 3 and 4, the
higher the degree of compliance and aggressiveness of the
CV drivers. Moreover, the values of component 1 are 93.03%
and 98.89%, respectively, in Figures 3(a) and 3(b). So, the
smaller the value of the cluster center on the component axis,
the higher the compliance and aggressiveness. In Figure 3(a),
cluster 1, cluster 2, and cluster 3 correspond to high
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Figure 1: Diference between usefulness value function curves of high compliance, average compliance, and low compliance levels.
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compliance, average compliance, and low compliance, re-
spectively. In Figure 3(b), cluster 1, cluster 2, and cluster 3
correspond to average aggressive, aggressive, and normal,
respectively. Furthermore, based on the results of the CV
driver behavior clustering, we use the basic parameter values
of the CVs’ lane-changing models and car-following models
in each cluster to calibrate the basic parameters of the CVs’
lane-changing models and car-following models set in the
simulation experiment in this study. Te calibration results
are shown in Tables 2 and 4.

Ks represents the desire to perform strategic change; Kc

represents the desire to perform cooperative change; Kk

represents the compliance with the right-hand driving rule
which is connected with tactical change; Ksub represents the
desire to use the horizontal arrangement in the lane; Kp

represents the desire to invade other lane which is connected
to obligatory change.

3. Indicators of Traffic Flow Disturbance,
Safety, and Efficiency

3.1. Trafc Flow Disturbance. We analyze trafc fow dis-
turbance in terms of trafc oscillation measures such as
oscillation duration and oscillation amplitude (the bigger
parameters correspond to bigger trafc fow disturbance).
Tis study calculates oscillation duration and oscillation
amplitude specifcally by adopting wavelet energy.
According to the speed curve of the vehicle in simulation
period, the corresponding energy curve can be generated
at the same time. Te moment vehicle is accelerating or
decelerating, there appears a peak or valley in energy
curve to calculate oscillation duration and oscillation
amplitude. Te relationship of speed curve and energy
curve is shown in Figure 4. Te wavelet energy can be
expressed as

0 10 m Departure point

Study scene

Arrival point

Trafc fow input section
Trafc fow test se

ction

Figure 2: Study scene in this study.

Table 1: Indicators related to driver compliance when perform car-following.

Indicators Defnition

Δv′ Te diference between the minimum and maximum speed of CV during driving on
the section

Δa′ Te diference between the minimum and maximum acceleration of CV during
driving on test section

Δx′ Te diference between the minimum and maximum gap of CV during driving on
test section

Table 2: Indicators related to driver aggressiveness when perform lane-changing.

Indicators Defnition
LCD Te total time required for CV to travel from the current lane to the target lane

DT Te distance from the center line of the CV to the right most edge of the lane, up to
the moment the CV changes lane

Δv″ Te speed diference between the CV and the vehicle ahead

Δx″ Te distance between the CV and the vehicle ahead when the lane change is just
completed

Journal of Advanced Transportation 5



Table 3: Calibrated parameters in CV’s car-following models applied in study (CVs-IDM (LC), CVs-IDM (HC), and CVs-IDM (AC)).

Parameters
CVs

CVs-IDM (LC) CVs-IDM (HC) CVs-IDM (AC)
Calibrate P value Calibrate P value Calibrate P value

V0(m/s) 26.5 0.045 26.5 0.009 26.5 0.034
δ 4 0.037 4 0.035 4 0.039
s0(m) 4.5 0.0008 4.5 0.044 4.5 0.046
T(s) 1.2 0.003 1.2 0.042 1.2 0.042
a(m/s2) 3 0.042 3 0.008 3 0.003
b(m/s2) 3 0.037 3 0.027 3 0.006
α 0.6 0.008 0.25 0.035 0.44 0.031
c 0.7 0.0064 0.7 0.044 0.7 0.021
λ 6.5 0.033 9.5 0.003 7.7 0.024

Table 4: Calibrated parameters set in lane-changing models in study (LC2013, normal-LC2013, aggressive-LC2013, and average
aggressive-LC2013).

Parameters
CVs

Normal-LC2013 Aggressive-LC2013 Average aggressive-LC2013
Calibrate P value Calibrate P value Calibrate P value

Ks 1 0.03 100 0.032 65 0.002
Kc 1 0.032 0.5 0.04 0.74 0.003
Kk 1 0.022 1 0.029 1 0.033
Ksub 1 0.027 100 0.045 55 0.044
Kp 0 0.007 0.2 0.008 0.12 0.022
Assertive 1 0.038 1.5 0.006 1.3 0.007
AvgaccelLat 4.55 0.047 5 0.012 4.76 0.008
MaxaccelLat 52.43 0.007 113.16 0.017 78.92 0.031
LookaheadLeft 2 0.006 2 0.04 2 0.033
MaxSpeedLatFactor 1 0.035 1 0.003 1 0.028
AvgSpeedLat 0.71 0.009 0.54 0.006 0.66 0.022
MaxSpeedLat 5.25 0.005 10.28 0.011 7.89 0.004
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Figure 3: Indicators of multivariate clustering. (a) Indicators connected to drivers’ compliance. (b) Indicators connected to drivers’
aggressiveness.
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Te wavelet coefcient T(m, n) can be calculated as
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where St represents the time series of speeds; 
+∞
−∞ S(t)ψt −

m/n is the function describing wavelet; and m and n are
upper bound and lower bound of time range in wavelet
function.

Based on the wavelet energy of vehicle, we can further
calculate oscillation duration, oscillation amplitude, average
oscillation duration, and average oscillation amplitude,
respectively.

Oscillationduration � ti − tj, (12)

Averageoscillationduration � 

p�k

p�1

ODp

k
, (13)

oscillationamplitude � |vtj
− vti

| , (14)

Averageoscillationamplitude � 

p�k

p�1

OAp

k
, (15)

where ti and tj represent the appearing time of frst peak and
second peak, respectively; ODp represents the oscillation
duration of pth vehicle; vti

and vtj
represent the speed of ti

and tj; and OAp represents the oscillation amplitude of pth

vehicle.

3.2. Trafc Flow Safety. Tis study uses TGAP (the bigger
value corresponds to higher safety) and DRAC (the bigger
value corresponds to less safety) to represent the degree of
trafc safety. Among them, the TGAP is vehicle’s time
headway to the leading one which can be calculated in
equation (16). And DRAC is deceleration rate to avoid the
crash which can be calculated in equation (17). Besides,
higher TGAP and lower DRAC means higher safety, and we
set up maximumTGAP and minimumDRAC to measure the
safety of trafc fow on a lane which are calculated in
equations (18) and (19). Furthermore, we use average TGAP
and average DRAC to measure the safety of whole trafc
fow on all lanes which are calculated in equations (20) and
(21):

TGAP �
Sn

v
, (16)

DRAC �
ΔVn( 

2

Sn

, (17)

maximumTGAP � max TGAP1,TGAP2,TGAP3, ......,TGAPr( , (18)

minimumDRAC � min DRAC1,DRAC2,DRAC3, ......,DRACr( , (19)

AverageTGAP �


q

l�1TGAPl

q
, (20)

AverageDRAC �


q

l�1DRACl

q
, (21)

where Sn represents the space gap between leader vehicle and
follower vehicle; v represents the speed of follower vehicle;
ΔVn represents the relative speed of leader vehicle and fol-
lower vehicle; r represents the amount of vehicle contained in
trafc fow on one lane; and q represents the amount of
vehicle contained in all trafc fows on the whole lanes.

3.3. Trafc Flow Efciency. Tis study uses x-t method to
calculate fow (q) and speed (V) of trafc fow based on
Edie’s generalised defnition (Edie, 1963). Because the tra-
jectory data of each vehicle are known in this study which are
needed by Edie’s generalised defnition, we can further
generate x-t diagram of all vehicles as shown in Figure 5. By
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Figure 4: Illustrations of trafc oscillation and corresponding
detection using wavelet-based energy.
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this way, we can calculate the fow and speed using x-t
method as shown in equations (22) and (23):

q �
d(A)

|A|
, (22)

V �
d(A)

t(A)
, (23)

where d(A) represents total distance of all vehicles in A;
t(A) represents total time of all vehicles in A; and |A|

represents the area of A which can be calculated as follows:

|A| � xg − xf  × tg − tf . (24)

4. Mixed Traffic Flow Experiments

4.1. EnvironmentalDescription. In the experimental setup of
this paper, the simulation environment follows general road
design standards.

(1) Trafc Flow Input Phase
Basic Flow. Tree basic fows represent diferent
types of vehicle fows, with an average lane width of
3.75meters for each fow.
Lane-Change Flow. Te lane-changing fow merges
into lanes with standard lane width of 3.75meters.

(2) Trafc Flow Test Phase
Lane Structure. Te trafc fow test phase comprises
four lanes, each with a standard lane width of
3.75meters.
Relative Lane Positions. After the intersection, the
distance from the center line of one lane to the center
line of the adjacent lane is the standard lane width,
ensuring sufcient space for normal driving and
lane-changing operations.

Geometric Features of the Intersection. Te length of
the lane merging area at the intersection is twice the
standard lane length, i.e., 7.5meters. Additionally,
geometric features such as curvature and entry angle
at the intersection adhere to general urban road
design standards.

(3) Lateral Gap between Lanes. A lateral gap of half the
standard lane width of 1.87meters is maintained
between lanes to ensure an adequate safety distance
between vehicles.

Te initial layout of vehicles is achieved by considering
the initial positions and quantities of diferent vehicle types.
Special attention is given to the mixed trafc fow of basic
fows 1, 2, and lane-changing fow, as well as the TV fow in
basic fow 3. Te composition of vehicles in the lane-
changing fow is explicitly defned, including four CVs
changing from lane 1 to lane 2, and four TVs changing from
lane 3 to lane 4. CVs in the lane-changing fow are modeled
using CVs-IDM (AC) and average aggressive-LC2013.
Randomness in trafc fow is considered at the microscopic
level of vehicle behavior, such as the stochastic variation of
acceleration, and is integrated into the model through
probabilistic modeling of vehicle behavior.

4.2. Statistical Assumptions. A car’s speed is primarily de-
termined by the vehicles in front of it or in the target lane. A
vehicle may only execute a lane change when there is suf-
fcient physical space in the target lane, ensuring that it does
not get too close to the vehicles in front and behind in the
target lane. In each simulation step, vehicles execute the
following substeps sequentially:

(1) Compute priority alternative lanes.
(2) Calculate the assumed safe speed for staying in the

current lane, considering the speed requirements
related to lane change from the previous
simulation step.

(3) Lane change model computes the need for a lane
change.

(4) Either execute the lane change or calculate the re-
quired speed for the next simulation step. Te de-
cision to change speed depends on the urgency of the
lane change request.

Te model in this paper explicitly distinguishes four
diferent lane-change motivations: strategic change, co-
operative change, tactical change, and obligatory change.

4.2.1. Strategic Change. Strategic lane changes occur when
there is no direct connection between the current lane of
a vehicle and its intended target lane. For vehicles intending
to proceed straight, a left-turn lane creates a terminating
path, prompting vehicles to strategically change lanes in
advance, provided there are no obstructive factors. Due to
the critical importance of strategic lane changes in overall
trafc planning, we establish a cautious adjustment strategy
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Figure 5: x-t diagram of all vehicles in simulation scene which can
be used to calculate fow and speed according to Edie’s generalised
defnition.
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for the ego vehicle to ensure the successful implementation
of lane changes.

4.2.2. Cooperative Change. In certain scenarios, vehicles
change lanes to assist other vehicles in smoothly entering the
current lane. In the current model, vehicles are identifed by
other vehicles as potential hindrances to the following ve-
hicle. Unless there are explicit strategic reasons preventing
a lane change, the ego vehicle can change lanes in any di-
rection to create space for obstructed vehicles. Vehicles
unable to engage in cooperative lane changes can slightly
adjust their speed to increase the probability of successful
lane changes in subsequent simulation steps.

4.2.3. Tactical Change. Tactical lane changes involve bal-
ancing the expected speed gain with the efort required for
the lane change. Te speedGainProbability is utilized to
measure the likelihood of a vehicle changing lanes to in-
crease speed. Tis probability is incrementally adjusted in
each simulation step and reset during a lane change to
prevent oscillations.

4.2.4. Obligatory Change. Te compulsory action of clearing
the overtaking lane is considered a collaborative behavior as
it aids fast-moving vehicles. Tis behavior is mandated by
trafc regulations. In the current lane-change model, each
vehicle maintains a variable, keepRightProbability, which
decreases over time. Once it falls below a threshold of −2, it
triggers a right lane change (using negative values to rep-
resent the variability of speedGainProbability). Te keep-
RightProbability p: is updated as follows:

p ≔ p −
t∗L

V∗ v∗T
, (25)

where L is the legal speed limit on the current road, V is the
ego vehicle’s maximum expected speed, V is its current
speed, and T is a calibration parameter currently set to 5.

4.3. Mixed Trafc Flow in Simulation Experiment.
Figure 6 displays the direction of each trafc fow on MLs
and GPLs in simulation experiment.

Basic fow 1, basic fow 2, and lane-change fow are
mixed trafc fow and basic fow 3 is TV fow. Te com-
position of lane-change trafc fow is certain, in which four
CVs change lane to lane 1; four CVs change lane to lane 2;
four TVs change lane to lane 3 and four TVs change lane to
lane 4, respectively. And CVs contained in lane-change
trafc fow are subject to CVs-IDM (AC) and average
aggressive-LC2013. Meanwhile, when we use UAV to cap-
ture the trajectory data of vehicles on the trafc fow test
section, we fnd that the trafc efciency and speed of lane 4
are far lower than the other three lanes, which has little
reference signifcance for researching safety and other in-
dicators. Terefore, we only analyze specifc indicators for
lanes 1, 2, and 3. Ten, we set up two spatial arrangement
methods for the three basic trafc fows on trafc fow input
section. In the frst case of trafc fow spatial arrangement,

the penetration rate of CV onMLs is 80%. In the second case
of mixed trafc fow spatial arrangement, the penetration
rate of CV on MLs is 20%. Moreover, considering the ar-
rangement of CVs and TVs on the trafc fow input section
contained in each group mixed trafc fow will have a great
impact on the experiments results; therefore, this study sets
the arrangement of CVs and TVs on MLs to be arranged by
the best arrangement (shown in Figure 7) [4]. When the
arranged trafc fow enters the trafc fow test section, the
arrangement of CVs and TVs on each lane will be changed
due to the infuence of the lane-change trafc fow. Table lists
the specifc experiments designed in this study.

4.4. Experiment Design. We set up three experiments for
three measured indicators (mixed trafc fow disturbance,
safety, and efciency). According to the diference between
CV penetration rate in the mixed trafc fow, the lane-
change model, and the car-following model of CV, we set
up eight cases for each experiment. Table 5 lists the specifc
experiments designed in this study.

4.5. Experiment Results

4.5.1. Experiment 1 (Mixed Trafc Flow Disturbance).
Te purpose of this experiment is to investigate the dif-
ference of trafc fow disturbance of eight cases on entire
trafc fow test section. We number the CVs on lane 1, lane
2, and lane 3 as 1 to 10, 11 to 20, and 21 to 30, respectively.
Figure 8 displays the simulation experiment results.

In case of CV penetration rate being 80%, the trafc fow
disturbance of HC-normal-CV is far less than other three
kinds of CV although the diference in indicator duration is
not so obvious. In general, normal-CV leads to less trafc
fow arrangement than aggressive-CV by comparing HC-
aggressive-CV and HC-normal-CV and LC-aggressive-CV
and LC-normal-CV, respectively. And HC-CV leads to less
trafc fow disturbance than LC-CV by comparing HC-
aggressive-CV and LC-aggressive-CV and HC-normal-CV
and LC-normal-CV, respectively. And we can get the same
conclusion in case of CV penetration rate being 20%.

Moreover, from lane 1 to lane 3, the gap between the
eight cases gradually decreases. And compared with the
mixed trafc fow with lower CV penetration rate, the mixed
trafc fow with higher CV penetration rate corresponds to
lower trafc fow disturbance.

4.5.2. Experiment 2 (Mixed Trafc Flow Safety). Te purpose
of this experiment is to investigate the diference of trafc
fow safety of eight cases on entire trafc fow test section.
Figure 9 displays the simulation experiment results.

In case of CV penetration rate being 80%, the trafc fow
safety of HC-normal-CV is far higher than other three kinds
of CV. In general, normal-CV leads to higher trafc fow
safety than aggressive-CV by comparing HC-aggressive-CV
and HC-normal-CV and LC-aggressive-CV and LC-nor-
mal-CV, respectively. And HC-CVs lead to higher trafc
fow safety than LC-CV by comparing HC-aggressive-CV
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Figure 7:Te arrangement of the mixed trafc fow on each lane in the case of penetration of 80% and 20%. (a) CV penetration rate of 80%.
(b) CV penetration rate of 20%.

Table 5: Te specifc experiments.

Experiments Measured indicators Cases CV lane-changing
model

CV car-following
model

CV penetration
rate (%)

Experiment 1 Mixed trafc fow disturbance (amplitude, duration)

1 IDM (HC) Aggressive-LC2013 80
2 IDM (HC) Normal-LC2013 80
3 IDM (LC) Aggressive-LC2013 80
4 IDM (LC) Normal-LC2013 80
5 IDM (HC) Aggressive-LC2013 20
6 IDM (HC) Normal-LC2013 20
7 IDM (LC) Aggressive-LC2013 20
8 IDM (LC) Normal-LC2013 20

Experiment 2 Mixed trafc fow safety (DRAC, TGAP)

1 IDM (HC) Aggressive-LC2013 80
2 IDM (HC) Normal-LC2013 80
3 IDM (LC) Aggressive-LC2013 80
4 IDM (LC) Normal-LC2013 80
5 IDM (HC) Aggressive-LC2013 20
6 IDM (HC) Normal-LC2013 20
7 IDM (LC) Aggressive-LC2013 20
8 IDM (LC) Normal-LC2013 20

Experiment 3 Mixed trafc fow efciency (fow, speed)

1 IDM (HC) Aggressive-LC2013 80
2 IDM (HC) Normal-LC2013 80
3 IDM (LC) Aggressive-LC2013 80
4 IDM (LC) Normal-LC2013 80
5 IDM (HC) Aggressive-LC2013 20
6 IDM (HC) Normal-LC2013 20
7 IDM (LC) Aggressive-LC2013 20
8 IDM (LC) Normal-LC2013 20
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and LC-aggressive-CV and HC-normal-CV and LC-nor-
mal-CV, respectively. And we can get the same conclusion in
case of CV penetration rate being 20%.

Moreover, from lane 1 to lane 3, the gap between the
eight cases gradually decreases. And compared with the
mixed trafc fow with lower CV penetration rate, the mixed
trafc fow with higher CV penetration rate corresponds to
higher trafc fow safety.

4.5.3. Experiment 3 (Mixed Trafc Flow Efciency). We set
a detector every 10meters in the trafc fow test section to
measure the trafc fow efciency at this location. Te
purpose of this experiment is to investigate the trafc fow
efciency of eight cases. Figure 10 displays that the trafc

fow efciency of higher CV penetration rate is higher than
lower CV penetration rate. Meanwhile, there is a little
diference in trafc fow efciency corresponding to each
case in uncongested section, but in congested section, this
diference will be obvious. Compared to LC-CV, HC-CVs
leads to higher trafc fow efciency. And aggressive-CV
leads to higher trafc fow efciency than normal-CV.

4.6. Collaborative Evaluation Model. Tis study established
the following collaborative evaluation model based on
chosen indicators (trafc fow disturbance, safety, and ef-
fciency) to quantify the overall efciency in eight cases
(shown in equation (25)). Average duration is not taken into
consideration in the evaluation model due to the little
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diference between eight cases in value of this indicator. Te
larger the K value, the greater the overall efciency of this
case.

K � ρ1 θ1AverageFlow + θ2AverageSpeed(  + ρ2
1

AverageAmplitude
+ ρ3

AverageTGAP
AverageDRAC

, (26)

where θ1 and θ2 represent the weights of fow and speed,
respectively, and the values are set as 0.5 and 0.5 in this
study; ρ1, ρ2, ρ3 represent the weights of trafc fow ef-
ciency, disturbance, and safety, which are set as diferent
compositions of values in this study.

Table 6 displays the values of basic parameters in every
composition. And we can further calculate the values of
overall efciency corresponding to eight cases (as shown in
Figure 11).

We can conclude that in case of comprehensive con-
sideration of trafc fow disturbance, efciency, and safety,
the overall efciency value of mixed trafc fow with higher
CV penetration rate is higher than that of mixed trafc fow
with lower CV penetration rate. Moreover, CV drivers
obeying CVs-IDM (HC) have higher value of overall ef-
ciency than CV drivers obeying CVs-IDM (LC). In terms of
aggressiveness, when CV penetration rate is 80%, CV
drivers’ behavior obeying normal-LC2013 leads to higher
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Figure 10: Comparison of average trafc fow efciency for fourteen detector locations of overall trafc test section based on eight
combinations of trafc fow arrangement and CV type. (a) Average fow. (b) Average speed.

Table 6: Basic parameters calculated in every composition.

Case AverageFlow (veh/s) AverageSpeed (m/s) AverageAmplitude
(m/s) AverageTGAP (s) AverageDRAC (m/s/s)

Case 1 0.12 12.18 3.178 0.83 5.86
Case 2 0.106 11.99 2.306 1.73 4.12
Case 3 0.104 11.7 3.97 0.63 7.07
Case 4 0.102 11.27 3.72 0.71 6.66
Case 5 0.098 10.44 3.55 0.64 6.55
Case 6 0.096 10.01 3.37 0.81 5.58
Case 7 0.094 9.94 4.47 0.41 8.52
Case 8 0.092 9.39 3.99 0.52 7.75
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overall efciency. However, when CV penetration rate is
20%, CV drivers’ behavior obeying aggressive-LC2013 leads
to higher overall efciency.

Furthermore, in order to study the penetration rate
range suitable for normal-LC2013 and aggressive-LC2013,
respectively, we reset the CV penetration rate in the previous
experiment to 0%, 10%, 30%, 40%, 50%, 60%, 70%, 90%, and
100% and repeat the experiment (the results are shown in
Figure 12).

5. Conclusion

Te fndings of this study have several important implica-
tions for policy and practice. Based on the trajectory data of
CVs in the abovementioned study scene captured by UAV,
we used the clustering method to divide the compliance of
the CV driver to the information when performing car
following and the aggressiveness when preforming lane
changing into three clusters, respectively. Furthermore, we
calibrated the parameters contained in three kinds of car-
following models and three kinds of lane-changing models
of the CV in the simulation experiments. Te average error
of parameter calibration in this paper is 12.5%, which is less
than 13.3% mentioned in [4].

Secondly, we concluded that when the indicators (mixed
trafc fow disturbance, safety, and efciency) are considered
separately, higher CV penetration leads to lower distur-
bance, higher safety, and higher efciency based on above
three experiments. Furthermore, we can summarize the CV
types corresponding to lower disturbance, higher safety, and
higher efciency, respectively (as shown in Table 7) [34, 35].

Tirdly, considering the above three indicators com-
prehensively, we can conclude that when the CV penetration
rate in the mixed trafc fow is lower than 28%, CV drivers
obeying aggressive-LC2013 lead to higher overall efciency;
when the CV penetration rate in the mixed trafc fow is
higher than 28%, CV drivers obeying normal-LC2013 lead to
higher overall efciency. Terefore, we can summarize
specifc measures to improve the overall efciency of mixed
trafc fow: increasing the CV penetration rate in the mixed
trafc fow as much as possible. When the CV penetration
rate is determined, set the CV type according to Table 8.
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