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To investigate the efects of proactive safety control systems suitable for highway interchanges and improve road trafc safety.
Simulated driving experiments were conducted to test the efects of the interchange warning system (IWS) on the ramp, merging
section, diverging section, and accident section. Random forest (RF) and SHapley Additive exPlanations (SHAP) are used to
analyze the efects between driving behavior and driving risk change in both situations without and with IWS. Te results show
that (1) as driving risk increases, drivers tend to increase the frequency of braking and engage in more comprehensive saccade
behaviors. Concurrently, there is an increase in acceleration and speed variation, leading to a gradual decrease in speed. (2)
Compared with the SVR and XGBoost, RF can better ft the nonlinear relationship between driving risk and driver behavior
characteristics with the application of IWS. (3) Te IWS mainly reduces driving risk by afecting operation behavior. When the
mean speed, speed standard deviation (SD), acceleration SD, and maximum braking depth are at 40 to 70 km/h, 3 to 10 km/h, 0 to
0.6m/s2, and 14 to 16, respectively, there is a signifcant reduction in driving risk.Te application of the IWS expands the efective
range of mean speed and speed SD for reducing driving risk to 40 to 100 km/h and 3 to 15 km/h, respectively.

1. Introduction

Te driving environment and trafc fow in the interchange
area of highways are more complex than other road sections.
Te longitudinal and lateral vehicles in the intertwined area
lack coordination [1], resulting in signifcant diferences in
vehicle speeds and frequent lane changes [2]. Terefore,
interchanges have become bottleneck areas that restrict the
operational efciency and safety of highways, representing
high-risk road sections where conficts and collisions are
likely to occur [3, 4]. Research indicates that the occurrence
of accidents is infuenced by factors such as vehicle speed,
trafc fow, driver characteristics, and road geometry. In
weaving and merging areas, there is a higher likelihood of
injuries and fatal accidents, while side-impact collisions are
more common in merging and diverging sections. Addi-
tionally, rear-end collisions are more likely to occur in

merging and overlapping areas [5, 6]. Existing studies have
confrmed that comprehensive speed limit measures on
highways can efectively reduce the severity of accidents and
improve the overall trafc fow. However, relying solely on
speed control measures is insufcient to signifcantly reduce
the overall number of accidents [7, 8]. Implementing pro-
active warning and control systems can enhance the safety of
interchange areas. Tese warning systems primarily include
active lighting devices, dynamic information dissemination,
and dynamic speed limit warning systems. Research on the
impact mechanism between proactive warning and control
methods and driver behavior characteristics and driving risk
is crucial for reducing driving risk at interchanges and
optimizing proactive warning and control systems.

In 1970, Inoue et al. [9] frst proposed a highway warning
system based on roadside equipment to detect road con-
ditions and weather and to issue warning information to
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drivers. Mahmud et al. conducted research on the layout and
design of dynamic message signs in the warning system.
Mahmud et al. [10, 11] analyzed the efects of dynamic
message signs at diferent positions on curves with radius
and investigated the efects of dynamic message sign bor-
ders, display text size, and roadside placement distance on
the warning system. Gates et al. [12] studied the infuence of
diferent placement distances and display content on various
vehicle types while Cui et al. [13] classifed the collision risk
on-ramps based on the analysis of vehicle trajectories and
collision risk and guided drivers to pass through the ramps
in an orderly manner by issuing information on the message
board. In addition, researchers have devised ramp warning
methods based on cooperative vehicle infrastructure system
(CVIS). You et al. [14] categorized the CVIS into four
modules: information collection, cooperative control, safety
warnings, and evaluation. By using specifc algorithms, they
calculate the trafc volume and delay data of the main road
and ramps and disseminate safety warning information for
highway merging areas. Zhou et al. [15] proposed an active
vehicle dynamic speed limit method for on-ramps. Tis
method utilizes real-time perception of trafc conditions on
the on-ramp through a vehicle-road coordination system.
Based on the microscopic METANET model and ALINEA
algorithm, a variable speed control strategy is designed to
achieve dynamic control of vehicle speed. Wang et al. [16]
employed a combination of various trafc sensors to collect
real-time trafc status data in the merge area. Trough the
decision-making unit, the trafc status data is processed,
analyzed, and updated periodically. A safety control warning
is issued in real time through the vehicle-road coordination
and display screen. Fang et al. [17] proposed a vehicle-side-
roadside cooperative trafc guidance system for highways.
Real-time perception of trafc conditions on the main
highway and on-ramp is achieved through the roadside unit,
enabling dynamic control of vehicle speed. Liu et al. [18]
analyzed the key technical parameters of roadside unit
(RSU) and the digital measurable image (DMI) method in
the context of the CVIS and proposed an RSU deployment
scheme based on DMI data to provide safety guidance for
vehicles. Yang et al. [19], based on the process characteristics
of vehicles approaching the merge area, designed an on-
ramp speed control method that considers both driving time
and risk of collision. Liu et al. [20] used vehicle-mounted ad-
hoc network (VANET) to quickly forecast trafc accidents to
rear vehicles and analyze road vehicle information in real
time to help rear vehicles make reasonable emergency
measures in time. While ample research has been conducted
on the design and application of active safety control sys-
tems, there is a lack of comprehensive analysis on the impact
of proactive warning and control methods on driver be-
havior and driving risk.

Terefore, this research takes the interchange warning
system (IWS) deployed in Tenglong Expressway interchange
in Yunnan Province as an example. It establishes the IWS
based on random forest (RF) to model the impact of driver
behavior characteristics and driving risk and combines the
SHapley Additive exPlanations (SHAP) attribution analysis
method to investigate the infuence mechanism of driver

behavior characteristics and driving risk under two sce-
narios: with and without warning systems. Identifying the
signifcant infuencing features of the IWS will provide
reference for the design and optimization of proactive safety
control systems.

2. Experiment

2.1. Experimental Design. Te experiment researches the
IWS deployed at the Tenglong Expressway interchange
section in Yunnan Province, and the system sets up roadside
unit (RSU) every 20meters along the way. When a vehicle
passes by, the signals from the RSU are transmitted to the
system controller, which then coordinates the fashing of all
the RSU in the area to monitor and warn drivers of potential
hazards. Te fashing pattern is as follows:

(1) Trail Display: upon detecting a vehicle, three RSUs
behind the vehicle fash in red and form a trail, with
a frequency of 60 fashes per minute

(2) Merge and Diverge Warning: when a vehicle enters
or exits the on-ramp, RSUs within a range of
150meters after the merged point or diverged point
fash in red, with a frequency of 60 fashes per minute

(3) Accident Alert: in the event of accident detection,
RSUs fash within a range of 200meters behind the
accident location in red, with a frequency of 60
fashes per minute

Based on the DSR-1000TS2.0 driver simulation platform
independently developed by Kunming University of Science
and Technology (Figure 1) and the VS-Design software for
three-dimensional scene design, an experimental driving
simulation route was constructed, consisting of four sce-
narios (Table 1): general ramp section (200m), interchange
merging section (250m), interchange diverging section
(250m), and ramp accident section (200m). Each scenario
was applied both with and without IWS, resulting in a total
of 8 roadway segments.

2.2. Experimental Procedure. Te driving simulation ex-
periment recruited a total of 50 drivers (average age 35,
SD� 8.776, 15 females, 35 males). Each driver was required
to wear an ErgoLAB psychophysiological instrument and an
iView ETG2W eye tracker while driving through 8 exper-
imental sections. Upon completion, the drivers followed the
instructions of the staf to brake, turn of the engine, and fll
out a subjective questionnaire on driving risk. Te experi-
mental process is depicted in Figure 2.

Te experiment excluded 6 drivers who experienced
dizziness or had abnormal data collection from the equip-
ment. Eventually, a total of 44 drivers were identifed as valid
participants. Tis research utilizes expected variance, target
confdence level, and margin of error to validate the adequacy
of sample size [21], as shown in the following equation:

N �
Z
2σ2

E
2 , (1)
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where N is sample size, Z is standard normal distribution
statistic, σ is standard deviation, and E is maximum error.

To determine the minimum sample size, refecting an
unknown parameter at a 90% confdence level with a 10%
signifcance level, Z is set at 1.25 and the range is taken as
0.25 to 0.5, with E being 10% [22]. In this study, σ is taken as
0.4, and the calculated value of N is 25. Tus, the sample size
of the test drivers can be considered reasonable.

Each scenario segment on the road was considered as an
analytical unit. A total of 352 segments of valid data were
extracted, representing driving conditions with and without
IWS in four diferent scenarios. Te data were collected
using a driving simulator, ErgoLAB psychophysiological
instrument, and iView ETG2W eye tracker, and the col-
lection indicators are shown in Table 2.

3. Methods

3.1. Evaluation Framework. Te research adopts driving
safety as the guiding principle, selecting driver operational
indicators, physiopsychological behavioral indicators, and eye
movement behavioral indicators. It utilizes the fuzzy com-
prehensive evaluation method (FCE) to calculate the com-
prehensive scores of diferent drivers’ driving risk, and an
independent sample t-test was used to extract risk features
infuenced by the IWS and employs random forest (RF)
combined with SHapley Additive exPlanations (SHAP) attri-
bution analysis to elucidate the impact mechanism of the IWS
on driving risk. Tis establishes a comprehensive evaluation
framework (Figure 3) for the efectiveness of the IWS.

3.2. Data and Processing. Te efectiveness of the IWS is
infuenced by the degree of risk in the scenarios. Due to the
complexity of the road trafc environment, its efectiveness
is afected by the confict form, road alignment, and trafc
fow, resulting in it being difcult to have a linear re-
lationship with driving risk. To objectively evaluate the ef-
fectiveness of the IWS under diferent scenarios, the fuzzy
comprehensive evaluation (FCE) method is employed to
analyze the performance of drivers in diferent scenarios and
partition driving risk [21].

3.2.1. Driving Risk Analysis. Vehicle speed and acceleration,
brake pedal depth, heart rate, electrodermal activity, saccade
velocity, and saccade amplitude were selected as the eval-
uation indicator set. Tese are used to characterize driver
operating characteristics, physiological and psychological
characteristics, and eye movement behavior characteristics,
which refect the driver’s micro-operation process during
driving, control of the vehicle, alertness level, and ability to
obtain information through eye movements, make de-
cisions, and take action.

Te subjective questionnaire on driving risk categorizes
driving risk into fve levels, with higher levels indicating
greater risk in a given scenario. To avoid discrepancies
between drivers’ subjective perceptions and their driving
performance afecting the classifcation of indicators, the
data are normalized, and the K-means clustering algorithm

is applied to cluster the evaluation indicators. Te evaluation
indicators defne fve levels of evaluation comments, denoted
as U� {u1, u2, u3, u4, u5}. Since the clustering algorithm only
provides the clustering categories without explaining the
meaning of each category, an analysis of the clustering re-
sults is necessary. By combining the results of the subjective
questionnaire on driving risk, the corresponding evaluation
comment levels for each indicator range are comprehen-
sively determined. For example, in the driving performance
of category B (Table 3), the vehicle speed is relatively faster
compared to other categories, but the corresponding brake
pedal depth, acceleration, heart rate, galvanic skin response,
saccade speed, and saccade amplitude, as well as their re-
spective variations, are relatively small. Tis indicates that in
the driving process, this category has a lower level of tension
compared to other categories, requiring less frequent sac-
cade behavior. Simultaneously, it can maintain a relatively
fast and smooth speed. Moreover, 57% of the subjective
questionnaire results for the risk assessment of drivers in this
category are at level 0, 26% at level 1, and 17% at level 2. Te
driving performance of this category aligns well with the
subjective risk assessment of drivers.Terefore, category B is
defned as level 0. Te same method is applied to determine
the evaluation levels for all categories, as shown in Table 3.

3.2.2. Results of FCE. Using the FCE to analyze the above
evaluation indicators, we determine the afliation degree rij

of the evaluation level corresponding to evaluation criteria
U� {u1, u2, u3, . . ., un,}, establish the afliation matrix R
constituted by the evaluation set, use the entropy weight
method to determine the fuzzy set A of the weight collection
of each evaluation index, and fnally get the fuzzy from the
formulas (2)–(4) evaluation vector B.

R �

r11

r21

⋮

rn1

r12

r22

⋮

rn2

· · ·

· · ·

⋮

· · ·

r1n

r2n

⋮

rnm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

A � a1, a2, . . . , an( 􏼁, (3)

Driving Simulator

Test scenarios
Traffic flow

Control center

Test vehicle

RSU20 m

Roadside unit (RSU)

Figure 1: Test platform and structure.
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B � A ∘R, (4)

where A is the weights, R is the afliation matrix, B is the
fuzzy evaluation vector, and “∘” is the weighted average type
fuzzy operator fuzzy synthesis operator.

Using the FCE to analyze the driving risk, we defne the
score gradient matrix V � (100, 80, 60, 40, 20) for the
comment set L� {l1, l2, l3, l4, l5}. Te higher the driving risk,
the lower the score, the multiplication of B and V is the
composite score under each scenario. Subsequently, we
calculate the comprehensive score for each driver and the
mean score for all drivers. Table 4 shows the results of
calculating the fuzzy evaluation vectors and composite
scores for the frst driver, while Table 5 shows the mean score
for all drivers.

3.3. Feature Analysis and Selection

3.3.1. Feature Analysis. In order to visually analyze the re-
lationship between driver’s behavioral characteristics and
driving risk, independent sample T-tests were used to analyze
operation behavior characteristics, psychophysiological char-
acteristics, and eye movement characteristics, respectively. Te
results of the independent samples T-test are shown in Table 6.

(1) Operation Behavior. Te analysis of driver’s operation
characteristics can be seen in Figure 4. As the driving risk
increases in diferent experimental scenarios, the changing
trends of each indicator are basically consistent between the
two cases with and without IWS. However, in the application
of IWS, the increasing trend of acceleration SD, average

Table 2: Test data indicators.

Data Indicator
Operational data Speed (km/h), brake pedal depth, acceleration (m/s2)
Physiopsychological data Heart rate (beats/min), electrodermal activity (μS)
Eye movement data Saccade amplitude (°), saccade velocity (°/s)
Note. Te maximum value of the simulator brake pedal in this study was 20, and the value when the brake pedal was pressed to the limit position was
calibrated to 20.

Step 1: Data collection and processing 

Driving risk score Risk features Effects of risk features

Experimental data collection

Fuzzy Comprehensive Evaluation Method Independent samples t-test

Fandom forest

Shapley Additive Explanation

tal data collection

ive Evaluation Method Independent samples t-test

Fandom fo

Shapley Additive E

Step 3: Data modeling

Driving behavior feature analysis

Step 2: Feature analysis and selection

Figure 3: Comprehensive evaluation framework.

Table 3: Classifcation scope of evaluation indicators.

Clustering category B C A E D
Risk level 0 1 2 3 4
Speed (0.642, 0.812] (0.332, 0.488] (0.488, 0.642] (0, 0.332] (0.812, 1]
Brake pedal depth (0, 0.243] (0.243, 0.455] (0.455, 0.559] (0.559, 0.791] (0.791, 1]
Acceleration (0, 0.107] (0.532, 0.671] (0.315, 0.532] (0.107, 0.315] (0.671, 1]
Heart rate (0, 0.122] (0.122, 0.284] (0.284, 0.488] (0.488, 0.728] (0.728, 1]
Electrodermal activity (0, 0.071] (0.071, 0.188] (0.188, 0.442] (0.442, 0.749] (0.749, 1]
Saccade velocity (0, 0.063] (0.063, 0.124] (0.124, 0.378] (0.378, 0.698] (0.698, 1]
Saccade amplitude (0.252, 0.352] (0.352, 0.412] (0.412, 0.548] (0, 0.252] (0.548, 1]

(a) (b) (c)

Figure 2: Experimental procedure: (a) wearing instruments, (b) driving simulation experiment, and (c) example of scenario and RSU.
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Table 4: Composite scores of driver#1 under diferent scenarios.

Scenarios IWS application Fuzzy evaluation vectors Composite score

Ramp section (scenario 1) Unapplied (0.082, 0.236, 0.571, 0.049, 0.062) 64.54
Applied (0.100, 0.203, 0.613, 0.061, 0.023) 65.92

Merging section (scenario 2) Unapplied (0.101, 0.193, 0.488, 0.079, 0.139) 60.76
Applied (0.051, 0.158, 0.701, 0.049, 0.041) 62.52

Diverging section (scenario 3) Unapplied (0.217, 0.295, 0.332, 0.081, 0.075) 69.96
Applied (0.180, 0.336, 0.461, 0.017, 0.006) 73.34

Ramp accident section (scenario 4) Unapplied (0.039, 0.051, 0.584, 0.198, 0.127) 53.48
Applied (0.059, 0.091, 0.695, 0.066, 0.088) 59.28

Table 5: Mean score of all drivers under diferent scenarios.

Scenarios IWS application Mean score Risk ranks

Ramp section (scenario 1) Unapplied 65.00 66.46 L2Applied 67.92

Merging section (scenario 2) Unapplied 61.34 63.43 L3Applied 65.52

Diverging section (scenario 3) Unapplied 70.02 73.27 L1Applied 76.34

Ramp accident section (scenario 4) Unapplied 53.34 55.31 L4Applied 57.28

Table 6: Te results of the independent samples t-test.

Characteristics type Characteristics IWS Scenario 1 Scenario 2 Scenario 3 Scenario 4

Operation behavior

Mean speed (km/h)
Unapplied 58.02 75.31 86.36 41.40
Applied 57.62 64.33 64.15 50.45
Sig 0.902 0.002∗∗ 0.000∗∗ 0.005∗∗

Speed SD (km/h)
Unapplied 0.64 0.81 0.35 1.60
Applied 1.03 1.60 0.65 1.81
Sig 0.017∗ 0.000∗∗ 0.042∗ 0.202

Acceleration SD (m/s2)
Unapplied 6.38 6.66 3.58 14.23
Applied 7.88 11.18 7.83 16.15
Sig 0.186 0.018∗ 0.001∗∗ 0.235

Mean brake pedal depth
Unapplied 3.51 5.51 2.41 11.32
Applied 6.02 10.10 3.03 10.87
Sig 0.039∗ 0.009∗∗ 0.357 0.708

Maximum brake pedal depth
Unapplied 0.27 0.83 0.22 0.94
Applied 0.37 1.08 0.2 1.55
Sig 0.376 0.047∗ 0.838 0.410∗

Brake pedal depth SD
Unapplied 0.82 1.64 0.40 2.60
Applied 1.19 3.09 0.65 2.76
Sig 0.232 0.015∗∗ 0.358 0.711

Psychophysiological characteristics

Heart rate SD
Unapplied 3.73 4.84 4.3 5.44
Applied 4.69 4.22 3.99 5.07
Sig 0.335 0.562 0.779 0.712

Electrodermal activity (μS)
Unapplied 7.16 7.67 6.71 7.25
Applied 7.08 7.21 7.49 8.08
Sig 0.691 0.67 0.309 0.574

Eye movement characteristics

Mean saccade amplitude (°)
Unapplied 2.56 2.19 1.6 2.84
Applied 2.58 2.56 2.14 2.20
Sig 0.976 0.231 0.029∗ 0.265

Mean saccade velocity (°/s)
Unapplied 64.67 72.16 53.61 72.84
Applied 73.50 74.90 51.74 70.70
Sig 0.045∗ 0.623 0.918 0.637

∗Signifcant diference at 0.05 level. ∗∗Signifcant diference at 0.01 level.
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depth of brake pedal, and brake pedal depth SD are larger
than those without IWS, while the increasing trend of speed
SD and maximum depth of brake pedal are smaller than
those without IWS. Te decrease in mean speed is also
smaller than that without IWS. Te acceleration SD of the
vehicle (scenarios 1, 2, and 3; Sig� 0.017, 0.000, 0.042< 0.05),
speed SD (scenarios 2 and 3; Sig� 0.018, 0.001< 0.05),
maximum depth of brake pedal (scenarios 1 and 2;
Sig� 0.039, 0.009< 0.05), mean brake depth (scenarios 2 and
4; Sig� 0.047, 0.041< 0.05), and brake depth SD (scenario 2,
Sig.� 0.015< 0.05) are all higher than those without IWS,
and there are signifcant diferences in diferent scenarios.

With the above analysis, as the driving risk increases, the
driver will brake harder and more frequently to control the
speed of the vehicle and try to keep the speed stable.
Comparing the situation with and without IWS, the IWS can
better guide the driver to brake and stabilize the vehicle
speed to avoid potential risk.

(2) Psychophysiological Behavior. According to the psy-
chophysiological characteristics analysis of driving, as
shown in Figure 5, as the driving risk increases, both the
heart rate SD and the mean electrodermal activity show an
upward trend. When there is IWS, the degree of increase in
the heart rate SD for drivers is weaker, while the mean
electrodermal activity is the opposite. At the same time, the
heart rate SD is generally lower, and the mean electrodermal
activity is generally higher when there is IWS. However, the
analysis shows no signifcant diference in drivers' psycho-
physiological behaviors with or without the IWS.

In summary, drivers tend to exhibit higher levels of
tension, cognitive arousal, and vigilance as driving risk
increases. Installing IWS is benefcial in reducing the level of
driver tension as driving risk rises, while maintaining a high
level of cognitive arousal and vigilance.

(3) Eye Movement Behavior. Te analysis of the driver’s eye
movement characteristics depicted in Figure 6 reveals that
there are varying degrees of upward trend in saccade am-
plitude and saccade speed as driving risk increases. In sce-
narios where driving risk is higher, the amplitude and velocity
of saccades are lower when an IWS is applied than when it is
unapplied. When an IWS is applied, the amplitude of sac-
cades is more stable, and the velocity of saccades is faster. In
addition, signifcant diferences exist between scenarios with
and without an IWS in scenario 3 (Sig.� 0.029< 0.05) and
scenario 1 (Sig.� 0.045< 0.05).

Based on the above analysis, drivers tend to increase both
the amplitude and velocity of their saccades in high-risk
driving scenarios, allowing for faster acquisition of trafc
information. When IWS is applied, drivers are able to
maintain a wider and more stable amplitude of saccades,
while also increasing their saccades velocity, enabling them
to better identify potential road risk.

3.3.2. Feature Selection. Te indicators showing signifcant
diferences between the application and without application
of IWS in feature analysis, along with the comprehensive
scores of all drivers in diferent scenarios, were selected to

construct a risk feature dataset for modeling. Tis facilitated
the analysis of the relationship between IWS, driver behavior
characteristics, and driving risk. Details of the features’ range
and encoding can be found in Table 7.

3.4. Data Modeling. To investigate the impact of IWS on
driver behavior and driving risk, we comprehensively
evaluate the efcacy of IWS, establish a nonlinear model
between the IWS, driver characteristics, and driving risk
using the random forest regression algorithm (RF), and
analyze the efectiveness of the IWS using the SHapley
Additive exPlanations (SHAP).

3.4.1. Random Forest. Te RF combines the Bagging en-
semble algorithm and the decision tree algorithm. By in-
corporating randomness throughout the entire sampling
process, it mitigates the issue of overftting that decision
trees face during growth.Te CARTregression tree branches
at nodes based on the principle of minimizing the mean
absolute error. For any variable K that needs to be branched,
it is necessary to determine the variable and parent node that
satisfy the minimum sum of mean absolute errors for the
two datasets D1 and D2 divided by the corresponding parent
nodes [23]. Te corresponding formula is as follows:

min
K,s

min
m1

􏽘
xi∈D1(K,s)

yi − m1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + min
m2

􏽘
xi∈D2(K,s)

yi − m2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(5)

where m1 is the output mean value of D1 subnode; m2 is the
output mean value of D2 subnode; xi is the input sample; yi

is the node output value.

3.4.2. Model Optimization and Evaluation. To prevent the
RF model overftting efectively and enhance its performance,
this study employs an 80% data allocation for training and
20% for testing. Trough grid search and ten-fold cross-
validation, the model undergoes hyperparameter optimiza-
tion.Te ten-fold cross-validation divides the training set into
10 subsets for 10 training iterations, using 9 subsets for
training and 1 subset for validation in each iteration, leading
to the determination of the optimal model parameters. Te
error and optimal parameters for model training are shown in
Figure 7 and Table 8, respectively.

To evaluate the accuracy and reliability of the RF model,
the mean absolute error (MAE), mean squared error (MSE),
and root mean squared error (RMSE) are used as metrics to
evaluate the ft of the regression model. Te defnitions of
these indicators are as follows:

MAE �
1
m

􏽘

m

i�1
yi − yi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (6)

MSE �
1
m

􏽘

m

i�1
yi − yi( 􏼁

2
, (7)
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RMSE �

�������������

1
m

􏽘

m

i�1
yi − yi( 􏼁

2
,

􏽶
􏽴

(8)

wherem is the total number of sample data; yi and yi are the
predicted and observed values, respectively.

Te performance comparison is conducted by SVR
(support vector regression machine), XGBoost (extreme
gradient boosting machine), and RF (random forest), re-
spectively, and the calculated results ofMAE,MSE, and RMSE
of each model are shown in Table 9, and the RF has lower

MAE, MSE, and RMSE compared with SVR and XGBoobt,
which indicates that RF has a better ftting efect, which can
better express the relationship between the IWS, driving
behavior characteristics and driving risk, and can better re-
solve the mechanism of diferent variables on driving risk.

3.4.3. SHapley Additive exPlanations (SHAP). SHAP cal-
culates the SHAP value by building an additive explanatory
model, analyzing “contributions” of all features as to the
target. Te SHAP value is the degree of “contribution”
assigned to each feature, providing an excellent explanation
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Figure 4: Operation behavior under diferent driving risk: (a) mean speed, (b) acceleration SD, (c) speed SD, (d) maximum brake pedal
depth, (e) mean brake pedal depth, and (f) brake pedal depth SD.
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Figure 5: Psychophysiological behavior under diferent driving risk: (a) heart rate SD and (b) mean electrodermal activity.
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Figure 6: Eye movement behavior under diferent driving risk: (a) mean saccade amplitude and (b) mean saccade velocity (°/s).

Table 7: Classifcation and coding of risk features.

Feature categories Features Feature
codes and range

Degree of risk Driving risk [42.4, 83.6]
IWS arrangements IWS 0� unapplied, 1� applied

Driver behavioral characteristics
Operation behavior

Mean speed (km/h) [24.82, 114.20]
Speed SD (km/h) [0.08, 44.9]

Acceleration SD (m/s2) [0.01, 3.34]
Mean brake pedal depth [0, 10.26]

Maximum brake pedal depth [0, 20.00]
Brake pedal depth SD [0, 9.97]

Eye movement behavior Mean saccade amplitude (°) [0, 8.45]
Mean saccade velocity (°/s) [0, 191.23]
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Figure 7: Error curve between true and predicted values: (a) before optimization and (b) after optimization.
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for the mechanisms of both multivariate interactions and
single variables [24]. In the research, the application of the
IWS and driver behavioral characteristics is input as feature
values, and the SHAP value is obtained based on their con-
tribution to the driving risk, as shown in formulas (9) and (10):

f xi( 􏼁 ≈ g zi
′( 􏼁 � ϕ0 + 􏽘

N

j�1
ϕijzij
′ , (9)

where N represents the number of features, zij
′ ∈ 0, 1{ }N

represents the set of features belonging to the sample among
N features, ϕj represents the contribution of feature i, and ϕ0
represents the dummy contribution.

ϕij � 􏽘
w∈xi

(|s| − 1)!(N − |s|)!

N!
[f(s) − f(s − j􏼈 􏼉)], (10)

where ϕij represents the contribution of any variable, s is
a subset of the set of variables, and |s| represents the number
of variables in the subset.

4. Results and Discussion

4.1. Importance of Risk Features. Te contribution of dif-
ferent features to driving risk is shown in Figure 8(a), which
illustrates the overall impact of each risk feature on driving
risk and arranges them in descending order of their impact
on driving risk. Te two variables with a greater impact are
the IWS and the speed SD, and the impact of mean speed
and acceleration SD, mean saccade velocity, and amplitude
on driving risk is roughly similar, while the remaining
features have limited impact on driving risk.Te infuence of
the IWS and driver behavioral characteristics on driving risk
is obtained from the calculation of the SHAP value, and the
positive and negative SHAP values represent the features’
positive and negative impacts on risk level. As shown in
Figure 8(b), it is evident that when the IWS value
(0� unapplied and 1� applied) is higher, the corresponding
SHAP value is negative, indicating that the IWS can reduce
driving risk. Conversely, when the speed SD and acceleration
SD are larger, the corresponding SHAP value is positive,
signifying that higher speed and acceleration SD lead to
increased driving risk.

4.2. Efects of Risk Features. Te driver’s behavioral char-
acteristics are classifed into two categories, without IWS and
with IWS. Te SHAP values are used for partial dependence
analysis, aiming to investigate the impact mechanisms be-
tween driver behavior features and driving risk under the
two diferent applications of IWS as illustrated in Figure 9.
Te vertical axis represents the SHAP values, while the
horizontal axis indicates various driver behavior features.

(1) In Figure 9(a), the mean speed is concentrated within
the range of 40 to 70 km/h, and the SHAP values are
mostly below zero, suggesting that it reduces driving
risk under both without and with IWS conditions.
Te mean speed is more scattered without IWS,
particularly when it ranges from 0 to 40 km/h and
from 70 to 100 km/h, the SHAP values are mostly
above zero, indicating an increase in driving risk.
However, with IWS, the mean speed concentrates
within the range of 40 to 80 km/h, and the SHAP
values are mostly below zero when the speed is
between 70 and 100 km/h, indicating that there is still
a reduction in driving risk. Tis demonstrates that
controlling the average mean speed within the range
of 40 to 70 km/h on interchange ramps can efec-
tively mitigate driving risk. Furthermore, installing
IWS concurrently can expand the range of mean
speed at which risk can be mitigated and concentrate
the mean speedmore within the 40 to 80 km/h range.

(2) In Figure 9(b), when the speed SD is within the range
of 3 to 10 km/h, themajority of SHAP values are below
zero. Tis indicates a reduction in driving risk under
both the conditions without and with IWS. When the
speed SD exceeds 10 without IWS, the SHAP values
are mostly above zero, resulting in an increase in
driving risk. However, with IWS, the SHAP values are
lower compared to the condition without IWS, in-
dicating a weakening of the elevated impact of speed
SD on driving risk. Simultaneously, the range where it
has a reducing efect expands. In the range of 10 to
15 km/h, the majority of SHAP values remain below
zero, indicating a reduction in driving risk for driving.
Conversely, beyond 15 km/h, the majority of SHAP
values are above zero, posing an increase in driving
risk. Tis illustrates that within the range of 3 to

Table 9: Model evaluation indicator.

Models
MAE MSE RMSE

Train Test Train Test Train Test
SVR 1.78 1.75 4.45 4.32 2.11 2.08
XGBoost 1.22 1.28 2.79 2.89 1.67 1.70
RF 0.51 0.54 0.86 0.81 0.92 0.90

Table 8: Optimal hyperparameters of RF model.

Hyperparameter Range Optimal value
n_estimators [80, 300] 120
max_depth [2, 7] 4
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10 km/h for the speed SD, driving risk can be reduced,
and the application of IWS can extend the range of
speed SD at which risk can be mitigated.

(3) In Figure 9(c), in both with and without IWS, the
SHAP value is higher than 0 when the acceleration
SD is greater than 0.6m/s2, indicating that the risk of
driving is elevated in both conditions, and the SHAP
value is lower than 0 when the acceleration SD is less
than or equal to 0.6m/s2, indicating that there is
a reduction of the risk in both conditions, but this
reduction is more obvious compared to with the
application of IWS. Tis indicates that driving is
safer when the standard deviation of acceleration is
0 to 0.6m/s2, and the installation of IWS partially
improves driving safety.

(4) In Figure 9(d), the SHAP values are below 0 and
above 0 for the maximum braking depth ranges of 14
to 16 and 16 to 19, respectively, under the conditions
with and without IWS.Tis indicates a reduction and
an increase in driving risk, respectively. When the
maximum braking depth is within the range of 1 to
14, there is no signifcant increase or decrease in risk.
Hence, maintaining the maximum braking depth
within the range of 14 to 16 can enhance driving

safety. Furthermore, the installation of IWS has no
signifcant impact on the maximum braking depth.

(5) In Figures 9(e) and 9(f), under the conditions of
without and with IWS, when the mean brake pedal
depth and brake pedal depth SD are in the ranges 0 to
0.2 and 0 to 1, respectively, the SHAP value is lower
than 0, indicating a signifcant risk reduction.
Conversely, when the mean brake pedal depth and
brake pedal depth SD exceed 0.2 and 1, respectively,
the SHAP value is higher than 0, indicating an in-
crease in driving risk. Furthermore, the application
of IWS has a weaker infuence on the relationship
between the mean brake pedal depth, brake pedal
depth SD, and driving risk.

(6) In Figures 9(g) and 9(h), the distributions of SHAP
values for mean saccade amplitude and mean sac-
cade velocity are not signifcantly diferent under
both without and with IWS conditions. Overall,
when the mean saccade amplitude is at 1.2 to 2°, the
SHAP value is higher than 0, indicating that the risk
of driving would be elevated at this time; when there
is IWS, the mean saccade velocity would be centered
at 50 to 100°/s, but the efect of the mean saccade
velocity on risk elevation or reduction is unclear.
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Figure 9: Analysis of SHAP value of driver behavior features: (a) mean speed, (b) speed SD, (c) acceleration SD, (d) maximum brake pedal
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5. Conclusions

(1) As the level of risk increases, there is a downward
trend in the mean speed of vehicles. Indicators such
as speed SD, acceleration SD, psychophysiological
characteristics, and eye movement characteristics all
show varying degrees of increase. With the appli-
cation of IWS, drivers tend to take braking behavior
more frequently, increase braking intensity, and
decrease vehicle speed. Simultaneously, they reduce
the level of tension caused by driving risk, maintain
a heightened state of alertness, sustain a wider and
more stable saccade amplitude, and increase the
saccade velocity.

(2) Compared to SVR and XGBoost, RF has smaller
MAE, MSE, and RMSE, indicating that RF can better
express the nonlinear relationship between the IWS,
driving behavioral characteristics, and the driving
risk and can better analyze the mechanism of dif-
ferent features on driving risk.

(3) Te IWS primarily aims to mitigate the level of
driving risk by infuencing the driver’s operation
characteristics. When the mean speed, speed SD,
acceleration SD, maximum braking depth, mean
braking depth, and braking depth SD are within the
ranges of 40 to 70 km/h, 3 to 10 km/h, 0 to 0.6m/s2,
14 to 16, 0 to 0.2, and 0 to 1, respectively, there is
a signifcant reduction in the degree of risk. Fur-
thermore, the application of the IWS expands the
efective range of mean speed and speed SD for
reducing driving risk to 40 to 100 km/h and 3 to
15 km/h, respectively.
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