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In the feld of trafc management and control systems, we are witnessing a symbiotic evolution, where intelligent infrastructure is
progressively collaborating with smart vehicles to produce benefts for trafc monitoring and security, by rapidly identifying
hazardous behaviours. Tis exponential growth is due to the rapid development of deep learning in recent years, as well as the
improvements in computer vision models. Tese technologies allow for monitoring tasks without the need to install numerous
sensors or stop the trafc, using the extensive camera network of surveillance cameras already present in worldwide roads. Tis
study proposes a computer vision-based solution that allows for real-time processing of video streams through edge computing
devices, eliminating the need for Internet connectivity or dedicated sensors. Te proposed system employs deep learning al-
gorithms and vision techniques that perform vehicle detection, classifcation, tracking, speed estimation, and vehicle geolocation.

1. Introduction

In the 21st century, where mobility is at the forefront of our
daily lives, the demand for efective trafc monitoring
systems has never been more pressing. Traditionally, trafc
monitoring relied on a large variety of sensors and tech-
nologies, each with its own set of advantages and limitations.
To obtain information about trafc from the road surface,
diferent types of sensors have been employed. On-road
systems use sensors that require complex installation pro-
cedures, often necessitating disruptive measures such as
preparing the asphalt or interrupting trafc for extended
periods of time. Tis category of sensors, classifed as in-
trusive, includes inductive loop detectors, magnetometers
[1, 2], microloops, pneumatic tubes, and piezoelectric cables.
While these technologies have reached a mature stage of
development, their installation and maintenance incur high
costs and are challenging to relocate, making them less
adaptable to evolving trafc needs.

Over-road systems, on the other hand, ofer a distinct
advantage by leveraging nonintrusive sensors that do not
require road closures during installation, resulting in

signifcantly reduced costs and minimal disruption. Tese
nonintrusive sensors fall into twomain categories: active and
passive. Active sensors employ signal transmission and
reception to measure the distance between the sensor and an
object, utilizing the TOF [3] (Time of Flight) principle.

In contrast, passive sensors can gather information about
trafc without direct interaction, and they are primarily
represented by traditional cameras. Video cameras ofer
high-resolution imaging capabilities and can be deployed
almost everywhere, enabling us to capture detailed visual
data of trafc scenarios. Embracing this technology choice in
our investigation is justifed by the versatility and efec-
tiveness of cameras.

Tis research proposes an edge computing platform
capable of monitoring trafc in real time through computer
vision, without the need of cloud or hybrid computing [4, 5]
or depending on specialised sensors [1–3]. Te solution
should be able to (1) detect and classify vehicles, (2) track
detection, (3) geolocate tracked vehicles and measure their
speed, and (4) run in real time on an edge computing device.

Te structure of this article is divided into several sec-
tions, each dedicated to a specifc aspect of our research. In
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Section 2 (Literature Review), we comprehensively review
SOTA (State-of-the-Art) techniques for object detection,
tracking, and speed estimation. Moving forward, Section 3
elaborates on the methodology used for dataset development
and outlines the design process for our global solution.
Section 4 provides a detailed explanation of our solution,
while Section 5 showcases the results of our experiments and
evaluations, ofering insights into the system’s performance.
Finally, Section 6 summarizes our conclusions, discussing
the implications of our fndings and potential paths for
future research. Tis paper aims to provide a structured and
informative exploration of our work in the feld of intelligent
infrastructure for trafc analysis.

2. Literature Review

In this section, we will conduct a thorough review of current
methods in computer vision-based vehicle detection,
tracking, and speed estimation, highlighting their applica-
tion in trafc monitoring. By presenting an in-depth ex-
ploration of these techniques, this section will provide a solid
foundation for understanding the SOTA in computer
vision-based trafc monitoring.

2.1.ObjectDetectionAlgorithms. Object detection algorithms
are a basic component of computer vision-based trafc
monitoring systems. Traditional approaches have emphasized
background subtraction, efectively distinguishing moving
vehicles from stationary environment. Others focus on vehicle
features like shape, symmetry, casted shadow [6], headlights
[7], or license plates [8]. However, these traditional methods
often face limitations in terms of adaptability and accuracy in
varied trafc scenarios. Tis led to the exponential growth of
deep learning solutions for object detection applications,
setting a new standard in accuracy and efciency that
benefted trafc monitoring tasks.

Computer vision has been profoundly shaped by deep
learning algorithms like the R-CNN family and the YOLO
(You Only Look Once) series. Starting at 2013, R-CNN [9]
combined CNNs (Convolutional Neural Networks) with re-
gion proposals for object localization and segmentation. Tis
evolution continued with Fast R-CNN [10] and then Faster
R-CNN [11], the latter introducing the Region Proposal
Network (RPN) for more efcient object location prediction.

In 2015, Redmond et al. developed the original YOLO
model [12, 13], which was revolutionary, as it was able to
process images in a single pass, unifying the tasks of object
localization and classifcation. Subsequent versions brought
substantial improvements: YOLOv2 [13, 14] introduced
batch normalization and anchor boxes, while YOLOv3
[13, 15] optimized performance with an improved backbone
network and multiple anchors. YOLOv4 [13, 16] continued
this trend with enhanced training methods like mosaic data
augmentation and a new head architecture using anchor-
free detection.

YOLOv5 [17], released by Ultralytics and designed by
G. Jocher, not only ofered improvements but also is the
frst model of the family to be implemented in PyTorch

and to add size variations for diverse accuracy and
computing requirements. It utilizes advanced data aug-
mentation techniques such as scaling, colour space ad-
justments, and mosaic augmentation, broadening the
model’s exposure to diferent scenarios. Furthermore,
YOLOv5 marks a notable evolution in anchor box opti-
mization, featuring autolearning bounding box anchors
from the training data.

Te introduction of YOLOv6 [18] marks a signifcant
milestone in the YOLO series. Developed with a focus on
industrial applications, YOLOv6 achieves high trade-of
between accuracy and speed. Following this advancement,
YOLOv7 [19] emerged as a breakthrough, extending beyond
object detection to achieve pose estimation on the COCO
key point dataset.

YOLOv8 [20] and YOLO-NAS [21] represent the pin-
nacle of this series. YOLOv8 improved upon YOLOv7 with
architectural modifcations, like the anchor-free detection
heads and new features, such as pose estimation, semantic
segmentation, and pure object classifcation. YOLO-NAS,
developed by Deci AI, stands out with its Neural Archi-
tecture Search [21] technology, excelling in accuracy-latency
trade-ofs and featuring a robust approach to feature ex-
traction and real-time object detection.

In Table 1, diferent versions of YOLO after 2020 are
shown. Tere, the models with the highest AP (Average
Precision) on the COCO2017 dataset are YOLOv7,
YOLOv5, and YOLOv8, respectively. However, in the de-
velopment of object detection algorithms, precision alone is
not the only concern. Balancing latency and precision is also
important in real-world applications, as well as the size that
models occupy in memory.

In the plots of Figure 1, a comparison is shown between
YOLOv5-6-7-8 models and their respective subversions based
on the number of parameters. YOLOv5n [17] is the one that
occupies the least memory space, with a mAP (mean Average
Precision) on COCO below 30%. On the other hand,
YOLOv8n [20] and YOLOv6n [18] achieve similar accuracy,
with version 8 being slightlymore precise with less parameters.
Regarding larger model sizes, YOLOv8 consistently surpasses
its predecessors in mAP, yet it exhibits more latency.

Since its release, YOLOv5 has remained in widespread
use, even after versions 6 and 7 were proposed. Tis is
because the environment in which it was developed has
allowed for training, validation, and deployment in a fast and
simple way, greatly expanding the support for this model on
numerous platforms. In 2023, Ultralytics followed the same
strategy and launched YOLOv8 with an even simpler
environment.

2.2. Multiple Object Tracking Algorithms. Object tracking
algorithms are a crucial component in computer vision
applications, where diferentiating between subjects is key.
Multiobject Trackers (MOTs) assign a unique tracking
identifer to each object, making them distinguishable over
time. Diverse approaches have been developed, each im-
proving upon its predecessors in unique ways. Tese ad-
vancements have allowed the implementation of such
algorithms in trafc monitoring tasks.
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In 2016, Bewley et al. proposed SORT [24] (Simple
Online and Realtime Tracking), which employs a tracking-
by-detection framework. Objects are initially detected by an
object detection algorithm, and then the tracker assigns the
target identifers. Te tracking process is subdivided in two
separated tasks: motion estimation and data association. For
motion estimation, a Kalman Filter [25] is used to perform
a state-space estimation on a linear velocity model, pro-
posing new position candidates for previous detection. Te
data association task is performed by the Hungarian algo-
rithm [26], assigning current detection to existing targets. In
SORT, occlusions, both short-term and long-term, are not
directly addressed. Instead, the algorithm implicitly manages
short-term occlusions with the intersection-over-union
(IOU) metric during the data association process.

Deep SORT [27] built upon SORT incorporates a deep
appearance descriptor that enhances the data association
process. Like SORT, this algorithm also employs a Kalman
flter to predict target movements. For data association, it
computes the appearance descriptor of every detection and
tracked targets using a CNN, and similarity is obtained using
the Cosine distance. Movement is also considered for the
association task, and it is evaluated through theMahalanobis
distance [28]. Both metrics improve performance in oc-
clusion and reidentifcation scenarios.

Byte Track [29] further advanced the feld by adopting
a novel strategy for associating almost every detection box,
including those with low scores, thereby signifcantly re-
ducing object missing and trajectory fragmentation. Tis is
achieved by matching high confdence detection frst, using
IoU (intersection-over-union) and appearance features. Low
confdence detection is matched after, using only IoU.

BoT SORT [30]stands out in its approach by not only
addressing the limitations found in its predecessors but also
by introducing innovative enhancements. First it integrates
a camera motion compensation, crucial for more accurate
tracking in dynamic scenes. Furthermore, BoT SORTrefnes
the use of the Kalman flter for state estimation, ofering
more precise predictions of object trajectories, and improves
the appearance and movement association metrics.

2.3. Speed Estimation Techniques. Trafc monitoring sys-
tems employ diferent strategies for measuring vehicle
speeds, some consist in sensors directly installed on roads
[2], others consist in TOF measurements [3], and others
even deploy smartphones inside vehicles to measure actual
speed [4, 5].

In the computer vision feld, various methods are based
on distance estimation techniques coupled with timestamps.
Tere are several approaches for acquiring these

Table 1: YOLO architecture summary.

Version Date Framework AP (%)
YOLOv4 [16] 2020 Darknet [13] 43.5
YOLOv5 [17] 2020 PyTorch 55. 
YOLOv6 [18] 2022 PyTorch 52.5
YOLOv7 [19] 2022 PyTorch 56. 
YOLOv [20] 2023 PyTorch 53.9
YOLO-NAS [21] 2023 PyTorch 52.2
Te AP metric (Average Precision) is calculated on COCO2017, and data are taken from [22]. Bold values indicate the top 3 models for Average Precision
(AP) in COCO2017.
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Figure 1: Performance comparison for diferent YOLO model sizes and versions. In (a) the size-mean average precision relationship is
illustrated, while (b) shows the latency-mean average precision trade-of. YOLOv5-6-7-8 models are compared in diferent size versions.
Plots were taken from [23].
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measurements, for example, one approach involves using
stereo systems [31], where distances are obtained from
disparity maps. However, these systems demand highly
precise camera calibration for efective operation.

Alternatively, there are methods that rely on a single
camera, known as monocular systems. Unlike stereo solu-
tions, monocular methods do not require intricate camera
calibration. Instead, they often use environmental mea-
surements [32], such as the distances between road symbols,
lines [33], streetlights, poles, or signs for accurate distance
estimation. Te monocular solution proposed in [34]
computes a BEV (Bird’s Eye View) perspective, trans-
forming 2D data into 3D by adding depth information.
Tese transformations can be extended to other diferent
coordinate systems [35], which is useful not only for distance
and speed measurement but also for positioning vehicles
with precision in GPS coordinate systems.

2.4. Summary. Te most modern object detection solutions
based on computer vision use the latest YOLO versions
[17–21]. In addition, various algorithms have been de-
veloped for object tracking such as Deep SORT, Byte Track,
or BoT SORT. Finally, best distance or speed inference
techniques employ stereo strategies [31] or perspective
transformations [34, 35] in monocular vision systems.

3. Materials and Methods

Tis section details the methodology employed in the de-
velopment of our solution. We specify the data acquisition
process, dataset design and construction, model training
procedures, tracking algorithm, geolocation and speed es-
timation techniques, and hardware selection criteria.

3.1. Data Acquisition and Dataset Design. Training high-
quality object detection models requires datasets that con-
tain a representative number of instances per class, enabling
the model to comprehend the distinctions between each one
of them. It is also crucial to balance the dataset as much as
possible, to mitigate the biases that imbalance may in-
troduce. To address the vehicle classifcation problem, we
have chosen to categorize the vehicles into seven distinct
types. Since we did not have a preexisting dataset that met
our requirements, we created one from scratch (see
Figure 2).

Our data consisted of various video sequences, recorded
across diferent locations in Spanish territory. Te clips were
acquired through numerous devices, ranging from IP se-
curity cameras to mobile phones, which provided a diverse
range of image resolutions and scenarios. Each frame un-
derwent postprocessing using computer vision tools, to add
padding while maintaining 1 :1 aspect ratio, and fltering
frames with damaged information.

After obtaining the postprocessed images, we started an
initial labelling process in which a portion of the dataset was
labelled concurrently with the ongoing data acquisition
through the recording and postprocessing of new videos.
Upon completing the initial labelling, we proceeded with

training a YOLO model using the existing data. Tis made
the labelling process easier and faster, as themodel generated
candidate bounding boxes, which were later reviewed by our
team to ensure data quality.

Te video sequences recorded by our team typically
showcase landscapes with favourable weather conditions,
which has forced us to generate artifcial data [36] to di-
versify, simulating diferent weather conditions as shown in
Figure 3. After this fnal process, we obtained over 16,000
labelled images which featured over 35,000 vehicles (see
Figure 4). Finally, we divided the data randomly, allocating
30% for the validation set and 70% for the training set.

3.2. Model Training. Despite the comparisons between
SOTA YOLO versions stated in Section 2, which demonstrate
advancements in versions 6, 7, 8, and NAS, YOLOv5 [17] was
the best and most widely used version at the time of dataset
labelling and training (2021-2022). Ultralytics did a great job
developing a simple environment for training PyTorch-based
YOLO models. In addition, YOLOv5 came out in diferent
sizes, which was a great advantage when embedding the
nanoversion (YOLOv5n) into edge computing devices.

As previously explained, the training process was de-
veloped in parallel with the dataset labelling tasks. We
adopted an iterative and gradual approach, by meticulously
labelling our custom dataset, a process as laborious as it is
critical. To ensure that the model learns accurately from
reliable information, we manually supervised labels after
each session. As our dataset grew larger and became more
refned, we carried out successive training cycles and eval-
uated the model’s performance on a separate test set. Tis
iterative methodology has allowed us to monitor and fne-
tune the model’s parameters, ensuring that improvements in
labelling efectively translate into increased accuracy and
robustness of the YOLOv5n detection system.

To achieve robust and efcient training, our training
server is equipped with two Nvidia RTX 3090 Ti graphics
cards. While the RTX 4000 series represents the next step in
hardware innovation, the RTX 3090 Ti cards ofer an optimal
balance between availability, cost, and performance, suitable
for our current needs. Te ability to operate these GPUs in
parallel has not only maximized processing speed but has
also provided a solid platform for experimenting with data-
intensive training strategies.

Te progression in training outcomes is depicted in
Table 2; it points to a notable improvement in the perfor-
mance metrics across successive training iterations on every
stage of the dataset. Te marked improvement in precision
(P), recall (R), mean Average Precision at 50% IoU (mAP50),
and mean Average Precision from 50% to 95% IoU
(mAP50-95) underscores the efcacy of the iterative training
and dataset refnement process employed. Te transition
from YOLOv5n-1 to YOLOv5n-4 demonstrates a signifcant
climb in performance, with the overall mAP50-95 jumping
from 0.479 to an impressive 0.8, which can be attributed to
the enriched quality of the dataset over time.

On the other hand, there is a noticeable variation in
accuracies for each vehicle class. Tis happens because many
of these vehicles are not as frequent as others on the roads;
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capturing cars in winter videos is more common than re-
cording motorcycles. In addition, distinguishing between
cars and vans or diferent types of trucks from a distance
presents a signifcant challenge. In summary, both the data
diversity and balance, as well as vehicle appearance simi-
larity, can introduce biases that are refected in these metrics.

3.3. Tracking Algorithm. Te evolution of object tracking in
computer vision has led to the development of numerous
algorithms, each with unique strengths and applications.
Although we acknowledge the higher capabilities of Byte
Track [29] and BoT SORT [30], we have focused on the
implementation of the Deep SORT [27] (Simple Online and
Realtime Tracking with a Deep Association Metric) algo-
rithm. Tis choice was motivated by Deep SORT’s proven

efectiveness in real-time tracking scenarios during our
tracking algorithm implementation stage.

Deep SORT, building upon the foundational SORT [24]
algorithm, enhances tracking capabilities by integrating
appearance information through deep learning. Tis ap-
proach addresses the limitations of SORT, particularly in
maintaining consistent object identities through periods of
occlusion and interaction. By leveraging a CNN [27], Deep
SORT achieves a signifcant reduction in identity switches
and improves overall tracking robustness.

When managing long-term occlusions, Deep SORT
struggles to reidentify vehicles. Tis usually happens when
small vehicles such as cars and motorbikes hide behind
large trucks or buses for long periods of time. To mitigate
this, we try to place cameras in a position that benefts

Figure 2: Dataset preview in mosaic format. A collection of diferent instances of vehicles obtained at locations distributed throughout
Spanish territory.

Figure 3: Visualization of weather data augmentation [36]. Normal, rainy, and snowy conditions.
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analysis and reduces the chance of facing such situations.
In Figure 5, we show Deep SORT performing reidentif-
cation after a vehicle is occluded behind other and after
a few instants reappeared. Diferent scenarios need dif-
ferent parameter tuning, as high-speed roads do not need

to store in memory old targets for a long time, and highly
congested lanes should be capable of maintaining context
without mixing up identifers. Tese parameter adjust-
ments are crucial in occlusion handling and need to be
adapted to each situation.
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Figure 4: Vehicle instance dataset distribution. Te labels correspond to motorbike (M), car (C), van (V), bus (B), truck (T), heavy truck
(HT), and heavy articulated truck (HAT).

Table 2: YOLOv5 validation benchmark progress.

Model Class Images Instances P R mAP50 mAP50-95

YOLOv5n-1

All 4992 10616 0.845 0.577 0.655 0.479
M 1406 0.949 0.780 0.844 0.606
C 2983 0.851 0.505 0.591 0.422
V 1771 0.866 0.565 0.679 0.517
B 1046 0.890 0.543 0.645 0.479
T 1324 0.610 0.638 0.627 0.486
HT 1561 0.870 0.477 0.560 0.398
HAT 525 0.878 0.533 0.641 0.447

YOLOv5n-2

All 4992 10616 0.891 0.837 0.883 0.699
M 1406 0.839 0.939 0.956 0.657
C 2983 0.839 0.769 0.804 0.599
V 1771 0.865 0.727 0.849 0.668
B 1046 0.926 0.910 0.944 0.825
T 1324 0.797 0.827 0.845 0.683
HT 1561 0.987 0.710 0.792 0.639
HAT 525 0.988 0.975 0.992 0.820

YOLOv5n-3

All 4992 10616 0.917 0.840 0.888 0.735
M 1406 0.954 0.922 0.969 0.697
C 2983 0.857 0.759 0.808 0.633
V 1771 0.885 0.772 0.855 0.695
B 1046 0.924 0.904 0.947 0.857
T 1324 0.816 0.823 0.850 0.713
HT 1561 0.993 0.716 0.794 0.682
HAT 525 0.992 0.980 0.993 0.865

YOLOv5n-4

All 4992 10616 0.983 0.929 0.954 0.800
M 1406 0.989 0.985 0.994 0.762
C 2983 0.960 0.849 0.927 0.714
V 1771 0.981 0.938 0.962 0.810
B 1046 0.997 0.962 0.976 0.892
T 1324 0.985 0.985 0.993 0.878
HT 1561 0.993 0.798 0.835 0.708
HAT 525 0.978 0.987 0.993 0.837
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3.4. Geolocation and Speed Estimation Technique.
Geolocation technology has become an essential asset of
modern robotics, self-driven vehicles, and intelligent in-
frastructures, facilitating advanced applications across un-
structured and urban environments. Te synergy of
unmanned vehicles with geolocative capabilities provides
a framework for autonomous navigation and object track-
ing, leveraging the advances in sensor fusion, computer
vision, and artifcial intelligence. Pioneering research such as
that presented in [37] demonstrates the integration of un-
manned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs) for object detection and global tracking
using custom AI subsystems and multispectral sensor data.

Further advancing the feld, Ulicny et al. [38] have
proposed innovative methodologies for geolocation and
height estimation of objects utilizing street-level RGB im-
agery. Teir approach combines the precision of CNNs for
object detection with depth map prediction and Markov
Random Field (MRF) optimization, revealing the method-
ology’s potential for enhancing urban environment appli-
cations and contributing tomore accurate roadmanagement
systems.

Our solution employs the method proposed by Blake
[35], which stands out for its algorithmic simplicity, making
it exceptionally suitable for edge computing environments.
By employing straightforward and efcient perspective
transformation techniques, the method provides robust
geolocation while conforming to the constraints of com-
putational resources inherent in edge computing. Tis ap-
proach lays a solid foundation for deploying advanced

vision-based geolocation systems within a resource-limited
hardware.
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To transform the representation of a vector from one
plane to another, a change of basis is applied. Tis involves
multiplying the vector by a transformation matrix that
encodes the relationship between the two coordinate sys-
tems. Te transformation matrix is constructed from the
basis vectors of the destination plane relative to the
original plane.

When dealing with two-dimensional image coordinate
points, these are extended to three dimensions as homo-
geneous coordinates, represented as [x, y, 1] instead of the
standard two-dimensional [x, y]. Te transformation pro-
cess involves multiplying these extended pixel coordinates
by a 3× 3 perspective transformation matrix, resulting in the
homogeneous GPS coordinate system, in the form
[lon′, lat′, w′]. To convert these back to the conventional
two-dimensional GPS format, a normalization process is
applied using the w′ scaling factor, as shown in (1). Te
resulting normalized coordinates, lonnormalized and
latnormalized, accurately represent geographical positions in
two dimensions.
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Figure 5: Occlusion handling. Tis composite image demonstrates how Deep SORT [27] deals with occlusions. On (a) vehicle with track id
64 is detected and tracked successfully, although it is not detected on (b), as it hides behind vehicle with id 57. Finally, vehicle 64 is
reidentifed on (c).
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In the use case proposed by Blake [35], the M matrix is
computed using four sets of pixel points [x, y] and their
corresponding set of four longitude and latitude points
[lon, lat]. Using this information, the elements in theM matrix
are calculated from the equation system described by (2).
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. (3)

After M is calculated, the M−1 matrix can also be
computed inverting the original transformation matrix.
With these two mathematical tools, we can move from the
pixel plane to the geolocation plane with ease, as shown in
(1) and (3). In the inverse transformation, the vector
[x′, y′, µ′] represents the homogeneous coordinates, where
µ′ is the scaling factor that allows the reduction of the image
coordinates into two dimensions.

d � 2 × R × arctan
��
a

√

�����
1 − a

√􏼠 􏼡, (4)

a � sin2
∆lat
2

􏼠 􏼡 + cos lat1( 􏼁 × cos lat2( 􏼁 × sin2
∆lon
2

􏼠 􏼡.

(5)

Te current method efectively converts pixel data into
geographical coordinates (see Figure 6). However, these raw
data have limited utility for speed calculations, which are
typically expressed in km/h (kilometres per hour). To
transform this geographical information into a kilometre-
based measurement, another technique must be used. Te
Haversine formula (4) is crucial for calculating the great-
circle distance between two geographical points on the
Earth’s surface. To determine the actual distance, we cal-
culate an intermediate value (5), which represents the central
angle between the pair of points on the spherical surface.
Finally, the arch distance is obtained by multiplying the
Earth’s mean radius (R) with the arc tangent function of the
central angle.

vavg �
􏽐

n
i�1∆di

􏽐
n
i�1∆ti

. (6)

Tis approach is especially advantageous in the context
of speed estimation, as it provides instantaneous measure-
ments between each pair of consecutive frames. Tese
readings can be used afterwards to compute an average
value. Our system processes the travelled distance between
frames for each tracked vehicle and stores the elapsed time.
After n readings, we compute the average speed value as
shown in (6), where ∆di is the distance increment during the
i-th interval and ∆ti is the time increment during the i-th
interval. Tis approach helps fltering noisy readings and
stabilizing short-term fuctuations.

Other studies [4, 5] also calculate distances between GPS
locations using the same Haversine formula, although the
position readings come from IoT (Internet of Tings)

devices and smart phones installed directly on the vehicles,
instead of computer vision-based methods. Tese IoT so-
lutions claim high accuracies in speed estimation and no
Internet connection needed for speed calculations, although
they need to install a dedicated device on each vehicle.

Now that we have described the implemented technique
in detail, it is pertinent to introduce our validation meth-
odology for the geolocation and speed estimation system.
We have employed an experimental setup (see Figure 7) that
combines the use of two components. Te frst component
consists of two inductive loop sensors embedded in the
roadway. Tese sensors detect disruptions in the magnetic
feld as a vehicle passes over them, thereby enabling the
measurement of the vehicle’s speed. Te second component
of our system is a camera mounted on an overhead gantry
prior to the location of the inductive loops. Tis camera is
strategically aimed to cover the area just beyond the loops,
focusing directly on the roadway; this angle provides Deep
SORT [27] enough time to perform the tracking correctly.

3.5. Hardware Selection. Te developed system is based on
the premise of not relying on cloud processing, so the software
must be embedded in an edge computing device. To achieve
this, we have explored various types of devices in the edge
computing paradigm and have concluded that the Jetson
family is among the most suitable options. To select the best
choice within this Nvidia series we collected technical in-
formation from datasheets, as presented in Table 3.

We carried out a series of empirical tests to juxtapose the
theoretical capabilities of edge computing devices with their
actual performance in real-world scenarios. In our frst test,
each device was tasked with running a YOLOv5n [17] model
on a two-minute trafc surveillance video captured at 25
frames per second (FPS) to perform object detection. Te
fndings, depicted in Figure 8, indicate that the Jetson Nano
falls short of the system requirements for our specifc
application.

To further evaluate Jetson Orin AGX and Jetson Xavier
AGX, we conducted a second test running the complete
system on a 2-hour trafc surveillance video. Each device
had to detect vehicles using YOLOv5n, track them using
Deep SORT, and estimate their GPS position and speed. Te
results of this experiment (Figure 9) show that, in terms of
FPS stability, Jetson Orin AGX is the best option; it also
presents the highest FPS mean rate (23.36 Frames per
Second), with a maximum power consumption of 60W. On
the other hand, Xavier shows a more pronounced fuctua-
tion and lower FPS mean rate (22.77 Frames per Second)
with a lower power consumption (maximum of 30W).

4. System Overview

Tis section provides a comprehensive overview of the
system architecture, integrating the components discussed
in Section 3 into a cohesive whole. Our system is designed to
process a continuous stream of video data through a cascade
of advanced algorithms, which collectively contribute to
a reliable vehicle monitoring solution.
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As depicted in Figure 10, video input serves as the initial
step in our system; this is achieved through a surveillance IP
camera that supports RTSP (Real-Time Streaming Protocol).
Ten our pretrained YOLOv5n model performs vehicle
detection and infers vehicle bounding boxes and classes,
which are essential for the tracking phase. Te vehicle
bounding boxes and their associated data serve as input for
the Deep SORTalgorithm, which performs the tracking task.
Te tracker output then feeds into the geolocation module,
which utilizes the tracking data to determine the precise GPS
location of each vehicle. Finally, by applying the Haversine
formula, the system calculates the distance travelled by each
vehicle between frames, enabling accurate instantaneous and
average speed estimations.

Te deployment phase for our system utilizes the Nvidia
Jetson Orin AGX 64GB Developer Kit, chosen for its com-
putational efciency as justifed previously. We use Docker to
containerize the system (Figure 11), ensuring a consistent
environment across various devices. Network port forwarding

confguration is critical for our setup, necessary for RTSP
video streaming, and allows for direct communication be-
tween the IP camera and the Docker container.

Figure 12 illustrates the entire system in action, show-
casing its capabilities in detecting, tracking, and estimating
speed.Tis fgure depicts the integration of our key modules:
the YOLOv5n model, for initial vehicle detection, Deep
SORT algorithm, for robust vehicle tracking, and the visual
geolocation module, for accurate speed estimation.

5. Results and Discussion

In this section, we present the results and discussions of our
experiments, examining the performance of our vehicle
detection models, geolocation validation experiments, and
the detailed analysis of speed validation conducted.

5.1. Vehicle Detection Model. Previously, we outlined an
iterative training approach and the importance of dataset
refnement in enhancing vehicle detection performance.
Tis method is exemplifed in the YOLOv5n model pro-
gression on our test set, particularly with the YOLOv5n-4
version, as detailed in Table 2. Te overall mAP50 increased
to 0.954, demonstrating a substantial improvement over
earlier versions. Furthermore, that same model achieved an
overall mAP50-95 of 0.8, indicating a robust performance
across various IoU thresholds. Tis metric improvement
underscores the success of our training methodologies and

(a) (b)

Figure 6: Geolocation technique [35] demonstration on motorbike trajectory. Te image on (a) shows a motorbike being tracked, with its
trajectory annotated in pink. In (b), the same motorbike is geolocated using the described technique on a map (©2024 Google, Inst. Geogr.
National) and represented using gmplot. In both images, a blue polygon is annotated, whose corners are the calibration points used to obtain
M in this example.

Loop 2 Loop 1

Cam

Figure 7: Speed validation setup.Tis build employs a pair of magnetic loops as ground truth and a camera mounted on a gantry to feed the
vision system. Both systems record vehicles speeds, the inductive loops detect magnetic disruptions when vehicles drive over them, and the
vision system can detect and track the same vehicles as they pass through. Readings are stored and can be compared to test the system
accuracy.

Table 3: Jetson developer kit device specifcations.

Jetson GPU CPU Memory Power (W)

AGX Orin Ampere 12-core 64GB
LPDDR5 15–60

AGX Xavier 512-Core
Volta 8-core 16GB

LPDDR4x 10–30

Nano 128-Core
Maxwell 4-core 4GB

LPDDR4 5
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Detection

Jetson Nano DevKit 4GB
Jetson Xavier AGX DevKit
Jetson Orin AGX DevKit 64GB
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Frames (25 FPS record rate)
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Figure 8: Jetson devices’ performance running YOLOv5n [17] on a trafc surveillance video. Te Jetson Orin AGX (in red) shows the most
stable performance, while the Jetson Xavier AGX (in green) is occasionally the fastest; it is quite unstable as its frame rate oscillates strongly.
Finally, the Jetson Nano (in blue), although a good option for low power consumption, does not deal well with real-time requirements.
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(c)

Figure 9: Jetson Orin AGX and Jetson Xavier AGX process 2-hour trafc surveillance video using the complete system (vehicle detection
[17], tracking [27], geolocation [35], and speed estimation). Jetson Orin ((b) in red) is the most stable option and achieves the highest FPS
mean rate ((a) in red). On the other hand, Jetson Xavier ((c) in green) is also a good option for this task, as it also achieves a high and
consistent FPS mean rate ((a) in green) throughout the video.
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the quality of the refned dataset in achieving a high-quality
object detection system.

Class-specifc performance further demonstrates the
YOLOv5n-4 model’s enhanced detection capabilities.
Noteworthy achievements include mAP50 scores of 0.989
for motorbikes, 0.960 for cars, 0.981 for vans, 0.997 for buses,
0.985 for trucks, 0.993 for heavy trucks, and 0.978 for heavy
articulated trucks. Respectively, mAP50-95 scores for these
classes were 0.762, 0.714, 0.810, 0.892, 0.878, 0.708, and
0.837. As we already discussed, there is a noticeable variation
in accuracies for each vehicle type. Tis happens because
some vehicles are more common than others, and their
unique visual characteristics are also difcult to distinguish

sometimes. All these factors infuence model’s biases and
afect directly on classifcation performance.

In our training procedures, we stated that we employed
artifcial rain and snow data augmentation on our original
images. To test our model on real data, we employed the
DAWN dataset [39], which features rain, snow, fog, and
sandstorm trafc scenarios. We adapted labels to match our
vehicle classifcation distribution. We assumed bicycles and
motorbikes to be the same vehicle class and removed pe-
destrian annotations.

Finally, we performed validation on the rain, fog, and
snow images, obtaining Table 4 results. Te overall
mAP50-95 metrics are 0.332 with snow, 0.404 with fog, and
0.397 with rain. Although the results are modest, they un-
derscore the model’s ability to generalize in low visibility
conditions, as many DAWN images [39] feature vehicles
that are difcult to discern with the naked eye.

5.2. Geolocation Validation Experiment. To validate the
geolocation technique implemented in our system, we have
conducted two types of experiments. On the one hand, we
used elements of the road to manually select their pixel co-
ordinates in the image and geolocate them.Ten we obtained
the ground truth GPS coordinates via satellite imagery and
measured the error using Haversine. An example of this type
of experiment can be observed in Figure 13, where 19 points
corresponding to road paint symbols are used as key points to
geolocate, and all of them are approximately 35m away from
the camera. Te results of this experiment are shown in
Table 5, with a maximum error of 0.85m and a mean error of
0.534m. Considering that, according to the Ofcial U.S.
Government information about the GPS [40], mobile devices
have an accuracy of a 4.9m radius under open sky, solutions
like [5] or [4] do not seem to provide the same reliability in
exact position accuracy.

YOLOv5 Network

Deep SORT

Kalman Filter
(Predictor)

Mahalanobis distance

Appearance
Descriptor

Hungarian
Assignment

Association Metrics

YOLO headYOLO backbone

#1

#2

Traffic Manager

GEOLOCATION
SPEED ESTIMATION

Figure 10: System architecture overview. Tis diagram shows the data processing pipeline. First the video frames are gathered using RTSP
(Real-Time Streaming Protocol), and then they are processed by the YOLOv5n [17] model, which infers bounding boxes and vehicle classes.
After that, Deep SORT [27] assigns target identifers to each detection and fnally the information is introduced in the trafc manager
module. Tere, the vehicles are geolocated [35] and their instantaneous speeds are stored to provide average speed readings.

Application

CUDA Toolkit
Container OS
User Space

Docker Engine

CUDA Driver
Host OS

Nvidia Jetson Orin
AGX Developer kit

Figure 11: Software deployment. Te algorithms are containerized
using Docker and installed in the Jetson Orin AGX device, ensuring
stability and reducing installation and deployment eforts to
a minimum.
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Figure 12: Complete system showcase.Te system performs vehicle detection, tracking, geolocation, and speed estimation. Bounding boxes
contain vehicle class information, tracker identifer, and speed in km/h.

Table 4: YOLOv5n [17] validation on DAWN dataset [39].

Class
Snow Fog Rain

Instances mAP50-95 Instances mAP50-95 Instances mAP50-95
All 1917 0.332 1831 0.404 1559 0.397
M 3 0.206 35 0.249 4 0.295
C 1710 0.518 1521 0.558 1327 0.548
V 66 0.268 51 0.355 27 0.302
B 30 0.503 66 0.435 12 0.348
T 25 0.200 22 0.385 37 0.285
HT 76 0.494 134 0.444 148 0.404
HAT 7 0.084 2 0.400 4 0.598
Tis dataset consists of trafc scenarios under diferent inclement weather situations, such as snow, fog, or rain.

1 32 5
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Figure 13: Validation of key point geolocation on road symbols. Tis experiment assesses the error in GPS position estimation using the
previously described vision-based method. Te image illustrates various points, corresponding to road lines and directional arrows on the
asphalt, which have been attempted to be localized using this method.

Table 5: Key point geolocation results over road symbols.

Sample Measured latitude Measured longitude Real latitude Real longitude Error (m)
1 36.838143 −2.446986 36.838144 −2.446992 0.5342
2 36.838141 −2.447006 36.838141 −2.447010 0.3450
3 36.838134 −2.447004 36.838133 −2.447006 0.3603
4 36.838126 −2.447039 36.838121 −2.447042 0.6226
5 36.838130 −2.446978 36.838130 −2.446984 0.4588
6 36.838121 −2.447005 36.838121 −2.447006 0.0520
7 36.838114 −2.446978 36.838110 −2.446980 0.5170
8 36.838111 −2.446998 36.838110 −2.447000 0.2407
9 36.838105 −2.446998 36.838100 −2.447000 0.5795
10 36.838097 −2.447033 36.838090 −2.447030 0.8570
11 36.838161 −2.447055 36.838160 −2.447060 0.4550
12 36.838164 −2.447033 36.838158 −2.447037 0.8119
13 36.838170 −2.447038 36.838167 −2.447041 0.5122
14 36.838179 −2.447003 36.838176 −2.447009 0.6692
15 36.838190 −2.447072 36.838186 −2.447073 0.4663
16 36.838193 −2.447050 36.838187 −2.447051 0.7188
17 36.838207 −2.447020 36.838200 −2.447021 0.7229
18 36.838200 −2.447054 36.838195 −2.447057 0.6142
19 36.838216 −2.447044 36.838211 −2.447045 0.6193
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(a) (b)

Figure 14: Geolocation visual validation experiment. On (a), a heatmap is represented on a satellite map (©2024 Google ©2024 Airbus)
along with the four calibration landmarks (in red). On (b), the same heatmap and landmarks are represented on the camera perspective.
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Figure 15: Speed validation experiment results. On (a) an error histogram is represented. On (b) the actual readings are compared between
both strategies. On (c, d) both box graphs represent data distribution for each system’s readings.
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On the other hand, to further demonstrate the geolocation
capabilities of the system, we have employed the scenario
described in Figure 7. We performed an experiment that
consisted of visual verifcation, by constructing a heatmap in
both satellite map and video camera image format, using the
vehicle detection obtained from a one-hour video. Tis ex-
periment is depicted in Figure 14, which ofers a comparative
visualization of the same heatmap overlaid on two distinct
coordinate systems. Te left image showcases the heatmap
plotted against geographical coordinates, providing a mac-
roscopic view of the area of interest on a satellite map. Te
right image displays the same heatmap in relation to pixel
coordinates, showing the camera perspective. Both heatmaps
visually reinforce the numerical accuracy demonstrated in the
experiment results of Table 5.

5.3. SpeedValidationExperiment. Utilizing the experimental
setup outlined in Figure 7, we have validated our imple-
mentation of the velocity estimation system. As already
mentioned, the validation experiment scenario included two
inductive loops capable of measuring the speed of vehicles
travelling on both lanes in the same direction and a video
camera connected to our edge computing unit.

Te quantitative analysis of the velocity estimation
system was conducted on a sample of approximately 100
vehicles, revealing several key statistics, which are depicted
in the histogram of Figure 15: a mean absolute error of
12.68 km/h, a median absolute error of 13.00 km/h, a min-
imum absolute error of 0.00 km/h, and a maximum absolute
error of 20.00 km/h. Correspondingly, the mean percentage
error was 11.58%, median percentage error was 11.88%,
minimum percentage error was 0.00%, and maximum
percentage error was 17.86%.

In [5], a 96.08% accuracy was obtained using smart-
phones to estimate speed, while our experiments obtained
a mean 88.42% accuracy. It is important to state that speed
readings in [4, 5] are low speeds ranging from 40 to 70 km/h,
computed and obtained from devices installed inside the
vehicles. On the other hand, our implementation of [35]
employs computer vision to gather readings ranging from 70
to 120 km/h.

Te speed scatter plot of Figure 15 suggests a systematic
underestimation of vehicle speeds by the proposed vision
system. Despite a clear positive correlation between the two
systems, the data spread widens with increasing speed,
hinting at a reduction in accuracy potentially due to tech-
nical constraints like motion blur or sampling rate limita-
tions. Te boxplots provide a visual summary of the
distribution of speeds as measured by the magnetic loop
system and the computer vision system. Te boxplot cor-
responding to the computer vision solution shows a wider
interquartile range than the magnetic loop solution boxplot,
implying greater variability in the speed measurements.

6. Conclusions

In this study, we successfully developed an edge computing
platform designed for real-time trafc monitoring, meeting
the objectives set forth at the introduction of this article. Our

integrated system architecture, combining a YOLOv5 [17]
network for vehicle detection and the Deep SORT [27] al-
gorithm for tracking, demonstrates a cohesive and efcient
approach to vehicle monitoring.

Regarding the object detection model, the accuracy re-
quirements for localization and classifcation have been
successfully met in most scenarios. Conversely, although the
model has been able to generalize, the metrics obtained on
DAWN [39] are not sufcient for robust vehicle detection in
poor weather conditions. We managed to handle short-term
occlusions but struggled with reidentifcation of overlapping
bounding boxes of similar appearance vehicles. Also,
long-term occlusions represent a huge challenge, which
typically happen when large trucks or buses occlude cars,
vans, or motorbikes.

Our geolocation validation experiments provide critical
insights into the performance and limitations of the system.
While we have obtained positioning errors in the centimetre
scale (see Table 5), we still have high underestimation errors
in speed inference experiments. It is also important to
consider that well-calibrated inductive loop systems exhibit
a margin of error ranging from 3 to 5% [41].

Tis solution has also met soft real-time requirements,
with an average frame rate of 23.36 FPS and 22.77 FPS
achieved on the Jetson Orin AGX and the Jetson Xavier AGX
devices, respectively.

In conclusion, our research has established a robust
foundation for real-time trafc monitoring using edge
computing, with successful demonstrations in vehicle de-
tection, tracking, geolocation, and speed estimation.

6.1. Future Work. Our future work will address enhancing
the vehicle detection network’s capability. Tis will involve
improving the dataset used for training the model. Specif-
ically, we aim to enrich the dataset with nighttime images,
which are crucial for ensuring the robustness of the system
under low-light conditions. We will also focus our eforts on
gathering real rain, snow, fog, and even sandstorm situations
to strengthen model’s performance. Exploring the latest
YOLO versions, such as YOLOv8 [20] and YOLO-NAS [21],
holds potential for signifcant improvements, ofering ad-
vancements in accuracy and inference latency.

Secondly, we plan to upgrade the tracker by integrating
advanced algorithms like BoT SORT [30] and Byte Track
[29]. Tese trackers have demonstrated improved perfor-
mance in complex scenarios, which is essential for en-
hancing the overall accuracy and reliability of our system,
especially in dynamic and challenging trafc environments.

Improving speed estimation accuracy is particularly
crucial, given the identifed limitations in our current sys-
tem. To address this, we plan to refne our visual geolocation
techniques and ensure better geographical and image cali-
bration. Also, a third speed measurement system should be
utilized for better contrast when validating the vision system
along with ground truth methods.

Given the demonstrated accuracy of the implemented
geolocation technique (see Table 5), a new research path
could focus on vehicle dimension estimation. Additionally,
we aim to expand our analysis to encompass more trafc
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parameters, which includes the direction of vehicle move-
ment, enabling the detection of wrong-way drivers (Ka-
mikaze), identifying the presence of vehicles in specifc lanes
within the roadway, along with other factors, to provide
a more comprehensive understanding of trafc behaviour
and patterns.
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