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Automated vehicles (AVs) will appear on the road soon and will infuence the properties of road trafc networks such as capacity
and safety. While the impact of AV on trafc operations has been discussed extensively, most existing literature in this direction
focuses on microscopic and mesoscopic levels. Tis study examines the efect of AVs on trafc fow operations and crash risks at
a network scale. In addition, this study discusses the implications for designing and operating safe, low-speed urban road
networks. Simulation experiments were carried out in a grid road network with AVs and human-driven vehicles operating in
mixed fow conditions. To assess trafc performance, the macroscopic fundamental diagram (MFD) relationships were estimated,
specifcally focusing on speed-density correlations. From this analysis, it was possible to extract key trafc performance indices
such as capacity and critical speed. Using time-to-collision surrogate safetymeasures, macroscopic safety diagrams were generated
which associate the level of congestion with the potential crash conficts among vehicles at an aggregated spatial scale. Utilizing
this knowledge, a novel multiobjective optimization based on the NSGA-II algorithm was applied to identify the optimal trade-of
between efciency and safety. Te presence of AVs was found to have a positive impact on the capacity, critical density, and
average speed on a system level, even in low-speed scenarios. Moreover, AVs can result in increased critical density in the network,
which suggests that the road system can serve more vehicles at its capacity, thus improving efciency, while decreasing the number
of conficts. Tese fndings are useful for both trafc planners and operators.

1. Introduction

Transportation networks face many challenges such as high
travel times, trafc congestion, crashes, and environmental
externalities such as emissions [1–4]. Congestion is the root
of other problems such as increased fuel consumption and
increased travel time. For example, in 2021 American drivers
lost an average of 36 hours per year due to trafc congestion
[5]. Meanwhile, the U.S. Department of Transportation’s
National Highway Trafc Safety Administration report [6]
found that over twenty thousand people lost their lives in
motor vehicle crashes in the frst half of 2021, up 18.4% over

the frst half of 2020. Terefore, it is necessary to fnd so-
lutions to improve the safety and decrease trafc congestion.

Due to the advancement of technology, it is predicted
that automated vehicles (AVs) may help reduce congestion
and improve safety [7–9]. From a trafc fow viewpoint, AVs
can beneft from smaller headway due to automation fea-
tures [10, 11]. Tus, AVs are expected to have a positive
efect on congestion mitigation. From the safety point of
view, human error is a contributing factor in up to 90
percent of crashes [12, 13], and AVs are believed to sig-
nifcantly reduce the risks and consequences of crashes
[14–20].
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Many studies have investigated the impact of AVs on
trafc fow and safety in diferent environments and situ-
ations [11, 16, 20–26]. Some of these studies have explored
the impact of AVs on fundamental diagrams (MFDs) and
the capacity of transportation networks [10, 27, 28]. On the
other hand, others have investigated the safety impact of
AVs based on safety measures [16, 20, 21, 26, 29]. However,
to our knowledge, no studies have yet investigated the
impact of AVs on MFDs and safety simultaneously.
Moreover, these studies have not explored the impact of AVs
on macroscopic safety diagrams (MSDs) a concept in-
troduced by Alsalhi et al. [30]. MSDs share a conceptual
foundation with MFDs, indicating that, like MFDs—which
propose that trafc fow is a function of trafc densi-
ty—MSDs can also apply this concept, making them es-
sentially a function of density [30]. Tus, generally, MSDs
show the relationship between trafc conficts and density.
However, given the conficts between speed, fow, and safety
[31, 32], it is not clear to what extent AVs can afect the
conficts between fow and safety.

Tus, to fll these gaps, this study investigates the impact
of AVs on network performance as measured through the
simultaneous analysis of MFDs and MSDs. Te case study is
a grid network with 50 km/h and 30 km/h speed limits. Te
primary motivation for choosing a grid network as a low-
speed urban network is that the safety issues for intersections
are crucial because many accidents occur at intersections.
For example, 43 percent of trafc crashes involve in-
tersections in the United States [33]. Moreover, this study
analyzes the impact of AVs on stop-and-go waves which are
a common occurrence at intersections [20]. Furthermore,
this study presents a novel framework in which multi-
objective optimization fnds a set of solutions in which trafc
fows are high and the number of crashes remains low. At the
end of this study, a comparison is made between urban speed
limits based on the MFDs and MSDs. Te main contribu-
tions of this study are below:

(1) Investigating the impact of AVs on trafc fow and
safety simultaneously based on macroscopic and
microscopic analysis.

(2) Presenting a multi-objective optimization maxi-
mizing trafc fow while minimizing conficts.

(3) Comparing two urban speed limits based on MFDs
and MSDs in the presence of AVs.

Te remainder of the paper is organized as follows.
Section 2 provides a review of previous studies on the efects
of AVs on MFDs and safety. Te review highlights the
unique contribution of this study. Section 3 presents the
methodology for the study including the macrosimulation
networks, car-following models, the method for generating
MFDs and MSDs, safety analysis methods, and multi-
objective optimization utilized. Section 4 displays the results
obtained from the simulations. Finally, Section 5 presents
the discussion and conclusion.

2. Literature Review

Te potential impact of AVs and connected and automated
vehicles (CAVs) on trafc operations in road networks has
been studied extensively. We do recognize the existence of
a large body of work in this area, this review selects rep-
resentative works for gap identifcation and discussion
purposes. Te review is presented in two parts. First, we
discuss key studies that have investigated the impact of AVs
on trafc operations, focusing on trafc performance
modeling at diferent scales under AV infuences. Second, we
discuss studies that have addressed the issue of the safety
impact of AVs.

2.1. Impact of AVs on Trafc Flow. Te modeling of trafc
fows is one of the key functions of trafc engineering [34].
aggregate trafc fow modeling techniques. In particular, the
MFDs have been studied and applied to network-level
analysis, where an MFD relates the vehicle accumulation
in a road network (e.g., the total amount or density of ve-
hicles which refects “trafc state” or “level of congestion” of
the network) to the trip completion rate (e.g., the amount of
trips completed in the network which refects “level of
service” or “efciency” of the network).

Te simple form of the MFD was frst introduced by
Godfrey [35], and then Mahmassani et al. [36] and Daganzo
[37] enhanced this notion. Moreover, Geroliminis and
Daganzo [38] and Geroliminis and Sun [39–42] demon-
strated empirically and through simulation experiments that
well-defned MFDs exist for large-scale urban trafc net-
works. Given this unique feature, the MFD has been applied
for neighborhood- or network-level demand and operation
management, such as congestion pricing (e.g., [43, 44],
trafc signal control (e.g., [45, 46], and road space allocation
(e.g., [47, 48].

While the existence of MFDs was demonstrated in
networks of conventional vehicles, further studies have
investigated the properties of MFDs when other types of
vehicles are available to users and operated in a shared space.
For instance, Shelton [25] carried out a study using a mul-
tiresolution model and highlighted how the network ca-
pacity can be increased when the penetration rate of AV
increases from 0% to 100%. Ghiasi et al. [22] proposed
aMarkov-chain-based analytical model, which estimated the
change in headway when vehicles formulate platoons and
analyzed the performance of trafc fow under variations in
platooning and CAV penetration rates. Te research fnd-
ings revealed that the capacity could be increased when CAV
penetration rate and platoon intensity increase in mixed
trafc for freeway operation scenarios.

On a smaller scale, Martin-Gasulla et al. [24] carried out
a study to investigate how CAVs can change the capacity at
a signalized intersection. Tey identifed the importance of
high penetration rates of CAVs for maintaining throughput.
Liu and Fan [11] applied the Wiedemann car-following
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model [49] for human drive vehicles (HDVs), which is
calibrated using real data to evaluate CAVs efect on the
capacity of a freeway. Tey also developed a revised in-
telligent driver model (IDM) to account for the features of
CAVs. Teir analysis indicated that freeway capacity in-
creased 85% when CAV penetration rate was 100% when
operating in a 65mph (104 km/h) speed zone. Xiao et al., [28]
examined the impact of cooperative adaptive cruise control
(CACC)-equipped vehicles on the capacity and capacity
drop at merging bottleneck based on CACC systems. Xiao
et al. [28] found that the capacity of a merging section can be
increased by nearly 60% when the penetration rate of CACC
equipped vehicles is 100%.

Initial attempts emerged at measuring the impacts of
AVs on large-scale trafc operations, measured such as the
road capacity of a network. For instance, Atkins [10]
employed the Wiedemann 99 car-following model for
a simulation-based analysis and showed that the inclusion of
CAVs has a positive impact on capacity, e.g., the maximum
fow observed on the MFDs is higher when the penetration
rate of CAVs increases. Talebpour and Mahmassani [27]
proposed a framework to evaluate the impact of CAVs and
AVs on trafc fow. Te results based on MFDs suggested
that throughput improves when the penetration rate of
connected vehicles (CVs) and (AVs) increases; however,
AVs were found to increase throughput more than CVs.

While many studies indicate that AVs will have a positive
infuence on trafc efciency, other research suggests they
may have a negative efect on trafc fow [50–52]. Whether
AVs have a positive or negative efect varies depending on
a range of factors included their level of automation, the
technologies incorporated into the AV, driving behavior,
uptake, and permeation into the vehicle feet.Tis conjecture
highlights the need for further research to understand the
scenarios where AVs can have a positive infuence on trafc
network performance, which can ultimately assist in guiding
AV policy.

2.2. Impact of AVs on Trafc Safety. AVs and CAVs have the
potential to eliminate many common human errors (such as
speeding and distracted driving) associated with crashes, as
such, AVs are expected to improve safety substantially
(Manivasakan et al., 2021, Zou et al. 2021). Many studies
have attempted to estimate the reduction in crashes due to
AVs. Tese studies have used diferent surrogate safety
measures (SSMs) show to the extent to which AVs can
improve trafc safety in diferent environments and under
diferent driving conditions.

Investigating the benefts brought by AVs and CAVs is
a classical and well-studied topic. For example, Virdi et al.
[20] demonstrated the improved safety at intersections and
highways as the CAVs were controlled under a so-called
“Virdi CAV Control Protocol” in a mixed trafc fow en-
vironment. Te work illustrated that when the penetration
rate of CAVs is over 80%, conficts could decrease sub-
stantially. Karbasi and O’Hern [23] tested an even higher
penetration rate of 100% AVs and CAVs for intersection
scenarios and found further reduction. Similar conclusions

can be found in other studies as well, e.g., Papadoulis et al.
[16] and Arvin et al. [21]. Interestingly, the safety impact of
AVs/CAVs is not always found to be positive. Papadoulis
et al. [16] identifed that certain types of crashes did not
beneft from the CAV operations; for example, an increased
number of read-end conficts were observed. Tis is rea-
sonable because the AVs/CAVs tend to operate at smaller
headways, resulting in closed space between the vehicles and
smaller TTC. In a large network where AVs/CAVs and
HDVs operate in a shared space, the safety benefts or crash
risks obviously are not spatially homogeneous. While it is
important to identify where the black spots are located, there
is a need to understand the system level of safety. Further
research by Sinha et al. [17] evaluated the crash severity and
rate of conventional vehicles in mixed feets with connected
and automated vehicles. In addition, Dixit et al. [14] per-
formed a safety and risk analysis of autonomous vehicles
using computer vision and neural networks.

Generally, despite the studies using diferent approaches,
methods, and road networks, the fndings show that AVs
have the potential to improve safety and reduce congestion.
However, most existing studies did not consider the cor-
relation between safety and trafc congestion. It is sensible to
examine the trafc-dependency feature of vehicle operation
safety. Tis will be particularly useful for AV analysis, as it
enables a holistic understanding of AV benefts and costs.
Te challenge though, lies in the fact that high fow and low
crash are too conficting objectives. To this end, there is the
potential to identify a set of points where optimal trade-ofs
can be made. Te frst work on this research direction was
reported in Alsalhi et al. [30] who argued a relationship
between crash risks and trafc density, namely, the mac-
roscopic safety diagram (MSD). Interestingly, the MSD has
a similar shape toMFDs but a higher “critical density” where
the crash risk appeared to be the lowest (as compared to the
MFD case, the maximum fow is achieved at its “critical
density”). Te MSD is a single mode model, not yet ap-
plicable for multi-modal trafc environment such as a mixed
HDVs and AVs system. It is expected that AV-involved
MSD will exhibit new patterns, given its unique operation
characteristics.

To summarize, this paper aims to address some of the
previous methodological limitations by examining the im-
pact of AVs on MFDs and MSDs, identifying optimal op-
eration solutions for safety-efciency trade-ofs, and ofering
the relevant insights on policy indications. Concerning
policy demonstration, this paper conducts a case study on
the impact of infuencing speed limits in a road trafc
network involving autonomous vehicles (AVs).

3. Methodology

To obtain extensive scenarios for the targeted AV impact
analysis, this study carries out a simulation-based analysis.
Te employed simulation, SUMO [55], is based on micro-
scopic trafc fow models, i.e., the car-following models,
which defne the driving behavior of HDVs and AVs. Six
scenarios for AV penetration were considered with the
percentage of AVs increasing market penetration rate
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(MPR) by 20% between 0% and 100%. Tis study performs
a simulation on a grid road network that includes nine
intersections. To generate MFDs based on simulation data,
the Papageorgiou speed-density model [56] is used, and
capacities, average speed, and critical densities based on
diferent scenarios are determined. To investigate the safety
impact of AVs, the time to collision (TTC) surrogate safety
measure (SSM) is used to determine conficts between ve-
hicles. MSDs are generated using a second-degree equation
which is based on the relationship between conficts and
densities. To fnd a set of solutions in which the fow is high
and conficts are low, a multiobjective optimization based on
the NSGA-II genetic algorithm is presented with the opti-
mization based on minimizing the second degree equation
and maximizing the network-level trafc fow. Te case
study uses hypothetical demands to refect diferent degrees
of congestion within a grid network.

Te methodology of this paper is presented in four steps.
First is the microsimulation in which driver behavior of AVs
and HDVs is defned. Te second step is generating MFDs
which are based on simulation data and speed-density
models. In the third step, safety analysis based on TTC is
presented, and MSDs are constructed based on safety out-
puts. Te second-degree relationship between density and
the number of conficts is also presented. In the last step,
a multiobjective optimization problem is formulated, and
the solution algorithm is introduced, in which based on the
density-velocity model and the tertiary safety relationship,
optimal points are found in which not only the fow is high
but also the number of TTC incidents is low.

3.1. Microsimulation. To defne the vehicle behavior of
HDVs and AVs inmicrosimulation, a set of longitudinal and
lateral equations based on car-following models and lane-
changing models is required.Te SUMO simulator was used
to simulate the driver behavior of HDVs and AVs in this
study. Tis study uses the Weidmann model for HDVs and
the intelligent driver model (IDM) for AVs to refect their
distinct driving behaviors. Te Weidmann model was se-
lected for its precise representation of human driving be-
haviors, while the IDM was chosen for AVs to showcase the
benefts of automation in terms of safety and efciency.
Parameters for both AV andHDVs are based on the study by
Atkins [10]. Te AVs parameters are based on the level IV
defnition given by Atkins [10], meaning that the vehicles are
operating without a human driver.

Te longitudinal driving behavior of HDVs was defned
using the Wiedemann 99 car-following model. Based on the
perceptions of relative speed and position changes by the
following driver, Wiedemann’s model determines the fol-
lowing driver’s reactions, such as acceleration or de-
celeration [57]. Four parameters of this car-following model
are used to defne driving behavior at intersections. Te
defnition of these parameters and the values used in this
study are presented in Table 1.

To defne the AVs’ longitudinal driving behavior, the
intelligent driver model (IDM) car-following model, de-
veloped by Treiber et al. [58], was used. IDM calculates

acceleration by measuring two ratios: desired velocity and
actual velocity and desired headway and actual headway
[11, 23]. Equations (1) and (2) show the calculation of
acceleration:

a � a0 1 −
v

v0
􏼠 􏼡

δ

−
s∗(v,∆v)2

s0
􏼠 􏼡

2
⎛⎝ ⎞⎠, (1)

s
∗
(v,∆v) � s0 + max 0, vT +

v∆v

2
���
a0b

􏽰􏼠 􏼡, (2)

where a and a0 are acceleration and maximum acceleration,
v and v0 are current speed and desired speed, respectively, δ
is the acceleration exponent, s∗(v,∆v) is desired minimum
headway, s0 is current headway, T is the desired headway, b

is deceleration, ∆v is the diference in speed between the lead
and following vehicle. For AVs, the desired time headway is
equal to 0.5 s, the minimum gap is equal to 0.5m, and
maximum acceleration is 3.8m/s2., as reported by Atkins
[10]. Tis study used the SUMO simulator default lane-
changing model called LC2013 [59] for both HDVs and AVs
to capture lateral movements of vehicles and intersection
movements. SUMO includes three lane-changing motiva-
tions: strategic, cooperative, and tactical lane-changing. For
this study, strategic lane changing was used, which initiates
lane changing when the vehicle fnds no connection between
the current lane and the next lane on the route [29].

3.2. Quantifying the Network-Level Trafc Flow Operation:
Te Macroscopic Fundamental Diagrams. MFDs represent
the relationship between fow, density, and speed and are
often represented as fow density and speed-density dia-
grams. Te MFD presents information on trafc charac-
teristics, such as the value of free-fow speeds and fow
capacities.TeMFD can be used to distinguish between free-
fow and congested trafc conditions. Te relationship be-
tween fow, density, and speed is shown in the following
equation:

Qi pi( 􏼁 � V pi( 􏼁. pi , (3)

where Qi (pi ) is fow, p i is average density, and V (pi ) is
speed (km/h). In this study, to generate MFDs from
microsimulation data, a speed-density model is used. Te
speed-density model is used because there needs to be
a relationship between fow and density for a multi-objective
optimization formulation. Terefore, by using the speed-
density model and substituting it into equation (3),
a mathematical formula for the relationship between fow
and density can be obtained. Tis study uses Papageorgiou
speed-density model [56] which provides information such

Table 1: Wiedemann 99 car-following parameters.

Parameter Unit Description Value
CC0 m Standstill distance 1.5
CC1 s Spacing time 0.9
CC7 m/s2 Oscillation acceleration 0.25
CC8 m/s2 Standstill acceleration 3.5
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as free-fow speed and critical density (the point at which the
fow reaches its highest value).Te following equation shows
the Papageorgiou speed-density model [56] relationship:

V(k) � vf exp
−1
a

p

pc

􏼠 􏼡

a

􏼤 􏼥, (4)

where vf is free-fow speed, pc is critical density, p is density,
and a is the model shape parameter. By substituting (4) in
(3), the relationship between fow and density is obtained.
Tis study uses SUMO edge-based output data [59]. In
SUMO, edge-based data provide trafc metrics as outputs
including average speed and density for each network edge
at varying time intervals (e.g., every 60 seconds). A detailed
description of this feature in SUMO is available in SUMO
[59]. To aggregate this data for the network and generate
MFDs based on edge-based output data, the macrOutput.py
tool was used [60].

3.3. Quantifying the Network-Level of Crash Risks: Te
Macroscopic Safety Diagram. In dynamic urban networks,
MSDs aim to explore the possible relationship between
safety performance (e.g., the likelihood of a multi-vehicle
rear-end collision) and operational performance (e.g., trafc
conditions at that time) [30]. Tis study uses MSDs to show
the relationship between the number of conficts and
density.

Before explaining the MSDs, it is necessary to defne the
defnition of the confict based on safety measures. In this
study, TTC is used to determine conficts. If two vehicles
followed their current path and maintained their current
speed, TTC would be the remaining amount of time before
a collision occurred [61, 62]. In the SUMO simulator, SSM
device output [59] is used to generate conficts based on TTC
safety measures. SSM devices generate outputs including
type of conficts, positions of vehicles, and TTC value. In the
SSM device, the TTC is calculated in the following two ways:

TTC �
xi−1,t − xi,t􏼐 􏼑 − Li−1,t􏼐 􏼑

vi,t − vi−1,t

, (5)

TTC �
xi,t

vi,t

, (6)

where xi−1,t is the leader position at the time t, vi−1,t is the
leader speed at the time t, xi,t is the position of the following
vehicle and vi,t is the speed of the following vehicle at the
time t, Li−1,t is the length of vehicle at the time t. (5) calculates
rear-end collisions, and (6) calculates merging and crossing
conficts. Tis study uses two diferent TTC threshold values
for HDVs and AVs. Te TTC threshold is used to identify
potential conficts, i.e., when maneuvers occur below the

threshold value. Te TTC threshold value for HDVs is 1.5 s
which has been suggested in previous studies [16, 20, 63].
Previous research has demonstrated that the minimum gap
for AVs is one-third of the minimum gap for HDVs, and as
such a TTC threshold of 0.5 s was selected [20].

Based on safety and density outputs, MSDs were gen-
erated using a nonlinear regression to ft a simple second-
degree polynomial model to the simulation data which
present the relationship between conficts and density:

PC � a.p
2
i + b.pi , (7)

where PC is the number of potential conficts and a and b are
the equation parameters. Critical density associated with
maximum conficts is obtained by fnding the roots of the
equation (7). Te critical confict point (CCP) is obtained by
substituting the critical density into (7), which has been
shown in the following equation:

CCP � a.(CD)
2

+ b.CD, (8)

where CCP is the peak confict in a period and CD is the
critical density associated with maximum conficts. Similar
to MFDs, (7) is necessary because there needs to be a re-
lationship between the number of conficts and density for
a multiobjective optimization formulation.

3.4. Te Efciency-Safety Trade-Of through a Multiobjective
Optimization. As mentioned before, there is a contradiction
between fow and crashes in that the probability of a crash
increases as the fow increases and moves towards the ca-
pacity of the road [30]. Terefore, there is a trade-of be-
tween fow and safety. Terefore, it is essential to pursue
a multi-objective optimization approach that identifes
scenarios where both the fow-to-capacity ratio is maximized
and the confict-to-maximum-confict ratio is minimized,
ensuring an optimal balance between trafc efciency and
safety. In this study, there are two objective functions. Te
frst objective function is (7) (this equation is called f1(pi)

for optimization) which shows the relationship used for
generating MSDs. Tis equation must be minimized to
reduce conficts. Te second objective function is shown as
follows:

f2 pi( 􏼁 � pi ∗ vf exp
−1
a

pi

km

􏼠 􏼡

a

􏼤 􏼥􏼠 􏼡. (9)

Equation (10) shows the relationship for generating
MFDs. Tis equation must be maximized to reach the ca-
pacity. However, in this study, use a minimizing function, so
we use -f2(p). Tus, the generic formula for the current
study problem optimization is presented in the following
equation:
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i�0
β. pi ∗ vf exp

−1
a

pi

km

􏼠 􏼡

a

􏼤 􏼥􏼠 􏼡􏼠 􏼡,

subject to:
1
3
.Pcritical <pi <Pcritical,

(10)

where Pcritical is critical density associated with the fow, α
and β are weights of objective functions. Tese weights can
vary between 0 and 1 so that 0 shows the least importance
and 1 shows the highest importance. Tese weights help
decision makers to fnd their optimal points based on dif-
ferent strategies and the importance of each objective
function. Tis optimization model includes a critical con-
straint to avoid choosing a zero-density value when safety is
prioritized (b� 0), which would unrealistically eliminate
conficts by not allowing any vehicle presence. To ensure
practicality and efciency, the model operates within
a density range from 33% to 100% of the critical density,
avoiding both the impractical extremes of zero density and
full jam density. Tis approach guarantees the model uses at
least a third of the road capacity, balancing road usage ef-
fciency and safety considerations.

Tis study uses a nondominated sorting genetic algo-
rithm (NSGA-II) algorithm to fnd the optimal points.
NSGA-II was developed by Deb et al. [64] which by using
a Pareto dominance relationship, the rank of solutions is
determined using a fast, nondominated sorting algorithm
those with a higher rank survive and are selected to re-
produce [65]. Pareto fronts are a set of optimal solutions in
a space of objective functions in multiobjective optimization
problems (MOOPs) that are not dominant over each other
but are best compared to the rest of the solutions [66]. As
a result of its robust elitist strategy, focus on nondominated
solutions, quick running speed, and diversity preservation
mechanism, NSGA-II is uniquely competitive [67]. To ex-
plain the NSGA-II procedure, some steps are needed. In the
frst step, assume the initial population called Pt with the size
of N. In the second step, after evaluating objective function
and performing crossover and mutation on Pt, a new
population is created called Qt [68]. In the third step, the
population that consists of Pt andQt is called Rt, so the
nondominated sorting is done on Rt. At each stage, it selects
the nondominant members and places them on one front
and removes them from the population, placing the rest of
the population on the next front in the same way.Tese steps
continue until the entire population is on diferent fronts
(F1, F2, F3, . . . .) and this process is based on the Pareto front
concept that the Pareto front consists of compromises that
are acceptable for all objectives [67, 68]. Te fourth step is
calculating the crowding distance for members that are
nondominant with each other. Solutions with larger
crowding distances are preferred in this approach, which is
determined by the average distance between two solutions
along each of the objectives [65, 68]. In the ffth step,
a tournament is used to select the population members for
the next generation based on their rank and crowding
distance called Pt+1 [67, 68]. Until the stopping criteria are

met, the procedure continues. In this study population size,
maximum generations are equal to 20 and 100, respectively.
Figure 1 shows the procedure of NSGA-II.

4. Results

In this study, a grid network that includes nine intersections
was used to determine the impact of AVs on MFDs and
MSDs. Each link in the network is 400 meters and bi-
directional. Two speed limits were assessed 50 km/h and
30 km/h. Te multiobjective optimization was performed on
the 50 km/h speed limit, and the 30 km/h speed limit was
used to compare the impact of the speed limit on MFDs and
MSDs in presence of AVs. All trafc lights had a 90-second
cycle time with a 43 second green phase, a 43 second red
phase, and a 4 second yellow phase. Four turning move-
ments were allowed at each intersection: straight, left turn,
right turn, and U-turn. Te grid network was routed ran-
domly using Randomtrip.py (SUMO’s built-in tool). Ran-
domtrip.py in SUMO benefts from the period option which
gives in the opportunity to control the trafc value and
determine the rate of vehicle insertion in the network. By
using this option, this study frst generates vehicles ran-
domly until there is congestion in the network. After this
time, the rate of period option was reduced to reduce the
number of vehicle insertions smoothly to eliminate con-
gestion. Te network generated by random trips was more
homogeneous and fexible when compared to a grid model
with fxed routes [29]. Te duration of simulations is 1200s,
and the data have been aggregated based on 1min time
intervals. In order to avoid gridlock, this study does not
allow density to exceed 70 vehicles per kilometer, and the
aggregated data has been ignored in each simulation where
density exceeds 70 vehicles per kilometer. In our study, we
conducted trafc simulations across various scenarios; each
scenario was repeated 20 times to ensure data reliability and
account for variability, thereby enhancing the robustness of
our fndings. Figure 2 shows the grid network. Tis scenario
was considered high trafc demand; low and medium trafc
demand are also presented in Section 4.5. Te maximum
density of low and medium demand is 18 veh/km and
45 veh/km, respectively.

4.1. Impact of AVs on MFDs and MSDs. Table 2 shows the
statistical analysis of Papageorgiou speed-density model
[56]. Where vf is free-fow speed, pc is critical density, a is
the model shape parameter, and R2, the goodness of ft
measure. For each penetration rate R2 is more than 0.98,
demonstrating that the model provides a strong estimate of
the relationship between speed and density.
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Te results presented in Table 3 shows that AVs increase
critical density (Pc) by up to 63% when the MPR of AVs is
100%. Moreover, Figure 3 show the impact of AVs on av-
erage speed, capacity, and MFDs. Te results confrm that
AVs increase average speed and capacity by up to 21% and
59%, respectively. However, AVs have diferent efects
depending on the penetration rate. When the MPR of AVs is
40%, the impact of AVs on MFDs is small with capacity, Pc,
and average speed improving by 8%, 4%, and 6%
respectively.

However, when MPR is 60%, AVs improve capacity, Pc

and average speed 17%, 20%, and 13%, respectively, which
shows that when AVs become the dominant fow, the efect
of the AVs becomes more signifcant. In addition, when

MPR is 100%, AVs increase capacity, Pc, and average speed
36%, 34%, and 7%, respectively, compared to when MPR is
60%.

To discuss the impact of AVs on MSDs, Table 4 shows
the results of the statistical analysis of the MSDs model.
R2 values confrm that second-degree polynomial model
can accurately estimate the relationship between conficts
and density. Table 4 includes information about the
impact of AVs on CCP and CD. Table 3 shows that AVs
can increase CD up to 31%. Also, Figure 4 illustrate that
AVs reduced conficts and CCP up to 80% and 75%,
respectively. Tus, these changes confrm that AVs can
improve the safety situation of urban networks
substantially.

Pt

Pt+1

F1

F2

F3

Qt

Rt

Non–dominated
sorting

Crowding
distance
sorting

Rejected

Figure 1: NSGA-II procedure [64].

Figure 2: Case study grid network.

Table 2: Papageorgiou speed-density model [56] results.

MPR Vf Pc A R2

0 47.11 30.02 0.89 0.99
20 46.66 32.13 0.88 0.99
40 43.73 31.32 0.99 0.98
60 44.09 36.07 0.93 0.98
80 43.02 41.98 0.98 0.98
100 43.34 49.14 0.93 0.98
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Table 3: Second-degree polynomial model results (MSD).

MPR CCP CD R2

0 207 38.39 0.87
20 216 39.11 0.88
40 195 40.14 0.87
60 185 42.96 0.92
80 126 48.25 0.88
100 52 50.37 0.80
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Figure 3: Impact of AVs on capacity, MFD, and average speed (speed limit� 50 km/h). (a) Flow-density diagram. (b) Change of capacity
and average speed.

Table 4: Results of new capacity and CCP.

New capacity New CCP Capacity Conficts
at capacity point CCP Capacity reduction Conficts at capacity

point reduction CCP reduction

409 145 459 197 207 10.94 26.33 29.98
428 153 484 209 216 11.55 26.76 29.08
445 141 498 187 195 10.65 24.68 27.86
477 140 541 183 185 11.90 23.46 24.30
577 96 650 125 126 11.19 23.08 24.05
645 41 727 52 52 11.25 21.15 21.15
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Figure 4: Impact of AVs on CCP, MSD, and total conficts. (a) MSD. (b) Impact of CAVs on CCP and total conficts.
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It can be seen that AVs can improve MFDs and MSDs
when AVs are dominant fow. However, at low penetration
rates AVs are not expected to have a signifcant impact on
MFDs and MSDs and that signifcant benefts are only
achieved once penetration rates exceed 40%.

4.2. Time-Space Trajectory of HDVs and AVs. Based on
disaggregated analysis, Figure 5 show trajectories (time-
space) of each penetration rate. Tese trajectories show the
whole network trajectories in a specifc time period. Figure 5
shows when the penetration rate of AVs is increased the
trafc jams are reduced substantially. Figure 5(a) shows the
trajectory when MPR is equal to zero and all the vehicles are
HDVs it can be realized that the stop-and-go waves are
propagated backward from the intersection as a result of
abrupt accelerations and decelerations. Stop-and-go waves
reduce the passing speed of vehicles at intersections, thus
decreasing the trafc throughput and increasing the chances
of a collision [69]. Figures 5(b)–5(f) illustrate that when the
penetration rate of AVs increases the stop-and-go waves
decrease substantially. Tus, it can be concluded that AVs
have the potential to increase fow and speed and decrease
trafc jams.Tese fgures confrmmacroscopic results based
on MFDs and MSDs results.

4.3.TeResulting Trade-Of betweenCapacity andRisk via the
Multiobjective Optimization. In this section, the results of
multi-objective optimization based on NSGA-II are pre-
sented. For this study, α and β are equal to 1. Te value of α
and β show the importance of each objective function in (10)
and they can be changed based on the decision-makers
trafc management strategy. Figure 6 shows the Pareto
front solution using NSGA-II for diferent MPRs. Tese
points are nondominance points among all possible solu-
tions which are equal to the population size for eachMPR. In
addition to the values of α and β, Pareto front points rep-
resent alternative optimal points that decision-makers could
choose based on their desired road network management
strategy. Tus, this optimization method gives the decision-
makers the opportunity to obtain their desired results based
on diferent strategies in two ways. First, decision-makers
can change the values of α and β based on the importance of
each objective function. Second, decision-makers can choose
their desired point from Pareto front points based on the
diferent trafc management strategies.

To explain the importance of these points, assume
a scenario. In this scenario, the values of α and β are set to 1,
and we aim to select one point from each MPR to investigate
to what extent these points can help to fnd a point in which
not only the fow is high but also the number of conficts is
low. Tus, the main strategy is maintaining high fow and
reducing conficts. Table 4 shows the points that we selected
from Pareto front points based on the above-mentioned
main strategy. Generally, these points (new capacity and new
CCP in Table 4) show that by reducing the trafc capacity by
10 to 12 percent, the number of maximum conficts at the
capacity point can be reduced from 21 to 27 percent, and in
the case of CCDs from 21 to 30 percent. Te points are

a good indication of the main strategy that the selected
points are the points where the fow is high, and the number
of conficts is low compared to the maximum number of
conficts. It is worth noting that the use of these points and
values of α and β varies according to diferent strategies, and
the fow can be reduced more than the stated amount to
further reduce crashes. Moreover, it should be noted that
these optimal points can be changed based on other strat-
egies. For example, these fndings seek to fnd points that are
in the range of 8 to 12 percent reduction in fow, and
subsequently seek the efect of this reduction in fow in
reducing conficts.

4.4. Impact of AVs in Low-Speed Limit Environments. In this
section, the impact of AVs onMFDs andMSDs is presented.
In Section 4.1, the speed limit was set to 50 km/h. In this
section, the speed limit is 30 km/h. Using the Papageorgiou
speed-density model [56] and second-degree polynomial
model, MFDs andMSDs are generated.Te statistical results
of the two models confrm that the two models can accu-
rately generate MSDs and MFDs. Appendix A presents the
statistical results of the two models in detail. Figure 7 shows
the impact of AVs on MFDs, capacity, and average speed.
Te impact of AVs on capacity is steadily increasing at each
MPR, so that at each penetration percentage greater than
20%, the capacity increases by approximately 10%. Te
average speed results show that when the MPR is less than
60%, AVs do not have much efect on the average speed, but
when the MPR reaches 60% and above, the average speed
increases more dramatically. Figure 8 also shows the efect of
AVs on MSDs, CCP, and total conficts. Tis fgure shows
that when the MPR is less than 40%, the total number of
conficts and the CCP change very slightly. But when the
MPR moves to 60% and above, the impact of AVs on the
total number of conficts and CCP increases. In general, the
results show that for a dramatic change in the CCP, the
average speed and the number of conficts need to be
dominated by AVs, but AVs increase capacity more con-
tinuously and signifcantly in low MPRs than the CCP.
Moreover, Figure 9 shows the trajectory for each penetration
rate. Like the 50 km/h scenarios, in the 30 km/h scenario,
AVs have the ability to reduce stop-and-go waves and they
can increase capacity and speed and decrease congestion and
collisions. Tese results are in line with macroscopic results
based on MFDs and MSDs results.

4.5. Impact of Speed Limits on AVs Efect onMFDs andMSDs.
To compare the impact of speed limits on capacity, CCP, and
total conficts Figures 3, 5, and 10 must be compared. Tese
fgures can be interpreted in two ways. First, a comparison is
made between speed limits when there are only HDVs in the
network. In this condition, the capacity in the 50 km/h speed
limit condition is 10% higher than the 30 km/h speed limit
condition, while the total conficts and CCP when the speed
limit is 50 km/h are 15% and 18% higher than the 30 km/h
speed limit condition. Tus, choosing the best speed limit
varies based on the importance of safety or fow. Second,
a comparison is made between speed limits when there are
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Figure 5: Vehicle trajectories along the grid network (speed limit� 50 km/h). (a) MPR� 0%. (b) MPR� 20%. (c) MPR� 40%.
(d) MPR� 60%. (e) MPR� 80%. (f ) MPR� 100%.
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AVs in network. When the speed limit is 50 km/h, AVs
increase capacity and average speed up to 59% and 21%,
while at speed limits of 30 km/h, AVs increase capacity and

average speed up to 46% by 17%. In addition, when the speed
limit is 50 km/h, AVs reduce the total number of conficts
and AVs up to 80% and 75%, while when the speed limit is
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Figure 6: Pareto front solutions using NSGA-II for diferent MPRs. (a) MPR� 0%. (b) MPR� 20%. (c) MPR� 40%. (d) MPR� 60%.
(e) MPR� 80%. (f ) MPR� 100%.
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Figure 7: Impact of AVs on MFD, capacity, and average speed. (a) Flow-density diagram. (b) Change of capacity and average speed.
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Figure 8: Impact of AVs on CCP, total conficts and MSDs (speed limit� 30 km/h). (a) MSD. (b) Impact of CAVs on CCP and total
conficts.

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(a)

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(b)

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(c)

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(d)

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(e)

600
500
400
300
200
100

Sp
ac

e (
m

)

660 680600 620 640
Time (s)

(f)

Figure 9: Vehicle trajectories along the grid network (speed limit� 30 km/h). (a) MPR� 0%. (b) MPR� 20%. (c) MPR� 40%.
(d) MPR� 60%. (e) MPR� 80%. (f ) MPR� 100%.
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30 km/h, AVs reduce the total number of conficts and CCP
up to 80% and 79%. Generally, it can be realized that the
impact of AV on capacity and average speed is more
prominent in 50 km/h speed limit than in the 30 km/h speed
limit, and AV’s efect on safety is similar for both speed
limits.

To compare the impact of AVs on MSDs and MFDs
under diferent speed limits in detail, Figure 10 shows the
impact of AVs on average speed, capacity, CCP, and total
conficts. Figure 10(a) confrms that AVs have a positive
impact on CCP under the 50 km/h speed limit and 30 km/h
speed limit. Based on the two-way ANOVA, the results show
that there is no signifcant diference between the impact of
AVs on CCP under two speed limits (p � 0.31). Te 50 km/
h speed limit condition did not meet the normality as-
sumption of AVONA. Tus, the Kruskal–Wallis test, which
is the nonparametric equivalent to the ANOVA, has been
performed on the CCP change percentages for the two speed
limits (50 km/h and 30 km/h). Te test yielded a p value of
approximately 0.810 which confrms that there is no sig-
nifcant diference between the impact of AVs on CCP under
two speed limits.

Figure 10(b) illustrates when MPR is under 80%, the
impact of AVs on capacity under 30 km/h is more than
50 km/h speed limit situation but whenMPR is between 80%
and 100%, the impact of AVs on capacity under 50 km/h
speed limit is more than 30 km/h speed limit, so that when
MPR is 100, the impact of AVs under 50 km/h speed limit is
24% more than when the speed limit is 30 km/h. Never-
theless, based on Table 5, the ANOVA analysis result shows
that there is no statistically signifcant diference between the
impact of AVs on capacity in the 50 km/h speed limit
scenario compared to the 30 km/h speed limit (p � 0.86).
Figure 10(c) shows that AVs have more impact on average
speed under the 50 km/h speed limit. However, although
Table 5 results show that the impact of AVs on average speed
is signifcant (p � 0.01), it seems it is not sensible to
compare the average speed under the diferent speed limits
because it is obvious that the average speed under the 50 km/
h speed limit is more than the average speed under the
30 km/h speed limit. Figure 10(d) confrms that AVs under
the 50 km/h speed limit have a more positive impact on total
confict reduction in each MPR compared to the 30 km/h
speed limit. Table 6 results for total conficts show there is
a statistically signifcant diference between the impact of
AVs on total conficts under the 50 km/h and 30 km/h speed
limits (p � 0.03). Figure 10(e) illustrates that the impact of
AVs on CD in a 30 km/h environment is more signifcant
than in a 30 km/h environment when MPR is under 80, but
because p value is 0.23 diferences between the two speed
limits’ results are not signifcant. Figure 10(f ) shows that in
some MPRs, the impact of AVs on Pc in 30 km/h is more
signifcant than 50 km/h environment, and vice versa. Al-
though, based on Table 5 results, diferences between the two
speed limits’ results are not signifcant (p � 0.13). It is worth
mentioning that Table 5 confrms that the impact of all
MPRs based on all metrics on two speed limits is signifcant.

4.6. Te Impact of Diferent Levels of Congestion on Trafc
Flow and Safety. Tis section explores the efect of AVs on
trafc fow and safety under diferent levels of congestion.
Tis study applied three diferent demand levels including
low, medium, and high trafc demand. In low demand, the
trafc situation is at an uncongested level which means that
the network is far from reaching capacity. In medium trafc
demand, the network reaches its capacity, but it is not highly
congested. In high trafc demand, the network is highly
congested, and there is gridlock on some links in the net-
work. Te previous sections’ results were based on the high
trafc demand. Generating diferent levels of demand in the
network is applied using Randomtrip.py in the SUMO
simulator. Tis build tool gives you this opportunity to
defne diferent levels of demand based on tunning a pa-
rameter called period.

To evaluate the trafc fow and the safety impact of AVs
at diferent levels, the total number of conficts, average
speed, maximum fow, and maximum number of conficts
per time interval are used. Te reason that capacity and CCP
are not used is that in the low trafc demand, the network
cannot reach capacity and CCP. Figures 11 and 12 show the
results of diferent levels of congestion for the 50 km/h and
30 km/h speed limits. Te maximum trafc fow results for
both speed limits illustrate that with an increase in MPR and
an increase in demand, the maximum fow increases. Also,
the results show that as MPR increases, the diference be-
tween the maximum and average demand fow increases.
Based on total conficts and maximum conficts results for
two speed limits, as the MPR increases and demand de-
creases, the number of total conficts andmaximum conficts
reduces. However, the important point is that in contrast to
the high congestion level when MPR is low, the number of
total conficts and maximum conficts decreases which
means that in low- and medium-demand situations, AVs
can reduce conficts even at lower rates of penetration.
Moreover, the results of average speed based on two speed
limits demonstrate that as the MPR increases, the average
speed increases for all congestion levels but as demand
increases, the average speed decreases. Te reason is that
when the demand increases from low to high, density in-
creases, and consequently, the average speed decreases.
Generally, the results show that AVs within the two speed
limits and diferent congestion levels have the potential to
improve trafc fow and decrease the risk of collision.

Tables 5 and 7 summarize the results of the two-way
ANOVA of the impact of AVs on key trafc parameters for
the two diferent speed limits at low and medium demand
levels, respectively. Te statistical data for high demand
scenarios were addressed previously and are recorded in
Table 6. Tis analysis for both demand levels shows that,
similar to the fndings for high demand, the MPR has
a signifcant impact on all metrics assessed. In low-demand
conditions, the infuence of AVs onmaximum fow and total
conficts does not show a statistically signifcant diference
with two speed limits, while their impact on maximum
conficts and average speed does show a signifcant
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Figure 10: Comparison between impact of AVs on average speed, capacity, total conficts, and CCP under two speed limits. (a) Impact of
CAVs on CCP reduction. (b) Impact of CAVs on increment of capacity. (c) Impact of CAVs on increment of average speed. (d) Impact of
CAVs on total conficts reduction. (e) Impact of CAVs on increment of CD (%). (f ) Impact of CAVs on increment of PC (%).

Table 5: Statistical analysis of impact of AVs on diferent metrics in two speed limits (low demand).

Metric
MPR Speed limit Normality

(50 km/h)
Normality
(30 km/h)

Homogeneity of
variances

F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
Total conficts 160.9 <0.001 2.14 0.202 0.925 0.563 0.953 0.755 0.004 0.950
Maximum conficts 693.8 <0.001 8.99 0.030 0.949 0.733 0.971 0.885 0.001 0.972
Average speed 13.1 0.006 19.58 0.006 0.915 0.467 0.942 0.675 1.171 0.304
Maximum fow 12.1 0.008 3.18 0.134 0.846 0.146 0.91 0.434 0.442 0.521
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diference with two speed limits. In contrast, for medium
demand, the efect of AVs on maximum fow shows a sig-
nifcant diference for both speed limits, but their impact on
other metrics does not reveal a signifcant diference with
two speed limits.

5. Discussions

Tis study investigated the impact of AVs on MFDs and
MSDs, and more specifcally, it investigated the network-
level capacity, average speed, critical density, critical confict

point, critical density associated with maximum conficts,
and crash risk as a result of diferent levels of AV integration
and operation.

Tis study has some key features which distinguish it
from other studies. First, there are many studies that have
investigated the impact of AVs on capacity and MFDs
[10, 11, 22, 24, 25] or safety [16, 20, 21, 26, 29]. However,
none of these studies have explored the impact of AVs on
MFDs and MSDs simultaneously, and there is no study that
has examined the impact of AVs onMSDs.Te results of this
study show that AVs can improve capacity, critical density,

Table 6: Statistical analysis of impact of AVs on diferent metrics in two speed limits.

Metric
MPR Speed limit Normality

(50 km/h)
Normality
(30 km/h)

Homogeneity of
variances

F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
Total conficts 227.19 <0.001 7.63 0.0397 0.864 0.2018 0.819 0.0864 0.0006 0.9806
CCP 248.6 <0.001 1.24 0.3160 0.778 0.0365 0.835 0.1192 0.0003 0.9871
Average speed 61.56 <0.001 13.64 0.0141 0.956 0.7902 0.924 0.5375 0.596 0.4579
Capacity 31.19 <0.001 0.03 0.8657 0.883 0.2813 0.957 0.7988 0.126 0.7302
CD 26.46 0.0013 1.81 0.2366 0.966 0.8637 0.882 0.2767 0.133 0.7229
Pc 12.12 0.008 3.18 0.1348 0.846 0.1463 0.91 0.4339 0.442 0.5211
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Figure 11: Trafc fow and safety results (speed limit� 50 km/h). (a) Trafc fow. (b) Average speed. (c) Maximum conficts. (d) Total
number of conficts.
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and average speed which is in line with previous studies
[10, 11, 22, 24, 25]. Also, the results show that AVs can
reduce conficts substantially which is in line with previous
studies [16, 20, 21, 23], and AVs can reduce CCP and CD
signifcantly. Te important result is to quantify the
network-level impact of the AVs, measured with the MFDs
and MSDs, under variations in market penetration rate.
When AVs dominate the fow, the impact of AVs on MFDs
and MSDs is substantial compared to when HDVs are the
dominant fow. Tis is a positive confrmation that the
longer-term beneft of AVs to trafc operation can be
substantial for the road network, though in the short term
only marginal efects in crash reductions or network capacity
improvements are expected (due to low presence). For urban
road networks with typical grid structures such as the one
used in this study, the lower-level threshold of market

penetration for notable improvement is found to be 40%.
Te notable improvement of a penetration rate higher than
40% is primarily due to the fact that when penetration rates
are high, the interaction between AVs and HDVs is low, and
the dominant fow is AVs. Terefore, improvement in
a higher penetration rate is made more signifcant. Some
studies have shown that the percentage of automated ve-
hicles will be at least 30% by 2040 and 100% after 2050
[70–73]. Tus, reducing congestion and improving safety
with AVs is not a farfetched policy but a feasible policy and
achieving 40% of this penetration rate can be achieved
within the next few decades, so we can hope for a reduction
in congestion and safety problems with AVs. It is worth
mentioning that logically, there should be an upper-level
threshold exceeding which the magnitude of operation
improvement becomes marginal. Te results of space-time
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Figure 12: Trafc fow and safety results (speed limit� 30 km/h). (a) Trafc fow. (b) Average speed. (c) Maximum conficts. (d) Total
number of conficts.

Table 7: Statistical analysis of impact of AVs on diferent metrics in two speed limits (medium demand).

Metric
MPR Speed limit Normality

(50 km/h)
Normality
(30 km/h)

Homogeneity of
variances

F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
F

value
p

value
Total conficts 146.49 <0.001 4.9439 0.076 0.913 0.488 0.863 0.243 0.079 0.784
Maximum conficts 876.53 <0.001 5.76 0.061 0.885 0.335 0.873 0.281 0.012 0.914
Average speed 21.56 0.002 4.69 0.082 0.957 0.790 0.977 0.918 2.03 0.184
Maximum fow 116.94 <0.001 15.67 0.010 0.979 0.930 0.988 0.971 0.017 0.899
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diagrams also confrm that AVs can reduce stop-and-go
waves, and as a consequence, AVs can increase critical
density and capacity, and they can improve safety. Generally,
microscopic results confrm macroscopic results.

Te results show that AVs have the potential to increase
the average speed across the network. Even when the mode
share of the AVs is not high and distributed sparsely, there is
still the beneft of “moving more efciently” for the entire
network. While it is promising to see that increasing speed is
coupled with reducing conficts, higher speeds of vehicles are
associated with increased crash risk and severity, particularly
for other modes of transportation, especially vulnerable road
users [74–76]. In cases of more than moderate increase in

average speed (for example, “moderate increase” can be
some percentage over an average speed limit that is esti-
mated from the MSD), warnings should be given to the
driving assistant or control systems so that the systems can
activate the emergency responses in various scenarios
proactively.

Te MSDs show that until the capacity and the critical
density are reached, there is no common beneft between
fow (i.e., network efciency) and conficts (i.e., network
safety). Te applied multiobjective optimization is demon-
strated to be useful to identify some suboptimal sets of
operation points. For example, on average, these suboptimal
operation solutions see a drop in capacity of 10 to 12 percent,

Table 8: Papageorgiou speed-density model [54] statistical analysis results (50 km/h).

MPR
Value Standard error T value p value

R2
Vf Pc a Vf Pc a Vf Pc a Vf Pc a

0 47.11 30.02 0.89 1.7 1.2 0.05 27.43 24.85 16.92 6.E− 18 4.E− 17 1.E− 13 0.99
20 46.66 32.13 0.88 1.8 1.4 0.06 24.95 21.64 15.06 4.E− 17 7.E− 16 9.E− 13 0.99
40 43.73 31.32 0.99 1.6 1.3 0.07 26.76 22.60 14.54 1.E− 17 3.E− 16 1.E− 12 0.98
60 44.09 36.07 0.93 1.5 1.7 0.06 27.98 21.00 15.12 4.E− 18 1.E− 15 9.E− 13 0.98
80 43.02 41.98 0.98 1.5 2.0 0.07 27.44 20.32 14.15 6.E− 18 2.E− 15 3.E− 12 0.98
100 43.34 49.14 0.93 1.66 2.85 0.07 26.24 17.23 13.39 1E− 17 7.E− 14 9.E− 12 0.98

Table 9: Second-degree polynomial model statistical analysis results (MSD).

MPR
Value Standard error T value p value

R2
a b a b a b a b

0 −0.141 10.78 0.009 0.575 −14.961 18.772 0.00 5.17E− 13 0.87
20 −0.141 11.03 0.009 0.581 −15.114 18.994 3.91E− 15 4.22E− 13 0.88
40 −0.128 9.98 0.009 0.573 −14.305 17.424 2.33E− 14 1.27E− 12 0.87
60 −0.116 9.25 0.006 0.411 −18.249 22.497 1.12E− 16 8.96E− 15 0.92
80 −0.054 5.24 0.004 0.299 −14.313 17.502 1.26E− 12 2.12E− 14 0.88
100 −0.020 2.05 0.003 0.239 −7.371 8.620 2.24E− 07 1.67E− 08 0.80

Table 10: Papageorgiou speed-density model [54] statistical analysis results (30 km/h).

MPR
Value Standard error T value p value

R2
Vf Pc a Vf Pc a Vf Pc a Vf Pc a

0 27.67 34.97 1.18 1E− 14 2E− 14 1E− 15 1E+ 14 1E+ 15 6E+ 14 0 0 0 0.99
20 26.87 35.53 1.27 0.78 1.10 0.09 34.52 32.21 14.28 5E− 20 2E− 19 2E− 12 0.98
40 26.32 38.35 1.35 0.80 1.24 0.10 32.95 30.94 13.08 1E− 19 5E− 19 1E− 11 0.98
60 26.30 42.98 1.29 0.76 1.53 0.10 34.65 28.06 13.47 5E− 20 3E− 18 8E− 12 0.98
80 26.14 47.20 1.29 0.79 1.86 0.10 33.07 25.34 12.65 1E− 19 3E− 17 2E− 11 0.98
100 25.19 46.48 1.54 0.67 1.56 0.12 37.68 29.89 12.98 9E− 21 1E− 18 1E− 11 0.98

Table 11: Second-degree polynomial model statistical analysis results.

MPR
Value Standard error T value p value

R2 CD
a b a b a b a b

0 −0.123 9.133 0.007 0.422 −16.964 21.631 2.5E− 16 4.0E− 14 0.87 37.25
20 −0.115 8.991 0.010 0.601 −11.370 14.955 1.1E− 10 5.2E− 13 0.87 39.16
40 −0.094 8.062 0.006 0.411 −15.443 19.600 2.7E− 13 2.0E− 15 0.9 42.67
60 −0.080 7.065 0.005 0.350 −16.065 20.165 1.2E− 13 1.1E− 15 0.9 44.20
80 −0.051 4.806 0.002 0.197 −20.519 24.426 7.7E− 16 1.9E− 17 0.93 46.98
100 −0.014 1.418 0.002 0.180 −6.412 7.868 1.8E− 06 7.7E− 08 0.79 50.33
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while they see a more drastic reduction in the number of
maximum conficts from 21 to 27 percent and in CCDs from
21 to 30 percent. While the numbers are network-specifc,
such operation concepts are rarely discussed in literature,
and they provide alternatives and mobility targets for the
operators. Potentially, another dimension that could be
incorporated into the analysis is variable speed limits and
even dedicated lane allocations to further increase the beneft
of having AVs in the system. Tis, however, requires more
efcient algorithms to handle real-time implementation (the
complexity of the optimization problem of a fow-safety-
speed limit trade-of is extremely high).

With regard to speed limits, this study demonstrates the
benefts of AVs operating in low-speed limit trafc environ-
ments. Our results indicate that the change in speed limit has
aminor impact when the network has only HDVs (the number
of conficts and capacity has a 15% and 10%negative diference,
as speed limit drops from 50km/h to 30 km/h). However, when
there are only AVs in the network, the operation improvement
is signifcant compared to the HDV-only scenario, aligning
with the research’s fndings on safety and efciency carried out
by Lu et al. [77].Moreover, this study investigated the impact of
AVs on trafc fow and safety based on diferent congestion
levels. Te results confrmed that at all congestion levels, AVs
improved trafc fow, increased average speed, and demon-
strated that AVs can improve safety, even at low MPRs.

Te fndings of this study show that the presence of AVs
has the potential to reduce the dilemma between mobility
efciency and safety. Based on this study and literature, AVs,
given their control features, ofer the advantages of in-
creasing average speed, reducing conficts, and increasing
capacity at a network-wide scale [10, 16, 20]. In addition, to
balance the mobility goals, this research provided a multi-
objective optimization-driven tool which can help users
identify the optimal trade-ofs between the objectives. Tis
multiobjective optimization-driven tool allows city planners
and network operators to develop dynamic strategies based
on current infrastructure or trafc management priorities.

Tis study includes some limitations that future studies
could seek to address. Tis study makes several assumptions
regarding how AVs operate. For example, it assumes that
AVs follow AVs and HDVs with the same driving behavior.
As more information becomes available about AV tech-
nology, these behaviors can be more accurately simulated
which could infuence the fndings.

An important element of this study was the demon-
stration of how AVs can infuence MSDs and MDFs;
however, the network used for analysis was simplistic.
Furthermore, this study focuses on a grid network where
each road has a single lane in each direction, which means
the efects of AVs lane-changing behaviors are not examined
in this research. Future studies are encouraged to explore
grid networks with multiple lanes in each direction to better
understand how AVs’ lane-changing actions might impact
trafc fow and safety. Beyond this, studies could consider
real-world urban networks under diferent congestion levels,
while broadening the optimization modeling by considering
additional factors such as GHG emissions or air pollution to
provide a more holistic view of the impacts of AVs.

Appendix

Tables 8 and 9 show the results of statistical analysis of the
speed-density model and second-degree polynomial
model. To show that based on simulation data, the Papa-
georgiou speed-density model [56] and the second-degree
polynomial model can accurately show the relationship
between speed-density and confict-density, respectively,
this study used R2, T-values, and p values. R2 values
demonstrate the strength of the relationship between
speed-density and confict-density. All t-values that are far
from zero and p values that are smaller than 0.05, as in this
model, would indicate that the null hypothesis is rejected,
and there are relationships between speed-density and
confict-density based on the Papageorgiou speed-density
model [56] and second-degree polynomial model. vf is
free-fow speed, pc is critical density, and a is the model
shape parameter.

Tables 10 and 11 show the results of statistical analysis of
the speed-density model and the second-degree polynomial
model. Two model p values and T-values and R2 values
confrm that two models can accurately estimate the re-
lationship between speed-density and conficts-density.

Data Availability

Data available on request: Contact karbaa3@mcmaster.ca.

Additional Points

Highlights. Investigated the impact of AVs on road network
operational characteristics. Analyzed the beneft of AV
presence of increased capacity and reduced conficts at
a network-level. Conducted optimization-driven analysis on
the tradeof between efciency and safety. Investigated how
AVs afect average speed of urban networks and speed-safety
confict
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