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Accurate air trafc fow prediction assists controllers formulate control strategies in advance and alleviate air trafc congestion,
which is important to fight safety. While existing works have made signifcant eforts in exploring the high dynamics and
heterogeneous interactions of historical air trafc fow, two key challenges still remain. (1) Te transfer patterns of air trafc are
intricate, subject to numerous constraints and limitations such as controllers, fight regulations, and other regulatory factors.
Relying solely on mining historical trafc evolution patterns makes it difcult to accurately predict the constrained air trafc fow.
(2) Weather conditions exert a substantial infuence on air trafc, making it exceptionally difcult to simulate the impact of
external factors (such as thunderstorms) on the evolution of air trafc fow patterns. To address these two challenges, we propose
a Spatiotemporal Knowledge Distillation Network (ST-KDN) for air trafc fow prediction. Firstly, recognizing the inherent
future insights embedded within fight plans, we develop a “teacher-student” distillation model. Tis model leverages the prior
knowledge of upstream-downstream migration patterns and future air trafc trends inherent in fight plans. Subsequently, to
model the infuence of external factors and predict air trafc fow disturbed by thunderstorm weather, we propose a student
network based on the “parallel-fusion” structure. Finally, employing a feature-based knowledge distillation approach to integrate
prior knowledge from fight plans and extract meteorological features, our method can accurately capture complex and con-
strained spatiotemporal dependencies in air trafc and explicitly model the impact of weather on air trafc fow. Experimental
results on real-world fight data demonstrate that our method can achieve better prediction performance than other state-of-
the-art comparison methods, and the advantages of the proposedmethod are particularly prominent in modeling the complicated
transfer pattern of air trafc and inferring nonrecurrent fow patterns.

1. Introduction

With the rapid development of civil aviation industry, the
number of aircraft has greatly increased, and thus air
congestion and fight delays occur frequently [1–3]. Ex-
ternal factors such as thunderstorm weather have aggra-
vated the contradiction between the air trafc demand and
the limited capacity of air trafc management (ATM)
system. Air trafc fow management (ATFM), recognized
as a widely implemented and efective strategy, plays
a pivotal role in ensuring efcient and safe air trans-
portation operations [4]. Air trafc fow prediction, as the
key part of the ATFM system, helps the controllers to

formulate control strategies in advance, thereby alleviating
air trafc congestion [5, 6].

Researchers have already proposed many methods to
predict air trafc fow. Early researchers mainly used dy-
namic simulation algorithms; however, these methods have
high computational complexity, especially when the number
of aircraft is increasing greatly [7, 8]. Recently, deep learning
methods have received considerable attention. Some re-
searchers used convolutional neural networks (CNNs) and
long short-termmemory (LSTM) [9] to model temporal and
spatial correlations. In contrast, numerous researchers in
road trafc used graph convolution network (GCN) to
capture the topological features of trafc networks, such as
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spatiotemporal graph convolution network (STGCN) [10],
attention-based spatiotemporal graph convolution network
(ASTGCN) [11], and adaptive graph convolutional recurrent
network (AGCRN) [12]. In response to the complexities
inherent in dynamic and time-delayed trafc data, a novel
propagation delay-aware dynamic long-range transformer
(PDFormer) model leveraging a spatiotemporal self-
attention mechanism has recently been introduced [13].
Recognizing the impact of spatiotemporal heterogeneity on
trafc prediction, Ji et al. put forward a self-supervised
learning framework [14], integrating an adaptive
heterogeneity-aware enhancement scheme into the spatio-
temporal graph structure to mitigate noise disturbances.

Despite the promising performance of introducing GCN
in trafc feld, we argue that there are several important
aspects that previous methods have overlooked.

(i) Firstly, air trafc fow has complicated and constrained
transfer pattern. To ensure safety, fights must not only
use predefned routes as guidance but also follow the
instruction of air trafc controllers [15]. Existing
methods mostly learn the spatiotemporal correlations
of fow patterns among diferent nodes over diferent
time intervals from historical trafc data to infer future
trafc [10, 11], as illustrated in Figure 1(a). While
numerous researchers have made signifcant eforts to
learn the complex and constrained spatiotemporal
dependencies in air trafc [12, 13], they still cannot
achieve satisfactory performance in air trafc fow
prediction. It is noteworthy that the fight plan in air
trafc management contains some predefned rule
constraints and provides efective prior knowledge of
future regular evolution patterns. However, they have
not been fully utilized.Terefore, we try to combine the
valuable prior knowledge in the currently underutilized
fight plan information to develop a more efcient and
efective solution. As depicted in Figure 1(b), fight
plans ofer inherent insights into future air trafc
dynamics. Tey provide information of how air trafc
fow transits from each node to another, thereby im-
plying the dependency of upstream and downstream
fows. Te dependency embeds future knowledge of
how downstream trafc is caused by upstream trafc,
thus aiding in more accurate inference of future trafc
patterns.

(ii) Secondly, prevailing methodologies often overlook
the substantial infuence of external variables, such
as weather, on the dynamic evolution of air trafc
fow [14, 15]. Adverse weather conditions wield
considerable impact, such as localized thunder-
storms not only disrupting regional air trafc but
also spreading into global airspace. Although some
researchers embed weather conditions and accidents
into the spatiotemporal learning framework to
predict the nonrecurrent road trafc fow [16–18],
they cannot be directly applied to modeling the
efects of weather on air trafc fow. Tus, how to
efectively model the impact of weather on air trafc
fow patterns is still unresolved.

Reference [19] proposes a temporal attention-aware dual-
graph convolution network (TAaDGCN) to predict air trafc
fow under regular conditions. To capture the spatial de-
pendencies, a dual-graph convolution module and spatial
embedding (SE) block are designed. To capture the temporal
dependencies of historical trafc, attention mechanisms are
utilized. Trough the spatiotemporal modeling module, the
TAaDGCNmethod has learned the spatiotemporal evolution
patterns of historical air trafc fow under regular conditions.
Compared with [19], we propose a Spatiotemporal Knowl-
edge Distillation Network (ST-KDN) to predict air trafc fow
under the infuence of other factors such as thunderstorms.
Difering from most existing methods that solely learn spa-
tiotemporal dependencies from historical trafc data, we fully
exploit the prior knowledge of future insights embedded
within fight plans, including predefned rule constraints, to
more accurately predict future air trafc fow. Specifcally,
considering that fight plan information provides inherent
insights into future air trafc dynamics and refects regular
fow evolution patterns, we design a teacher network that
incorporates fight plan data. Ten, to comprehensively
capture the efects of adverse weather, including thunder-
storms, on air trafc fow, we design a student network
structured upon a “parallel-fusion” architecture.Tis network
comprises two distinct components: one is dedicated to
learning regular air trafc fow evolution patterns and the
other focuses on weather variation characteristics. Sub-
sequently, a feature fusion module is crafted to integrate the
features of both regular air trafc fow and weather. By
amalgamating prior knowledge embedded within fight plans
and incorporating meteorological features, our method can
explicitly capture complex spatiotemporal dependencies of air
trafc fow. Our main contributions are summarized as
follows:

(i) We identify the unique characteristics of air trafc
fow evolution and propose a spatiotemporal
knowledge distillation network specifcally for air
trafc fow prediction. It efectively leverages the
inherent capability of fight plans to provide insights
into future air trafc dynamics, thereby enhancing
prediction accuracy, especially in long-term
prediction.

(ii) We consider the impact of external thunderstorm
weather on spatiotemporal modeling and design
a student network based on the “parallel-fusion”
structure to explicitly model the impact of weather
on air trafc fow, making predictions more robust.

(iii) We conduct extensive experiments with real-world
fight data and meteorological radar echo data. Te
results suggest that the proposed method outperforms
state-of-the-art approaches and is especially superior
in long-term prediction of nonrecurrent fow patterns
afected by weather.

Te rest of the paper is organized as follows. Section 2
reviews relevant research about air trafc fow prediction
and knowledge distillation. Section 3 gives the problem
statement and some preliminaries. In Section 4, the

2 Journal of Advanced Transportation



framework of the proposed ST-KDN network is presented in
detail. In Section 5, we evaluate the predictive performance
of the proposed ST-KDN network with real-world fight data

and meteorological radar echo data, including model
comparisons, variant comparisons, and case study. In ad-
dition, we conclude the paper in Section 6.
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Figure 1: Te fowchart about how fight plan information could aid in predicting air trafc fows. (a) When only fow observations are
available. (b) When the fight plan is utilized.
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2. Related Work

In this section, we ofer a thorough overview of contem-
porary research in spatiotemporal prediction, focusing on
three key areas. Firstly, we outline advancements and
challenges in air trafc fow prediction. Secondly, given that
air trafc fow constitutes typical spatiotemporal data, the
mining of such data signifcantly impacts prediction per-
formance. Consequently, we provide a summary of research
on spatiotemporal semantic understanding. Lastly, we
summarize the current status and applications of knowledge
distillation methods.

2.1. Air Trafc Flow Prediction. In recent years, air trafc
fow prediction has attracted widespread attention from
researchers all over the world [18, 20–22]. In this subsection,
we provide an overview of some representative trafc pre-
diction methods, categorizing them into statistical-based
methods, traditional machine learning methods, and deep
learning methods.

In statistical-based methods, dynamic simulation algo-
rithms and time series prediction algorithms have been fo-
cused on. Early attempts use dynamical simulation algorithms
to model air trafc problems [7], for example, the real-time
fight plan data in the EuroCat-X system are utilized to predict
positioning points, airports, routes, sectors, etc. [7, 8].
However, these methods require complex system pro-
gramming and high computational complexity. Since the
fight fow of a region for a certain period is afected by the
fight fow of frst several hours, it could utilize the fow data of
the frst few hours to predict the fow of the subsequent
period. Terefore, some researchers model it as a time series
problem. Autoregressive Moving Average (ARMA) [23] is
a fundamental time series forecasting method, with its variant
being Autoregressive Integrated Moving Average (ARIMA)
[24]. In References [25, 26], ARIMA is employed to model the
temporal correlations of air trafc fow, establishing a com-
bination model of autoregression, diferencing, and moving
average by analyzing the autocorrelation and partial auto-
correlation properties of the sequences. It requires minimal
domain knowledge and is capable of capturing both long-
term and short-term trends in the data. Vector Autore-
gression (VAR) [27] is also widely used in time series-based
trafc fow prediction, by constructing a linear relationship
model between multiple time series, while considering the
mutual infuence of each sequence. As another extension of
the ARMA method, the Seasonal Autoregressive Integrated
Moving Average (SARIMA) method [28] can capture the
inherent correlations in time series data, particularly suitable
for modeling seasonal and random time series commonly
found in trafc fow data. Although these classical time series
methods can capture the temporal dependencies in time series
data, they rely on strong linear and stationarity assumptions,
often neglecting the spatial dependencies of neighboring
regions.

With the rapid development of artifcial intelligence,
data-driven methods have received considerable attention
[29], leading to the emergence of various traditional ma-
chine learning-based approaches, such as k-Nearest

Neighbors (k-NN) [30] and support vector regression
(SVR) [31, 32]. Qiu and Li proposed an air trafc fow
prediction method considering wavelet neural network,
which uses nonlinear wavelet to replace the nonlinear ac-
tivation function in classical neural network [33]. Zhang
et al. proposed an air trafc prediction model based on
support vector machines to improve the real-time moni-
toring and control in terminal areas [32]. Zhu et al. in-
vestigated the application of Linear Conditional Gaussian
(LCG) Bayesian Network (BN) models for short-term trafc
fow prediction, considering both spatial-temporal features
and velocity information [34]. From these preceding con-
ventional machine learning approaches, it can be concluded
that machine learning is a powerful tool in air trafc fow
management (ATFM). However, the proliferation of trafc
sensors in recent years along with the rapid advancement of
intelligent transportation systems has led to an explosion of
trafc data. Conventional machine learning methods are
limited in uncovering deep, latent spatiotemporal correla-
tions within large-scale trafc data, thereby constraining
their prediction capability.

Deep learning-based methodologies are emerging as
popular techniques for spatiotemporal tasks in trans-
portation. Te success of deep learning in numerous ap-
plication domains, driven by the availability of big data and
robust computational resources, has propelled its adoption
in the feld of trafc fow prediction [35–38]. Some re-
searchers attempted to model spatiotemporal correlation in
air trafc by CNN and LSTM [9, 39]. To capture the to-
pological characteristics of trafc networks, graph convo-
lution network (GCN) is used in road trafc network [40].
Yu et al. proposed a STGCN method, which models trafc
networks as graphs and utilizes GCN to learn spatiotemporal
dependencies among nodes [10]. Guo et al. proposed a novel
attention-based spatiotemporal graph convolutional net-
work (ASTGCN) to address trafc fow prediction, com-
posed of three independent components modeling three
temporal attributes of trafc fow: short-term, daily periodic,
and weekly periodic dependencies [11]. Bai et al. proposed
an adaptive graph convolutional recurrent network
(AGCRN) to automatically capture fne-grained spatio-
temporal correlations in trafc sequences [12]. Ma et al.
proposed an improved long short-term memory (LSTM)
network combining forward and backward LSTMs to in-
corporate long-term dependencies, efectively overcoming
signifcant prediction errors [41]. Recently, a Multiview
Dynamic Graph Convolutional Network (MVDGCN) has
been proposed to capture diverse levels of spatiotemporal
dependencies. Leveraging coupled graph convolutional
networks, it dynamically learns the relationship matrix
between stations, thereby capturing spatial dependencies at
various levels within the trafc network [42]. Rajeh et al.
proposed a deep learning-assisted method based on trafc
fow dependencies and dynamics. By explicitly integrating
spatiotemporal fow dependencies, trafc dynamics, and
deep learning techniques, it predicts high-resolution trafc
speed propagation across the network. Te efective com-
bination of physical models with deep learning methods
within this framework, evolving them jointly, enhances
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prediction performance [43]. To address the challenges
posed by the dynamic and time-delayed nature of complex
trafc data, a Propagation Delay-aware dynamic long-range
transformer (PDFormer) model is proposed [13]. Tis
model incorporates a spatial self-attention module that
models local geographic neighborhoods and global semantic
neighborhoods through diferent graph masking techniques.
Additionally, a trafc delay-aware feature transformation
module is devised to explicitly model time delays in the
spatial information propagation. Considering the in-
terference of spatiotemporal heterogeneity on trafc pre-
diction, Ji et al. proposed a self-supervised learning
framework [14]. An adaptive heterogeneity-aware en-
hancement scheme is applied to the spatiotemporal graph
structure to address noise disturbances. By integrating two
self-supervised learning tasks, the method enhances the
capability of discerning spatial and temporal trafc het-
erogeneity, efectively accomplishing trafc prediction tasks.
Tese methodologies focus on learning spatiotemporal de-
pendencies from extensive historical data but still fail to
achieve satisfactory performance in modeling rare scenarios
from history and predicting long-range trafc.

2.2. Spatiotemporal Semantic Understanding. Spatiotemporal
semantic understanding refers to the process of analyzing
and comprehending spatiotemporal data, aiming to reveal
the spatiotemporal relationships, semantic information, and
patterns within the data [44–46]. Air trafc fow represents
a typical form of spatiotemporal data, where the depth of
exploration into spatiotemporal trafc fow data directly
determines the quality of predictive performance.

In recent years, spatiotemporal semantic understanding
has witnessed signifcant advancements across various do-
mains. In the feld of image and video understanding, Yin
et al. introduced a spatiotemporal semantic understanding
method based on a spatiotemporal tag library for automatic
video annotation, efectively mining the complex semantic
information within the tag library [47]. To address chal-
lenges posed by spatiotemporal data in dimensions, distri-
butions, and inherent informational content, a Semantic-
Aware Adaptive Knowledge Distillation Network (SAKDN)
is proposed [48]. It enhances action recognition in visual
sensor modalities (videos) by adaptively transferring and
refning knowledge from multiple spatiotemporal data
sources, efectively highlighting critical areas within complex
spatiotemporal data while retaining the interrelationships of
the original data. Additionally, to leverage rich spatiotem-
poral knowledge and generate efective supervisory signals
from extensive unannotated spatiotemporal data, Liu et al.
utilized multiscale temporal dependencies in videos and
proposed a novel video self-supervised learning framework
called Time Contrastive Graph Learning (TCGL) [49]. Tis
framework efectively learns global contextual representa-
tions of complex spatiotemporal knowledge. Furthermore,
to integrate domain-invariant representation learning and
cross-modal feature fusion into a unifed optimization
framework, a Deep Image to Video Adaptation and Fusion
Network (DIVAFN) is introduced [50]. Training action

recognition classifers demonstrate the efectiveness of this
approach in learning relevant complementary knowledge.

In the realm of transportation, a series of methods for
trafc identifcation, prediction, and planning based on
spatiotemporal semantic understanding have been proposed
[51–53]. Lin introduced a novel Reinforcement Learning-
(RL-) based Trafc Signal Control (TSC) method named
DenseLight, which employs an unbiased reward function to
provide dense feedback on policy efectiveness [54]. Addi-
tionally, it utilizes a nonlocal enhanced TSC agent to predict
future trafc conditions more accurately, enabling more
precise trafc control. Wang et al. proposed a POI-
MetaBlock network that utilizes the functionality of each
region (represented by the distribution of points of interest)
as metadata to further explore diferent trafc features
within regions with diferent functionalities [55].Tis model
can be seamlessly integrated into traditional trafc fow
prediction models, signifcantly enhancing prediction
performance.

2.3. Knowledge Distillation. Knowledge distillation is
a model-independent strategy that transfers the knowledge
from the pretrained teacher network to guide the training of
the student network. Knowledge distillation was originally
proposed for model compression [56, 57]. By learning the
knowledge of the large teacher network, the lightweight
student network can achieve results close to or even better
than the teacher network [58–60]. Kang et al. proposed
a hierarchical topological distillation model for recom-
mender systems by transforming a topology built on teacher
spatial relations [61]. Dai et al. proposed a novel general
instance distillation method for the object detection task,
which is based on discriminable instances without consid-
ering the positive and negative distinguished by ground
truth [62]. Passban et al. proposed an attention-dependent
combined knowledge distillation technique, which fuses
teacher-side information and takes each layer’s signifcance
into consideration [63].

In addition to model compression, due to the fexible
teacher-student architectures and knowledge transfer,
knowledge distillation has been applied to many other felds,
such as cross-modal learning [64–66], multitask learning
[67, 68], and transfer learning [69]. Toker and Gall pro-
posed a cross-modal knowledge distillation network to
address the problem on action recognition. Te network has
been trained on a modality like RGB videos that can be
adapted to recognize actions for another modality like se-
quences of 3D human poses [70]. Zhao et al. designed
a novel knowledge distilling network, which considers the
diferent distances between multiple sources and the target
and the diferent similarities of the source samples into the
target ones for multisource distilling domain adaptation
[71]. Lu et al. proposed a novel knowledge distillation
framework for high-dimensional search indexes, aiming to
efciently learn lightweight indexes by distilling knowledge
from high-precision graph-based indexes [72]. Yang et al.
introduced a Mutual Contrastive Learning (MCL) frame-
work for online knowledge distillation, with the core idea
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being the mutual interaction and transfer of contrastive
distributions among a cohort of networks in an online
manner [73].

To achieve knowledge distillation, early works make
attempts by matching the class distribution (i.e., softmax
output) [74]. Te idea of class distribution-based knowledge
is straightforward and easy to understand. From another
perspective, the efectiveness of class distribution is similar
to that of label smoothing or regularization. However, the
researchers observe that utilizing output feature alone is
insufcient since meaningful intermediate information may
be ignored [75, 76]. Terefore, subsequent methods utilize
teacher’s middle layer along with output layer to distill
knowledge [77]. Not only that, some researchers also use
relationships between diferent layers as guide for student
network training. Te relation-based methods further ex-
plore the relationships between diferent layers or data
samples [78, 79].

Motivated by the aforementioned techniques and con-
sidering the unique characteristics of air trafc fow, we have
devised a “teacher-student” distillation framework. Unlike
most methods that primarily focus on capturing the spa-
tiotemporal relationships of trafc fow from historical data,
our method adeptly leverages the prior knowledge em-
bedded within fight plans through knowledge distillation,
thus providing efcient information for future air trafc
prediction. Additionally, a student network of “parallel-
fusion” architecture is designed to efectively model the
impact of external factors such as thunderstorms on the
variation of air trafc fow. Compared to prevailingmethods,
our proposed method is better suited for predicting rare
patterns in historical data and is particularly efective for
long-term prediction.

3. Preliminaries

3.1. Problem Statement. In air trafc fow prediction, the
objective is to predict future air trafc fow given historical
trafc fow.

Defnition 1 (Air Trafc Flow). We regard all the airspace as
a graph structure, and each subregion is a node v ∈ V of the
graph, where V represents the subregion set. Each node on
the network generates a fow vector Xk � [Xt0 ,k, Xt1 ,k,

. . . , Xtj,k, . . .] ∈ RQ. Te fow of all subregion at the tj-time
slice is represented as Xtj

� [Xtj,1, Xtj,2, . . . , Xtj,N] ∈ RN,
where N is the number of subregion and Xtj,k ∈ R1 repre-
sents the air trafc fow of the k-th subregion at the tj-th time
slice. Specifcally, actual air trafc fow Xactual

tj,k can be cal-
culated as

X
actual
tj,k � 􏽘

Nf

i�1
􏽘

mi
′

j�0
y,

y �
1, lfa

ij
∈ k, Tfa

ij
∈ tj,

0, others,

⎧⎨

⎩

(1)

where fa
ij represents j-th real trajectory point of i-th fight,

lfa
ij
represents latitude and longitude of trajectory point fa

ij,
and Tfa

ij
represents time corresponding to trajectory

point fa
ij.

Defnition 2 (Flight Plan). Suppose there are Nf planned
fight trajectories: [F

p
1 , F

p
2 , . . . , F

p
i , . . . , F

p
Nf

], and the i-th
planned trajectory F

p
i can be represented as : [f

p
i0, f

p
i1,

. . . , f
p

imi
], where f

p

i0 represents the origin route point of the
trajectory and f

p

imi
represents the destination route point. To

learn the regular fow transfer patterns in fight planning and
use them as the prior knowledge, the planned fow of dif-
ferent subregions in all time slices is counted, and the
planned fow of k-th subregion at the tj-th time slice can be
calculated as

X
plan
tj,k � 􏽘

Nf

i�1
􏽘

mi
′

j�0
y,

y �
1, lfp

ij
∈ k, Tf

p

ij
∈ tj,

0, others,

⎧⎨

⎩

(2)

where f
p
ij represents j-th plan trajectory point of i-th fight.

Defnition 3 (Meteorological Radar Echo). Te fow evo-
lution pattern has a strong correlation with external factors
such as weather conditions. We devote the weather factor by
the meteorological radar echo data, and the preprocessed
radar echo data at a certain time step are denoted as a tensor
Mt ∈ RN×Lw , where N is the number of subregion and Lw is
weather feature length.

Problem 4 (Air Trafc Flow Prediction). Here, we defne the
problem of air trafc fow prediction. Given the historical
observations of air trafc fow Xactual

I ∈ RP×N, I � t − P{

+1, . . . t − 1, t}, our goal is to predict the air trafc fow in the
future time step Xactual

J ∈ RQ×N, J � t + 1, . . . , t + Q{ }, where
N is the number of regions and P, Q are numbers of his-
torical time intervals and future time intervals, respectively.
In this paper, to predict more accurately, the fight plan
information X

plan
(P+Q),N ∈ R(P+Q)×N and meteorological radar

echo data M(P+Q) ∈ R(P+Q)×N×Lw in the corresponding time
interval are also used.

3.2. Graph Convolutional Networks (GCNs). Spectral graph
convolution extends the convolution operation from grid-
based data to graph structure data, in which the graph can be
represented by its corresponding Laplacian matrix L ∈ RN×N

[80]. By analyzing the Laplacian matrix L ∈ RN×N and its
eigenvalues, the properties of the graph structure can be
obtained:

L � In − D
− (1/2)

WtD
− (1/2)

� UΛUT ∈ R
n×n

,
(3)
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where L ∈ RN×N is the Laplacian matrix that can represent
the graph Wt, In is an identity matrix, D is diagonal degree
matrix with Dii � 􏽐jWij, U is the matrix of the eigenvectors
of the normalized graph Laplacian matrix, and Λ is the
diagonal matrix of the eigenvalues of L.

Based on the above analysis, the spectral convolution of
the air trafc fow xϵR|V| and the kernel Θ on graph Wt can
be defned as

Θ∗G(W)x � Θ(L)x

� Θ UΛUT
􏼐 􏼑x

� UΘ(Λ)UT
x,

(4)

where xϵR|V| is signal defned on j-th time slice graph and
Wt is the air trafc graph at time j.

However, the computation of the above convolution
operation is expensive; in our method, Chebyshev poly-
nomial approximation is adopted to reduce the computation
cost of equation (4):

Θ∗G(W)x � Θ(L)x ≈ 􏽘

Ks− 1

k�0
θkTk(􏽥L)x, (5)

where θk ∈ Rk is a vector of polynomial coefcients. Ks is the
kernel size of graph convolution, which determines the
maximum radius of the convolution from central nodes.
􏽥L � 2L/λmax − In, λmax is the maximum eigenvalue of the
Laplacian matrix. Tk(􏽥L) ∈ RN×N is the Chebyshev poly-
nomial of order k.

3.3. Temporal Gate Convolution. Te temporal gate con-
volutional layer contains a one-dimensional causal convo-
lution with a width of Kt kernel, followed by a gated linear
unit [9]. Suppose yϵRT×cin is the signal defned on i-th node;
by temporal convolution of the air trafc fow yϵRT×cin and
the kernel Γ ∈ RKt×cin×2cout , we can obtain output
Y ∈ R(T− Kt+1)×2cout . Split Y in half with the same size of
channels, and Y1, Y2 ∈ R(T− Kt+1)×cout can be obtained. Te
temporal convolutional layer can be defned as

Γ∗Ty � Y1 ⊙ σ Y2( 􏼁, (6)

where ⊙ denotes the elementwise Hadamard product and
σ(∙) represents the sigmoid function.

4. Methodology

To fully utilize the unique characteristics of air trafc op-
eration patterns and address the complex air trafc fow
prediction problem, we propose a novel Spatiotemporal
Knowledge Distillation Network (ST-KDN), the overall
architecture of which is illustrated in Figure 2. Recognizing
the inherent predictive capabilities embedded within fight
plans, encompassing details on future trafc fow between
nodes and implicitly encoding dependencies of upstream
and downstream fows, we design a teacher network in-
tegrating the prior knowledge from fight plans. Tis

network not only learns trafc evolution patterns from
historical fow data but also derives anticipatory guidance
from future fight plans, facilitating more precise predictions
of future trafc patterns. Moreover, considering the sig-
nifcant impact of external factors like thunderstorms on air
trafc operations, we propose a student network structured
around a “parallel-fusion” design. Tis architecture segre-
gates the modeling of spatial-temporal dependencies and
weather impacts before merging them. Finally, by distilling
insights from the teacher network and integrating meteo-
rological features, the student network adeptly captures the
intricate spatial-temporal dependency relationships within
air trafc, while explicitly simulating the efects of weather
on air trafc fow.

4.1. TeacherNetwork forPriorKnowledgeLearning fromFlight
Plan. In contrast to road trafc, air trafc must adhere to
predetermined routes and comply with air trafc controllers’
directives to ensure safety, rendering the transfer pattern of
air trafc fow intricate and constrained. Flight plans con-
stitute a crucial component of air trafc fow evolution, as
they enable the anticipation of fight intentions in advance
and furnish insights into how trafc transitions between
nodes, thus supplying valuable prior knowledge for future
air trafc fow at each node. Consequently, we propose
harnessing a teacher network to glean the evolution pattern
of rules as signifcant prior knowledge. Unlike conventional
methods that solely rely on historical data for learning trafc
patterns, our proposed teacher network integrates insights
from fight plans, thereby ofering valuable guidance for air
trafc prediction.

Given the planned fow of diferent subregions in his-
torical P time steps X

plan
I′ ∈ RP×N, I′ � t − P + 1, . . . t − 1, t{ },

and the planned fow in future Q time steps, i.e.,
LT � X

plan
J′ ∈ RQ×N, J′ � t + 1, . . . , t + Q{ }. A teacher network

consisting of a spatiotemporal feature extraction module is
designed to model the regular evolution pattern of planned
air trafc fow, as defned in the following equation:

O
T

� fTeacher X
plan
I′􏼐 􏼑, (7)

where OT ∈ RQ×N represents the output of the teacher
network.

By the teacher network, the regular evolution pattern
contained in the fight plan is learned. Specifcally, the
teacher network consists of two spatiotemporal convolution
blocks and a prediction layer. Each spatiotemporal convo-
lution block is composed of two temporal gated convolution
layers and a spatial graph convolution layer, and the details
of graph convolution and temporal gated convolution are
described in the section of Preliminaries. Te prediction
layer is composed of two temporal gate convolution layers
and a fully connection layer. In spatial convolution, the
graph convolution operator ∗G(W) defned on xϵRN can be
extended to multidimensional tensors. For a signal with Ci

channels ∈ RN×Ci , graph convolution in (5) can be gener-
alized as
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yj � 􏽘

Ci

i�1
θi,j(L)xi ∈ R

N
, 1≤ j≤Co, (8)

where Ci × Co vectors of Chebyshev coefcients θi,j ∈ RK

and Ci, Co represent the size of input and output of the
feature maps, respectively. Te graph convolution for 2-D
variables is denoted as “θ ∗G(W)X” with ∈ RK×Ci×Co . Spe-
cifcally, the input of trafc prediction is composed of P

frame of graphs. Each frame can be regarded as a matrix
whose column i is the Ci-dimensional value of each frame at
the i th node in graph, as X ∈ RN×Ci (in this case, Ci � 1). For
each time step t of P, the equal graph convolution operation
with the same kernel θ is imposed on Xt ∈ RN×Ci in parallel.
For temporal dimensional features, temporal gate convo-
lution is used. Given i-th node signal y ϵRT×cin and the kernel
Γ ∈ RKt×cin×2cout ,

Γ∗Ty � fc(y)⊙ σ fc(y)( 􏼁, (9)

where fc represents one-dimensional causal convolution
with a width of Kt kernel, ⊙ denotes the elementwise
Hadamard product, and σ(∙) is the sigmoid function.

Te prior knowledge from the fight plan is embedded in
the parameters of the teacher network. To distill knowledge of
teacher network to guide the training of the student network,
after the frst spatiotemporal convolution block, an intermediate
output OT

M ∈ RP×N×D1 of the teacher network is generated.

4.2. StudentNetwork for LearningNonrecurrent FlowPatterns
with Weather Factor. Te teacher network has learned the
fow evolution pattern implied in the fight plan data, which

helps to infer the regular fow evolution pattern without
sudden factor disturbance. However, in practice, actual air
trafc fow is signifcantly infuenced by meteorological
conditions. Given the considerable uncertainty linked with
external factors, it is a very challenging problem to explicitly
model the impact of weather on air trafc fow and to predict
more accurately the nonrecurrent fow patterns.

To address this challenge, a student network based on the
“parallel-fusion” structure is proposed. Te student network
is frstly divided into two parts, which can learn the regular
fow evolution pattern and weather change characteristics,
respectively. Subsequently, a feature fusion module is
designed to integrate the regular fow feature and weather
feature, which can explicitly model complex nonrecurrent
spatiotemporal dependencies. Based on the above obser-
vation, our student model consists of a regular pattern
learning module, a weather feature extraction module, and
a feature fusion module, as defned in the following
equation:

Y � fST fST X
actual

􏼐 􏼑 ‖ FCNN fST(M)( 􏼁􏼐 􏼑, (10)

whereXactual ∈ RP×N represents real fowmatrix,M∈ RT×N×Lw

represents meteorological radar echo matrix, Lw is weather
feature length, fST represents spatiotemporal convolution
block, FCNN is convolutional neural network layer, and
Y ∈ RQ×N is output fow. It is noteworthy that T � P + Q,
which means the input of the regular pattern learning module
is the fow matrix in historical P time steps, while the input of
the weather feature extraction module is the meteorological
radar echo matrix consisting of the historical P time steps and
the future Q time steps. Tis is because the fow at the next Q
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Figure 2: Te framework of the proposed ST-KDN network. GCN: graph convolution network; ST block: spatiotemporal block; CNN:
convolutional neural network; BN: batch normalization.
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time steps is highly dependent on both historical and future
meteorology conditions.

Considering that air trafc fow distribution of any re-
gion has signifcant dependencies with its neighbors and the
fight fow of a certain region is related to its previous ob-
servations, the proposed regular pattern learning module
consists of spatiotemporal convolution block, i.e., two
temporal gated convolution layers and a spatial graph
convolution layer. Te details of temporal gated convolution
layers and spatial graph convolution layer are described in
the section of Preliminaries. In spatial graph convolution
layer, the adjacency matrix of the air trafc graph is com-
puted based on the distances among subregions. Te
weighted adjacency matrix Wt ∈ Rn×n can be formed as

Wt,ij �

exp −
d
2
ij

δ2
⎛⎝ ⎞⎠, i≠ j, exp −

d
2
ij

δ2
⎛⎝ ⎞⎠≥ ε,

0, others,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where Wt,ij ∈ R1, d2
ij represents distance between subregions

and δ2 and ε are thresholds to control the distribution and
sparsity of matrix Wt ∈ Rn×n, respectively. It is worth noting
that the knowledge of regular pattern learning module comes
from the teacher network. To capture the spatiotemporal
dependencies of meteorological changes, the meteorological
feature extraction module is designed, which consists of ST
block and convolutional layer. Finally, the feature fusion
module explicitly models the nonrecurrent fow patterns
afected by weather and makes the fnal prediction by in-
tegrating the regular fow feature and weather feature.

4.3. Knowledge Distilling for Air Trafc Flow Prediction.
To better predict real fow afected by weather while learning
teacher network knowledge, a feature-based distillation
approach is adopted. Compared with the response-based
distillation using output layer features, feature-based dis-
tillation better utilizes intermediate layer features, thus
enhancing the training efectiveness of the student model.

Given the intermediate output of the teacher network
OT

M ∈ RP×N×D1 and the output of the regular pattern learning
module in the student network OS

M ∈ RP×N×D1 , we propose
to distill the knowledge by approximating OT

M ∈ RP×N×D1

and OS
M ∈ RP×N×D1 . However, direct ftting the intermediate

characteristics may cause the student network to overft the
teacher network, thereby losing other useful information.
Terefore, we propose to map OT

M ∈ RP×N×D1 to the latent
space and then distill in the latent space. Tus, the distil-
lation loss between teacher and student can be derived as
follows:

Ldistill �
1
N

􏽘

N

i�1
FCNN O

T
Mi􏼐 􏼑 − O

S
Mi􏼐 􏼑

2
, (12)

where OT
Mi ∈ RP×1×D1 , OS

Mi ∈ RP×1×D1 represent the output
value of OT

M ∈ RP×N×D1 , OS
M ∈ RP×N×D1, respectively.

During training, the whole process is divided into two
stages. In the frst stage, the teacher model is frst trained,
and teacher loss LT based on mean square error is used:

LT �
1
N

􏽘

N

i�1
O

T
i − L

T
i􏼐 􏼑

2
, (13)

where OT
i ∈ R1×T represents prediction values of teacher

network on i-th region and LT
i ∈ R1×T represents label of

teacher network on i-th region.
In the second stage, the teacher model is used to guide

the training of the student network. Te loss function for
optimizing the student network is given in two parts:

Ltotal � α · Ldistill + LS, (14)

in which

LS �
1
N

􏽘

N

i�1
O

S
i − L

S
i􏼐 􏼑

2
, (15)

where α is weight adjustment factor and OS
i ∈ R1×T,

LS
i ∈ R1×T represent prediction value and label value of the

student network on the i-th region, respectively.

5. Experiments

In this section, we frstly outline the experimental settings in
Section 5.1, which encompasses the datasets, evaluation
metrics, and setting of hyperparameters. Tese details
provide necessary background and criteria for un-
derstanding the conditions under which our experiments are
conducted. Subsequently, in Section 5.2, we introduce the
baseline models as comparative benchmarks against our
proposed method. Section 5.3 presents experiments for
model comparison and variant comparison, focusing on
quantitative objective measurements of model performance.
Model comparison entails comparisons of prediction errors
and time cost, verifying the superiority of the proposed
method over other representative methods, while variant
comparison aims to validate the efectiveness of each key
module within the proposed method. Finally, in Section 5.4,
a case study is conducted, emphasizing visually de-
monstrable results to showcase the performance of ST-KDN
in practical scenarios. Furthermore, the discussion in Sec-
tion 5.5 outlines future research directions. Tese series of
experimental designs are aimed at comprehensively evalu-
ating the performance of our proposed method and clearly
demonstrating its advantages and applicability.

5.1. Experiment Settings

5.1.1. Datasets. Te original data are provided by the Avi-
ation Data Communication Corporation (ADCC), China.
Tey mainly include trajectory data and meteorological
radar echo data, covering the period from May 1, 2021, to
July 1, 2021. Te trajectory data are composed of fight
mission ID, planned/real fight departure information,
planned/real route point names, latitude and longitude,
fight level, speed, and the corresponding time.
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Temeteorological radar echo data monitor the weather
that afects the fight such as precipitation and strong
convective weather. Te national airspace contains nu-
merous points, and each kind of data represents the weather
conditions where the point is located.

To evaluate the efect of the proposed model, the data are
further divided into three parts: 70% for training, 10% for
validation, and 20% for testing.

5.1.2. Evaluation Metrics. To demonstrate the efectiveness
of the proposed ST-KDN, three widely used metrics are
applied, i.e., Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE), which are defned as

MAE �
1
n

􏽘

n

i�1
| Yi − 􏽢Yi | , (16)

RMSE �

�������������

1
n

􏽘

n

i�1
Yi − 􏽢Yi􏼐 􏼑

2
,

􏽶
􏽴

(17)

MAPE � 􏽘

n

i�1
|
Yi − 􏽢Yi

􏽢Yi

| ×
100%

n
, (18)

where n is the number of testing samples and Yi and 􏽢Yi

denote the predicted value and the ground truth of air trafc
fow, respectively.

5.1.3. Hyperparameters. In our model, historical time step P

is set to 18, which represents 3 hours, and future time step Q

is 6 for one hour. We use Adam (Adaptive Moment Esti-
mation) optimization algorithm, the initial learning rate is
0.001, and the batch size is 64. In spatiotemporal graph
convolution, the kernel size of spatial convolution Ks is set to
3, the temporal convolution kernel Kt is 3, and δ2 and ε are
assigned to 10 and 0.5. In the weather feature extraction
module, Lw is set to 200.

5.2.Baselines. We compare our model with the following six
baselines:

(i) SVR [32]: support vector regression is a machine
learning model that does not consider spatial
correlation.

(ii) ASTGCN [11]: it is an attention-based spatial-
temporal graph convolutional network model to
predict trafc fow.

(iii) AGCRN [12]: it is a trafc fow prediction method
based on the adaptive adjacency matrix graph
convolution.

(iv) GMAN [40]: it is a graphmultiattention network for
trafc prediction.

(v) STSSL [14]: it is a spatiotemporal self-supervised
trafc prediction network that considers both
spatial and temporal heterogeneities, in which the

adaptive heterogeneity-aware data augmentation
method is devised on spatiotemporal graphs to
mitigate noise disturbances.

(vi) TESTAM [21]: it is a time-enhanced spatiotemporal
attention network, primarily integrating temporal
characteristics of trafc networks for trafc
prediction.

5.3. Experimental Results. To thoroughly ascertain the ad-
vantages of the proposed ST-KDN method, this section
provides a detailed analysis of the quantitative error results,
objectively measuring model performance through specifc
evaluation metrics. Our study comprises two distinct parts.
Firstly, to validate the superiority of the proposed method
over other representative methods, we compare the pro-
posed method with other benchmark methods in terms of
prediction errors across diferent time intervals and time
cost. Secondly, we conduct variant comparisons of the
proposed ST-KDN method to validate the efectiveness of
the ST-KDN’s key modules. Tese two types of comparison
experiments comprehensively validate the efectiveness of
the proposed ST-KDN method from both the overall su-
periority of the model and the efectiveness of the modules
within the proposed model.

5.3.1. Model Comparisons. Tis section entails comparisons
of prediction errors and time cost. Initially, we present
comparisons of prediction errors across diferent time in-
tervals between the proposed method and other benchmark
methods to demonstrate its capability in predicting air trafc
fow. Subsequently, we compare the time complexity and
actual inference time of diferent models to show the op-
erational efciency of diferent methods.

Table 1 shows prediction performance of seven dif-
ferent methods on the real dataset in the next 10minutes
(Q= 1), 20minutes (Q= 2), 30minutes (Q= 3), 40minutes
(Q= 4), 50minutes (Q= 5), and 60minutes (Q= 6).
Overall, as the prediction interval increases, the corre-
sponding prediction difculty becomes greater, and hence
the prediction error is also increasing. As shown in Table 1,
we can observe the following results. (1) Deep learning
methods are superior to traditional machine learning
methods, such as SVR, which proves the powerful ability of
neural networks in modeling nonlinear and complex air
trafc data. (2) Our model achieves the state-of-the-art
prediction performance in most time intervals. Tis may be
because our model integrates prior knowledge of future
fow evolution pattern in fight plan and considers weather
impact, revealing the efectiveness of modeling weather
feature and regular prior knowledge. Te proposed
“Teacher-Student” framework aids us in obtaining richer
priors of future air trafc fow and capturing the non-
recurrent dynamics conditions. (3) Te proposed method
demonstrates particularly pronounced advantages within
the long-term prediction horizon (e.g., 40min, 50min, and
60min), aiding in mitigating the error propagation issue
across prediction time steps. Long-term trafc prediction
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presents signifcant challenges due to the complexity of the
transportation system and the myriad infuencing factors
stemming from the continually changing natural envi-
ronment. Compared to other methods that primarily focus
on spatiotemporal modeling, our method benefts from
guidance provided by prior knowledge from fight plans,
enabling the capture of valuable priors in challenging long-
term predictions. Consequently, our method exhibits more
satisfactory performance in the long-term horizon. We
argue that the long-term trafc prediction is more bene-
fcial to practical applications, e.g., it allows air trafc
controller to have more time to take actions to optimize the
air trafc fow according to the prediction.

Furthermore, it is observed that on certain metrics, such
as the 10-minute MAE, STSSL achieves lower prediction
errors. However, as the prediction horizon extends, the error
of the STSSL method gradually increases, whereas the pro-
posed method maintains lower errors in long-term pre-
diction. Tis is attributed to our model employing
synchronous multistep prediction, where the optimization
process considers results across multiple time steps. Tis
allows our method to focus more on the overall prediction
performance across all time steps, rather than being limited to
individual prediction steps. In contrast, the STSSL method
focuses on individual short-term predictions, i.e., single-step
prediction, followed by iteratively using predicted values as
known values to achieve multistep prediction.Tis procedure
introduces error propagation, leading to accumulated errors
in multistep prediction. For the 20-minute RMSE metric, the
proposedmethod achieves the second-lowest with a slight gap
compared to GMAN, which could be attributed to the higher
sensitivity of RMSE to outliers. During the 20-minute

prediction, the occurrence of an outlier in the prediction error
of the proposed method results in a slightly inferior per-
formance compared to GMAN when computing the RMSE
metric. However, our proposed method outperforms GMAN
in all other metrics at all other time intervals. Tis suggests
that the proposed knowledge distillation framework is still
more advantageous for multistep prediction of air trafc fow
than GMAN. We contend that long-term prediction holds
greater practical signifcance as it provides valuable insights
for decision-making processes such as air trafc management
and resource allocation. Tus, the advantage of our approach
in long-term prediction underscores its heightened practical
utility.

In addition, we compare the time complexity and actual
running time of diferent models in terms of foating-point
operations (FLOPS) and inference time. Typically, FLOPS is
a factor employed by many researchers to quantify the time
complexity of deep learning algorithms. Smaller FLOPS
value indicates lower computational complexity required.
However, FLOPS may not refect the “actual” execution
speed of methods as they do not account for algorithm
parallelism. As another evaluationmetric, inference time can
validate the execution speed of model. Here, we record the
inference time for each batch of the test set (batch size is 64).
All experiments are run on an Intel(R) Xeon(R) Gold 5218
CPU computer with a frequency of 2.30GHz, using the
NVIDIA GeForce RTX 3090 GPU. Te programming lan-
guage used is Python 3.8 and the deep learning framework
utilized is PyTorch 1.11.0. Table 2 illustrates the FLOPS and
inference time of the proposed ST-KDN and six other
comparison methods. It is evident that the proposed
ST-KDN achieves the minimum FLOPS compared to other

Table 1: Te experimental results of the proposed ST-KDN and other six comparison methods in the next 10minutes, 20minutes,
30minutes, 40minutes, 50minutes, and 60minutes.

Metric Method 10min 20min 30min 40min 50min 60min

MAE

SVR 1.898696 2.244607 2.484253 2.767143 3.052133 3.309817
AGCRN 1.794790 1.869949 1.940945 2.007488 2.073016 2.138081
ASTGCN 1.795160 1.890413 1.962362 2.056936 2.060439 2.158814
GMAN 1.805774 1.798546 1.801262 1.819169 1.848141 1.886582
STSSL 1. 38903 1.804966 1.980573 2.128636 2.288099 2.457236

TESTAM 1.841422 1.857893 1.883490 1.924575 1.977991 1.989194
ST-KDN 1.763453 1.770182 1.7717 7 1.778287 1.779059 1.781851

RMSE

SVR 2.565081 2.983550 3.265532 3.604007 3.952299 4.265697
AGCRN 2.519696 2.634144 2.735415 2.832605 2.927571 3.023671
ASTGCN 2.495914 2.630218 2.737751 2.866813 2.889380 3.003969
GMAN 2.518119 2.509231 2.513937 2.539927 2.584160 2.645740
STSSL 2.375745 2.645554 2.916242 3.149616 3.423993 3.716680

TESTAM 2.563212 2.595453 2.638512 2.712400 2.807796 2.912532
ST-KDN 2.500712 2.509924 2.50 504 2.512559 2.511 32 2.514018

MAPE

SVR 0.387429 0.459490 0.513001 0.576568 0.640230 0.697416
AGCRN 0.368877 0.385325 0.404844 0.423151 0.441527 0.460654
ASTGCN 0.370427 0.385325 0.404844 0.423151 0.441527 0.460654
GMAN 0.384672 0.379004 0.376588 0.377863 0.382285 0.389442
STSSL 0.3181  0.333431 0.377861 0.381922 0.399758 0.408216

TESTAM 0.379114 0.380991 0.388400 0.391331 0.397276 0.401991
ST-KDN 0.372582 0.373806 0.37432 0.37 572 0.375481 0.37 291

Teoptimal results for each index within each prediction interval are indicated by bold values. Table shows prediction performance of seven diferent methods
on the real data set in the next 10 minutes (Q� 1), 20 minutes (Q� 2), 30 minutes (Q� 3), 40 minutes (Q� 4), 50 minutes (Q� 5), and 60 minutes (Q� 6).
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methods. About inference time, the lowest value is the
AGCRN method with 11.6408624, but our method achieves
the second-lowest inference time with a little gap. Tis
demonstrates the efectiveness of our approach in terms of
operational efciency. As a supplementary clarifcation, we
solely present the FLOPS values associated with diverse deep
learning methodologies. Tis choice is due to signifcant
computational strategy disparities between deep learning
approaches and SVR. While deep learning methods typically
involve substantial foating-point operations, SVR does not.
Consequently, comparing FLOPS between SVR and deep
learning methodologies could be misleading.

5.3.2. Variant Comparison. To verify the efectiveness of the
various components within the proposed ST-KDN frame-
work, we conduct ablation experiments on a real dataset.
Tese experiments aim to systematically evaluate the con-
tributions of individual components, namely, weather fea-
ture modeling and teacher network guidance, to the overall
performance of the model. For convenience, we call the
model that removes the teacher network guidance as ST-
KDN-NT and the model that removes the teacher network
guidance and weather feature extraction modules simulta-
neously as ST-KDN-NTW. By comparing the results of the
ablation experiments, the efectiveness of weather feature
modeling and teacher network guidance has been proved.

(1) Efect of Weather Feature Modeling. Figure 3(a) shows the
comparative experimental results of ST-KDN-NT and ST-
KDN-NTW. It can be seen from Figure 3(a) that the ST-
KDN-NT model can obtain a lower prediction error than
ST-KDN-NTW in all prediction intervals, which shows that
the weather extraction module helps to capture more
complex spatiotemporal dependencies.

(2) Efect of Teacher Network Guidance. To investigate the
efectiveness of the proposed ST-KDN, we compare the
prediction results of the proposed ST-KDN and the ST-
KDN-NT, as shown in Figure 3(b). We observe that the
proposed ST-KDN can achieve better prediction perfor-
mance.Tis may be because the regular fow transfer pattern
from the fight plan is learned, which can provide efective
prior knowledge in air trafc fow. Trough the guidance of
the teacher network and the extraction of meteorological
features, the student network can explicitly model the im-
pact of weather on air trafc.

5.4. Case Study. To provide visual and intuitive insights
about the efectiveness of the proposed method, as well as to
further validate its advantages in learning nonrecurrent air
trafc fow patterns infuenced by weather, we present
a series of visualization examples. Tese illustrations aid
readers in gaining a comprehensive understanding of our
research outcomes and provide them with intuitive visual
impressions. Figure 4 compares the prediction errors of two
regions where thunderstorms exist for 60 consecutive
minutes. Five air trafc prediction methods based on deep
learning, i.e., GMAN, ASTGCN, AGCRN, STSSL, and
TESTAM, and two variants, i.e., ST-KDN-NTand ST-KDN-
NTW, are used. In Figure 4, the frst row shows the me-
teorological radar echo maps for 60minutes with 20min
interval, where the darker yellow point represents the re-
gions with more severe thunderstorm. We select three
representative regions and frame them in red. For the red
box region, the prediction error of diferent methods with
a time interval of 20minutes is displayed in the second row
in Figure 4. From Figure 4, we can see the following. (1)
Compared to ST-KDN-NT and ST-KDN-NTW, the pro-
posed ST-KDN method achieves lower prediction errors,
indicating the signifcant role of “weather feature modeling”
and “teacher network guidance” in efectively modeling the
impact of weather on air trafc fow. (2) From Figures 4(a)
and 4(b), it is evident that the proposed ST-KDN out-
performs other trafc prediction methods during severe
thunderstorms, highlighting its signifcant advantage in
modeling nonrecurrent spatiotemporal dependencies.

5.5. Discussion. In this section, we discuss the limitations of
the proposed method by presenting failure visual examples,
as shown in Figure 5. It can be observed that within the
initial 20-minute prediction interval, the STSSL method
achieves the lowest prediction error, followed by the pro-
posed ST-KDN method. Tis can be attributed to our
model’s adoption of synchronous multistep prediction,
which simultaneously considers the prediction errors of
multiple consecutive time steps, whereas the STSSL method
focuses solely on single-step prediction performance.
However, despite this, within the 40-minute and 60-minute
prediction intervals, the proposed ST-KDN consistently
achieves the lowest prediction errors. In the future, we aim to
explore methodologies that efectively reconcile the pre-
diction efcacy between long-term and short-term
perspectives.

Table 2: Te FLOPS and inference time of the proposed ST-KDN and other six comparison methods.

FLOPS/GFLOPS Inference time/millisecond,
batch_size� 64

SVR — 17.8853225
AGCRN 3.15 11.6408624
ASTGCN 2.68 12.6530639
GMAN 25.67 16.5718712
STSSL 3.26 14.6473204
TESTAM 4.67 15.9177380
ST-KDN 2.22 12.4769866
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Figure 3: (a) Te comparative experimental results of ST-KDN-NT and ST-KDN-NTW to investigate efect of weather feature modeling.
(b) Te comparative experimental results of ST-KDN-NT and the proposed ST-KDN to investigate efect of teacher network guidance.

50
40
30
20
10

0 30 60
Time (min)

3

2

1

0

M
A

E

ST-KDN
ST-KDN-NT
ST-KDN-NTW
GMAN

ASTGCN
AGCRN
STSSL
TESTSM

(a)

50

40

30

20

10

0 30 60
Time (min)

3

2

1

0

M
A

E

ST-KDN
ST-KDN-NT
ST-KDN-NTW
GMAN

ASTGCN
AGCRN
STSSL
TESTSM

(b)

Figure 4: Te comparison of prediction errors of diferent methods for 60 consecutive minutes in two thunderstorm regions. (a) Region
I. (b) Region II.
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6. Conclusion

In this paper, we propose a spatiotemporal knowledge
distillation network for air trafc fow prediction. A
“teacher-student” distillation model considering fight plan
prior is designed to integrate prior knowledge of regular fow
evolution pattern into learning network. Te teacher net-
work is used to learn regular air trafc pattern from fight
plans as a priori. Based on this, a student network based on
a “parallel-fusion” structure is proposed, and the student
network consists of a regular pattern learning module,
a weather feature extraction module, and a feature fusion
module. Te regular pattern learning module learns the
knowledge from teacher network, the weather feature ex-
traction module mines meteorological features that have an
impact on the air trafc fow, and the nonrecurrent air fow
evolution pattern is modeled by feature fusion module. By
knowledge distillation and meteorological feature extrac-
tion, our method explicitly models nonrecurrent spatio-
temporal dependencies. Te experimental results on real-
world fight data demonstrate that the proposed method
could efectively capture rules of airspace fow variation and
achieve a better prediction performance, especially in pre-
dicting air trafc fow afected by thunderstorms.
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