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Te burgeoning dockless bike-sharing system presents a promising solution to the frst- and last-mile transportation challenge by
connecting trip origins/destinations to metro stations. However, the diferentiation between metro passengers and DBS riders, as
they belong to distinct systems, hinders the precise identifcation of DBS-metro transfers. Tis study introduces an innovative
method employing mobility chains to establish spatiotemporal relationships, including spatiotemporal conficts and similarities,
among potential users from both systems. Tis signifcantly enhances the precision of user matching. An empirical study in
Chengdu validates the method’s increased accuracy and examines travel patterns, yielding the following insights: (1) Introduction
of themobility chain reduces averagematched pairs by 28.27% and improves accuracy by 18.36%.Te addition of spatial-temporal
similarity further boosts accuracy by 19.32%. (2) Median distances for DBS-metro access and egress transfers are approximately
950meters. Short trips of 650–750meters are prevalent, while trips exceeding 1.5 kilometers lead passengers to opt for alternative
modes. (3) Temporal patterns reveal weekday peaks at 8:00, 9:00, and 17:00. On weekends, transfers are uniformly distributed,
mainly within urban areas. Suburban stations exhibit reduced weekend activity. Tese fndings can provide valuable insights for
enhancing DBS bicycle redistribution, promoting transportation mode integration, and fostering urban transportation’s sus-
tainable development.

1. Introduction

Dockless bike-sharing (DBS) is a promising solution for
improving frst-mile and last-mile connectivity to public
transportation (PT). By eliminating the need for docking
bays, DBS allows bicycles to be parked more conveniently
near transit hubs and endpoints, giving users more fexibility
and making it easier to integrate with public transit [1, 2].
Consequently, DBS has achieved worldwide prominence
owing to its inherent conveniences, typifed by notable
implementations like Mobike and Halo in China, lime in the
USA, Moov in Singapore, and Eazymov in Europe.

However, prevailing studies on integrated DBS and
metro utilization typically employ comparable methodolo-
gies, whereby rigid geographical boundaries centered on
metro stations delineate integrated trips. Expressly, this
approach assumes bike-sharing journeys initiating or

terminating within the predefned metro area bufer exhibit
bike-metro integration, irrespective of actual intermodal
transfer [1, 3, 4]. Nevertheless, this imprecise identifcation
approach may misclassify some bike-sharing trips unrelated
to metro usage. For example, when metro stations are sit-
uated in densely populated residential areas, or adjacent to
high DBS using regions like university campuses, relying
solely on a fxed geographical bufer cannot efectively
distinguish integrated DBS-metro usage from general DBS
cycling behavior.

In addition, given that the DBS system and public
transportation are operated by distinct entities, they rep-
resent typical heterogeneous systems, underscoring the
complexity of transfer identifcation between the two modes.
Tis inherent heterogeneity distinguishes the DBS scenario
from the relatively straightforward transfer between buses
and metro systems within an urban PT framework. While
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some studies have investigated shared bicycle-to-metro
transfers using docked bike-sharing systems and a unifed
smart card system shared with public transportation
[5, 6], these primarily focus on docked platforms, over-
looking the dynamic nature of dockless bike-sharing
systems. Hence, the immediate challenge is to ascertain
how to employ data from the PT system and DBS to
accurately identify DBS-metro transfer travelers with
a refned spatial-temporal granularity.

Tis study establishes an innovative data identifcation
technique that accurately identifes real metro-DBS transfer
fows between heterogeneous systems of metro and DBS by
constructing distinct mobility chains for public trans-
portation and DBS through multi-source data. Te method
involves extracting DBS trips associated with metro transfers
using bufer zones around metro station entry and exit
points. Comprehensive mobility chains for DBS and public
transportation are built by integrating bus trip data from
a unifed smart card system with Trafc Analysis Zones
(TAZ) information. By analyzing the spatiotemporal dy-
namics between these chains, including conficts and sim-
ilarities, precise correspondences are established, as
exemplifed in the context of Chengdu. Tis research pro-
vides essential insights for developing eco-friendly trans-
portation planning and strategic initiatives.

Te remainder of this paper is structured as follows:
Section 2 reviews relevant literature; Section 3 describes the
study areas and data sources; Section 4 details the meth-
odology; Section 5 presents and discusses the results; and
Section 6 concludes the study, along with the limitations of
the current research and prospects for future investigations.

2. Literature Review

A substantial body of literature examines the integration of
DBS and metro transit, spanning diverse topics that include
travel behavior of multimodal DBS-metro trips [7], acces-
sibility analyses between DBS and metro networks [8], bike
parking capacity surrounding metro stations [9], and
forecasting methodologies for DBS-metro transfer demand
[10]. Tis literature review concentrates on integrating DBS
with metro transit systems. Specifcally, it examines three
key areas: (1) identifcation of potential DBS-metro transfer
trips, (2) usage patterns of potential DBS-metro transfer
trips, and (3) DBS Mobility Chain and PT Mobility Chain.

2.1. Identifcation of Potential DBS-Metro Transfer Trips.
Previous investigations have employed diverse methodol-
ogies to comprehend the interplay between DBS services and
transit systems. Several surveys have concentrated on the
integration of DBS with the metro network, aiming to
discern travelers’ preferences in selecting their trans-
portation mode [11, 12]. However, the utilization of survey
data is limited by its constrained sample size and restricted
spatial coverage, preventing a comprehensive and precise
analysis of the geospatial aspects of integrated usage [13].
Another approach to identifying multimodal trips involves
matching bike sharing and metro farecard data [14].

However, this methodology only applies to docked systems
since DBS does not utilize smartcards.

Fortunately, the Global Positioning System capabilities
of DBS allow operators to locate and track bicycles in real
time, generating substantial geospatial data. Researchers can
leverage these granular location records to pinpoint DBS-
metro transfers through spatial analyses of the relative
positioning between DBS and metro stations [15]. Several
investigations have harnessed historical data from DBS
systems, alongside the spatial allocation of dockless shared
bikes proximate to metro stations, as a method for identi-
fying DBS-metro transfer journeys. Guo et al. delved into the
temporal and spatial utilization tendencies of DBS services
in proximity to metro stations by analyzing DBS trip records
in conjunction with metro station data. Te criterion they
employed was the inclusion of the origin or destination
location of a dockless shared bike within a bufer zone of
150meters encompassing each metro station. In such in-
stances, the anticipation is that a transfer trip between DBS
and the metro has transpired [15]. Lin et al. examined the
service areas of dockless bikes linking to metro stations
utilizing dockless trip data. Tey identifed DBS-metro
transfers by tracing dockless journeys originating or ter-
minating within 50meters of a metro entrance [16]. Liu et al.
conducted a spatiotemporal analysis contrasting DBS and
ridesharing as frst-mile/last-mile links to metro systems.
Teir fndings revealed that sociodemographic and built
environment variables infuenced usage patterns between
the two connector modes. Moreover, distinct threshold
values were established to delineate transfer journeys for
interconnecting metro networks, with a threshold of
50meters for DBS and 100meters for ride-sharing, re-
spectively [17]. Yu et al. analyzed DBS accessibility from
metro stations by extracting trips originating within
100meters of any metro entrance. Tey then assessed the
reachability of cycling destinations surrounding metro
station areas based on this trip data [18]. Liu et al. de-
termined that a transfer span of 150meters represents an
acceptable threshold between DBS and metro connectivity.
Furthermore, their study delved into the spatiotemporal
attributes underlying DBS’s role as a feeder mode to the
metro network [15]. Zhou et al. established a transfer
threshold of 300meters as a viable criterion for achieving
efective connectivity between dockless DBS and metro
systems. Furthermore, their study encompassed an analysis
of the interrelation between the transit system and DBS
connectivity [19].

2.2. Usage Patterns of Potential DBS-Metro Transfer Trips.
A multitude of studies have been undertaken to probe the
analysis of integration behavior between metro systems and
DBS services. Employing a nested logit model, Ji et al.
ascertained that female travelers, elderly individuals, and
low-income commuters exhibited a diminished propensity
to embrace bike-sharing as a mode integrated with the metro
network. Furthermore, their investigation unveiled that
commuters who had experienced bike theft weremore prone
to embrace bikeshare options integrated within the metro

2 Journal of Advanced Transportation



network [20]. Various individual-level attributes, including
socioeconomic factors (such as age, gender, income, and
residential location), personal attitude factors (including
environmental awareness), and perceptual factors (such as
perceived comfort and trafc safety), have been linked to the
utilization frequency of DBS services [21]. Kim et al. ana-
lyzed metro-bikeshare usage patterns across four di-
mensions: transfer time, date, location, and access/egress
modes. Teir fndings revealed variations in metro-
bikeshare travel behaviors between distinct user groups [22].

2.3. DBS Mobility Chain and Public Transportation Mobility
Chain. It is essential to emphasize that the establishment of
a Dockless Bike-Sharing Mobility Chain (DBSMC), which
links a user’s consecutive biking trips in chronological order,
represents a valuable method for uncovering additional
insights into user activities when analyzing DBS data [23].
Built upon the foundation of the DBSMC, a comprehensive
array of analyses can be undertaken encompassing usage,
user dynamics, and integrated evaluations. For example,
with a focus on usage patterns, Bordagaray et al. formulated
the DBSMC framework to probe bike-sharing system uti-
lization and unveil the actual demand for bike-sharing
services. Tis approach ofers substantial utility to policy-
makers and system operators in tasks spanning demand
analysis, service evolution, and optimization strategies [24].
Transitioning to integrated analysis, certain inquiries con-
centrate on methodological fusion. For instance, Builes-
Jaramillo et al. synthesized methods pertinent to the
DBSMC with spatiotemporal network analysis, thereby
unearthing specifc usage trends, such as the reduced pro-
pensity of women to engage with the DBS system. Con-
currently, alternative studies have focused on harmonizing
data within the context of DBSMC.Tis involves the linkage
of transfer trip chains belonging to individual travelers,
achieved by correlating transit card data with bike-sharing
card data.Tis integrative approach facilitates the analysis of
metro-bike interchange journeys [5, 25]. Regarding urban
multimodal travelers, previous research has utilized Public
Transportation Mobility Chains (PTMC) to analyze their
perception of transfers and intentions related to multimodal
trip chains. Tis includes their considerations regarding
transfer frequency, waiting duration, and walking distances
[26, 27].

2.4. Research Gap. Most of the mentioned studies charac-
terize the relationship between metro passenger fow and
DBS ridership either by analyzing survey data or by eval-
uating the spatial correlation between DBS O/D points and
metro stations. Studies utilizing survey data fail to accurately
capture the large-scale metro-DBS transfer passenger fow
and are unable to analyze the spatial-temporal relationship
between metro and DBS transfers. Similarly, when evalu-
ating the spatial correlation between DBS bike O/D points
and metro stations, due to the heterogeneity of the DBS and
metro systems, setting any transfer distance threshold be-
tween DBS O/D points and metro stations is insufcient to
directly substantiate the existence of transfer passenger fow

between the metro and DBS systems. Consequently, both
approaches may lack robust evidence for accurately iden-
tifying metro-DBS transfers. Furthermore, the credibility of
the travel patterns of transfer passenger fows between DBS
and the metro, as determined by these methods, is also
questionable.

3. Study Area and Data Resources

3.1. Study Area. Te city of Chengdu, located in China’s
Sichuan province, constitutes a vital economic center in the
Southwest region, encompassing a total area of 14,335
square kilometers, with 949.6 square kilometers comprising
developed urban terrain. As of December 2020, ofcial re-
cords enumerated Chengdu’s population as 20,937,700
residents. Chengdu possesses a comprehensive metro system
constituted by 7 numbered lines (1, 2, 3, 4, 5, 7, and 10),
possessing a total track length of 518 km and serving 193
stations. In Chengdu, the metro signifes a prevalently
utilized transportation mode, with the metro network ac-
commodating an average ridership of 3.75 million daily
passengers, highlighting the metro’s integral status within
the city’s transportation infrastructure [28]. With Chengdu’s
rapid metro expansion, a burgeoning DBS industry mate-
rialized and swiftly progressed. In September 2016, Chengdu
pioneered its frst DBS program,Mobike. By the end of 2020,
approximately 985,000 DBS bicycles were in operation with
a registered membership of 8.35 million users.

3.2. Data Resources. Te data used in this study are as
follows:

(1) DBS trip data. Te study sourced a dataset com-
prising 39.84 million DBS trip records from the
Chengdu Transportation Operations Coordination
Center. Tese records, spanning from December 1 to
December 16, 2020, are comprehensively detailed
Table 1. Data outside the study area was excluded,
and incomplete or irregular records were cleansed.
Coordinates were standardized, and trips fltered
based on a 1 to 60-minute duration criterion.

(2) Smart card data. Te study analyzes smart card data
from December 1 to December 16, 2020, covering
both metro and bus passengers. While metro data
provides details on boarding and alighting stations
and times, initial bus data only included boarding
specifcs. Integrating alighting information from bus
vehicle trajectory data, as outlined in prior research
[28], the consolidated dataset encompasses 58.68
million records, as detailed in Table 2.

(3) Public transportation station data. Te PT stations
considered in this study consist of metro stations and
bus stops. Te metro station data was obtained from
the Chengdu Rail Transit Group, comprising station
coordinates, operating schedules, and entry/exit
coordinates.Te bus stop data was acquired from the
Chengdu Public Transport Group, including bus
stop coordinates.
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(4) GIS layers. GIS layers were provided by the Chengdu
Municipal Bureau of Planning and Natural Re-
sources, including administrative boundaries, road
networks, and TAZ data.

4. Methodology

4.1. Methodology Framework. Te study introduces
a method for precise identifcation of DBS-metro transfer
travelers through mobility chain analysis and spatial-
temporal similarity metrics, also examining their travel
patterns. Te process begins with screening DBS trips linked
to metro transfers via a bufer around metro station entry/
exit points. Using TAZ data, the DBSMC and PTMC are
constructed. Initial matched pairs are determined by
identifying potential access and egress transfer trips with
varying thresholds. Spatial-temporal confict fltering and
similarity metrics are then applied to refne these pairs,
addressing challenges like many-to-one matches. Te
methodology and validation of identifcation results, along
with the analysis of DBS-Metro transfer travelers’ travel
patterns, are illustrated in Figure 1.

4.2. Obtaining the Initial Matched Pairs

4.2.1. Extracting DBS-Metro Transfer-Related Trips.
Previous research has typically used fxed radial bufers of
100–300meters around metro stations to identify DBS-
metro transfers, but this method struggles with stations of
diverse sizes [3, 9, 15, 17]. As depicted in Figure 2(a),
complex stations served by multiple lines cannot be accu-
rately represented by a single coordinate, and some entry/
exit points may lie beyond 400meters from the main co-
ordinates. Te application of a fxed radial distance centered
on a metro station to encompass all station entrances and
exits within the bufer would lead to the misclassifcation of
numerous DBS trip data that do not involve DBS-metro
transfers. As illustrated in Figure 2(b), this study proposes
establishing bufers based on the actual entry/exit co-
ordinates of each station, rather than using a generic bufer
for metro stations. Tis approach ensures accurate extrac-
tion of DBS-metro transfer trips tailored to each station’s
unique layout.

For a DBS trip to qualify as a DBS-metro transfer, its
origin or destination must be proximate to a metro station
location. By evaluating DBS trip start or end positions
relative to metro station coordinates, two transfer types can
be delineated: access transfer (arriving at metro stations) and
egress transfer (departing metro stations). Tese are

identifed based on whether the trip start or end point falls
within the entry/exit bufer zone of a given metro station,
determined as shown in equations (1) and (2):

Ci M
k
n  �

Access, l
e
i ∈ buffer150 M

k
n ,

Egress, l
s
i ∈ buffer150 M

k
n ,

No, else,

⎧⎪⎪⎪⎨
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(1)

where Ci(Mk
n) represents the type of transfer for the DBS

trip i at the k entry/exit points of the metro station n. lei
represents the end location of DBS trip i. lsi represents the
start location of DBS trip i. buffer150(Mk

n) represents the
150-meter bufer zone at the k entry/exit point of metro
station n.

ΩAccess1 Mn(  � i | i ∈ ΩDBS, Ci M
k
n  � Access ,

ΩEgress1 Mn(  � i | i ∈ ΩDBS, Ci M
k
n  � Egress ,

⎧⎪⎨

⎪⎩
(2)

where ΩDBS represents the set of all DBS trips. ΩAccess1 (Mn)

represents the set of DBS trip endpoints at the entry/exit of
metro station n. ΩEgress1 (Mn) represents the set of DBS trip
start points at the entry/exit of metro station n.

Given the proximity of metro station entrances and exits,
their respective bufer zones can overlap, resulting in a trip
being associated with multiple metro entry/exit points.
However, it is important to clarify that, within the context of
ΩAccess1 (Mn) and ΩEgress1 (Mn), which are associated with
distinct metro stations, a trip is registered only once at
a specifc metro station and does not have any bearing on the
subsequent processes.

Due to the fxed daily operating schedule of each metro
station, and the variance in operational times among sta-
tions, the initiation or conclusion time of the DBS trip needs
to align with the operational timeframe of the transferring
metro station. Te categorization of this situation can be
determined based on the type of DBS trip transfer, as
follows:

A
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(3)

where ts
i and te

i represent the start and end times of DBS trip
i, while Ts

n and Te
n signify the commencement and con-

clusion of the operational time of metro station n,
respectively.

Utilizing equations (1)–(3), this study identifes DBS
trips related to access and egress transfers at metro station n,
as detailed in the following equation:

Table 2: Example of records for smart card trip data.

Smart card trip ID Smart card ID Start station/stop Start time End station/stop End time Mode
01004∗∗∗∗∗0682147 61001∗∗∗∗∗1340 31602 2020/12/1 07:38:25 30152 2020/12/1 07:51:12 Bus
00002∗∗∗∗∗6067883 50305∗∗∗∗∗3201 1132 2020/12/1 19:45:33 1149 2020/12/1 20:23:22 Metro
00006∗∗∗∗∗6068291 61000∗∗∗∗∗9700 1158 2020/12/1 13:11:37 1199 2020/12/1 13:34:11 Metro
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where ΩAccess2 (Mn) and ΩEgress2 (Mn) represent the sets of
DBS trips in the vicinity of metro station n pertaining to
access (egress) transfers, respectively. ΩAll2 represents the set
of DBS trips associated with DBS-metro transfers.

4.2.2. Construct DBS and PT Mobility Chain for Potential
DBS-Metro Transfer Travelers. Mobility chains contain
multiple subtrips and can refect the hidden detailed travel
information [29]. Meanwhile, mobility chains also furnish

detailed temporal and spatial data, facilitating more precise
analyses [23]. Tus, adopting a user-centric approach to
construct mobility chains enriches spatial-temporal data for
various users, thus enhancing user identifcation accuracy in
both PT and DBS systems. Te DBSMC is constructed using
OD data from DBS trips, while the PTMC is developed from
passenger IDs in the PTsystem’s smart card data. Notably, due
to the absence of drop-of stop data for bus trips within the PT
system, it was imperative to integrate bus vehicle trajectory data
to compensate for this defciency, a procedure that has been
previously accomplished in prior work by the authors [28].

Initially, DBS riders with trips associated with DBS-
metro transfers are identifed, and their complete set of
DBS trips is extracted in chronological order. Te compliant
DBS rider pi is represented with all DBS trips as Ωpi

DBS. For

DBS trip Data

Pre-processing

Extracting DBS-metro 
related transfer trips

Extracting public transportation
trips for metro passengers

TAZ Data

Construct
DBS mobility Chain

Identifcation possible
access transfer

Spatial confict Temporal confict SpatioTemporal Similarity

Step 3: Filtering invalid matched pairsIdentifed matched pairs

Initial matched pairs Step 2:Establish Initial matched pairs

Identifcation possible
egress transfer

Construct 
PT mobility Chain

Step 1:Construct
DBS mobility Chain and

PT mobility Chain 

Smart Card Data

Metro AFC Data Bus AFC Data

Figure 1: Frameworks to identify DBS-metro transfer travelers.
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metro passengers, all metro trips are compiled chronolog-
ically, supplemented by corresponding bus trips within the
PT system, denoted for metro passenger pj as Ωpj

PT. For
a more detailed description, refer to the following equation:

Ψpi
� p

x1
i , p

x2
i , · · · , p

x|X|

i , i ∈ ΩAll2 , x ∈ X⊆Ωpi

DBS,

Ψpj
� p

y1
j , p

y2
j , · · · , p

y|Y|

j , j ∈ Ωmetro, y ∈ Y⊆Ωpj

PT,

⎧⎪⎨

⎪⎩
(5)

where pi represents a DBS rider involved in the DBS-metro
transfer trips denoted. Te sequence Ψpi

comprises all DBS
trips made by the rider pi, arranged chronologically. Te
total count of DBS trips in the sequence Ψpi

is designated as
|X|. Likewise, pj identifes a metro passenger. Sequence Ψpj

encompasses all PT trips taken by metro passenger pj, sorted
in chronological order. Te total count of PT trips in the
sequence Ψpj

is represented as |Y|.
To facilitate the analysis, PT and DBS trip start/end

locations were mapped to TAZ using ArcGIS. Tis mapping

involved intersecting metro stations and bus stops, and DBS
trip OD points, with TAZ boundaries, assigning each lo-
cation a zone number based on spatial position. Tis in-
tegration allowed examining relationships between PT and
DBS trips via their shared TAZ. It also improved accuracy in
matching trips to passengers across modes. Linking loca-
tions to TAZ enabled subsequent analyses of spatial patterns
and DBS-metro transfers in travelers’ mobility.

Subsequently, the DBSMC and PTMC were derived
from the respective DBS and PT trip sequences. Equation (6)
defnes the mobility chain of a PT passenger, encompassing
the initial or fnal location at a metro station or bus stop, the
corresponding time, and the associated TAZ. Similarly,
equation (7) characterizes a DBS rider’s mobility chain,
incorporating start and end coordinates, timing, and TAZ
information.
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passing all metro passenger pj PT trips. Ts
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ChainDBSPi
� t

s
p

x1
i

, l
s
p

x1
i

, z
s
p

x1
i

 , t
e
p

x1
i

, l
e
p

x1
i

, z
e
p

x1
i

  , · · · , t
s

p
x|X|

i

, l
s

p
x|X|

i

, z
s

p
x|X|

i

 , t
e

p
x|X|

i

, l
e

p
x|X|

i

, z
e

p
x|X|

i

   , (7)

(a)

Metro Station Bufer
Trip Origin in Bufer
Trip Destination in Bufer

(b)

Figure 2: Method of extracting DBS-metro transfer-related trips. (a) Metro station with distant entrances and exits. (b) Extracting metro-
DBS transfer-related trips.
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where ChainDBSPi
represents the mobility chain encompassing

all DBS trips taken by the DBS rider pi. ts

p
x|X|
i

and te

p
x|X|
i

represent the respective start and end times of the X-th DBS
trip x|X| taken by pi. ls

p
x|X|

i

and le
p

x|X|

i

represent the coordinates
at the start and end points of the X-th DBS trip x|X| by pi.
zs

p
x|X|
i

and ze

p
x|X|
i

represent the TAZ numbers associated with

the start and end locations of the X-th DBS trip x|X| taken
by pi.

4.2.3. Identifcation of Potential Access and Egress Transfers.
After identifying the DBS-metro transfer-related trips within
the entry/exit bufer zone of the metro stations and estab-
lishing the DBSMC and PTMC, it is necessary to determine
whether DBS rider pi and metro passenger pj are indeed
transferring.

First and foremost, in the pursuit of identifying DBS-
metro transfers, a foundational concept known as matched
pair 〈pi, pj〉 is introduced. Tis concept delineates the
plausible connections between users of two distinct modes of
transportation: metro passengers and DBS riders.

Considering the variation in timing between access transfers
arriving at the metro station and egress transfers departing
from it [7, 30], specifc transfer time thresholds for these two
distinct scenarios were established, as illustrated in Figure 3.

For access transfer, when the trip of the DBS rider pi is
within the set of access transfer-related trips Ωpi,Access

2 (Mn)

at metro station n, all the metro passengers whose metro trip
start time satisfes the access time threshold σ1 are recorded
to form a matched pair. Afterwards, the number of access
transfer identifcations for each matched pair at metro
station n, formed by a DBS rider pi with diferent metro
passengers, is computed as outlined in the following
equation:

pi, pj 
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s

p
Y1
j

− t
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,

0, else,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where 〈pi, pj〉
Access
(Mn)

represents the count of times that
matched pair 〈pi, pj〉 has been matched for access transfers
at station n. X1 represents the complete set of access
transfer-related trips for DBS rider pi at station n. Y1
represents the complete set of trips for metro passenger pj at
metro station n. σ1 represents the access time threshold, set
to 900 seconds [14, 31].

For egress transfer, when the trip of the DBS rider pi is
within the set of egress transfer-related tripsΩpi,Egress

2 (Mn) at

metro station n, all the metro passengers whose metro trip
end time satisfes the egress time threshold σ2 are recorded to
form a matched pair. Afterwards, the number of egress
transfer identifcations for each matched pair at metro
station n, formed by a DBS rider pi with diferent metro
passengers, is computed as outlined in the following
equation:
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0, else,
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(9)

where 〈pi, pj〉
Egress
(Mn) represents the count of times that

matched pair 〈pi, pj〉 has been matched for egress transfers
at metro station n. X2 represents the complete set of egress
transfer-related trips for DBS rider pi at metro station n. Y2
represents the complete set of trips for metro passenger pj at
metro station n. σ2 represents the egress time threshold, set
to 600 seconds [14, 31].

Finally, the study calculate the number of access transfers
and egress transfers at all metro stations for matched pair
〈pi, pj〉, determining the total count of DBS-metro transfer
identifcations for DBS rider pi and metro passenger pj, as
shown in the following equation:

sum pi, pj  � 
N

pi, pj 
Access

Mn( )
+ pi, pj 

Egress
Mn( )

 . (10)

4.3. Filtering Invalid Matched Pairs. Te preceding two
sections have amassed a signifcant dataset comprising
matched pairs of DBS riders and metro passengers. How-
ever, it is important to acknowledge the occurrence of
“invalid matched pairs,” where a single DBS rider may be
linked to multiple metro passengers. Tese instances do not
accurately represent genuine transfer trips undertaken by
the same individual within both transportation systems.
Terefore, two distinct types of conficts are considered, and

(ts
pi,te

pi) (ts
pi,te

pi')

(Ts
pj,A,Te

pj,B)

ts
pi',B – Te

pj,B < σ2Ts
pj,A –te

pi,A < σ1

Egress transfer
Station BStation A

Access transfer

Figure 3: Illustration for identifying access transfer and egress
transfer.
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a calculation of spatial-temporal similarity within the
matched pairs is undertaken. Tis process aims to sift out
invalid matched pairs and enhance the precision of iden-
tifying authentic DBS-metro transfer travelers.

4.3.1. Temporal Confict. Te riding duration of a DBS rider
pi, defned as (ts

pi
, te

pi
), and the travel duration of a metro

passenger pj, defned as (Ts
pj

, Te
pj

), can be extracted from

ChainDBSPi
and ChainPTPj

. When there is an overlap between
(ts

pi
, te

pi
) and (Ts

pj
, Te

pj
), it is considered a temporal confict.

Te concept of temporal confict is shown as follows:
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0, else.
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⎪⎩
(11)

4.3.2. Spatial Confict. When pi and pj within a matched
pair 〈pi, pj〉 represent the same individual, their itineraries
across diferent transportation modes must be connectable.
Te matched pair can be deemed invalid if under free-fow
(Vfree) speed conditions there exist trips between trans-
portation modes that cannot be connected. Combined with
the urban transportation analysis report of the Gaodemap to
obtain the free fow speed Vfree of 41.5 km/h in
Chengdu [32].

As shown in Figure 4, there exist two matched pairs,
〈pi′ , pj〉 and 〈pi, pj〉, where pi′ frst trip involves an access
transfer with pj second trip, and pi frst trip involves an
egress transfer with pj second trip. For access transfers, the
speed between the endpoint of pj frst trip and the starting
point of pi′ frst trip should be less than Vfree.

Simultaneously, the speed between the endpoint of pj

second trip and the starting point of pi′ second trip should
also be less than Vfree. However, upon examining the
matched pair 〈pi′ , pj〉, it is evident that pj second trip
reaches its endpoint while the starting point of pi′ second
trip remains in the vicinity of pj second trip’s starting point,
and the speed between them exceeds Vfree, resulting in
a spatial confict. Consequently, the matched pair 〈pi′ , pj〉 is
deemed invalid. Likewise, for egress transfers, the speed
between the endpoint of pi frst trip and the starting point of
pj second trip should be less than Vfree. At the same time, the
speed between the endpoint of pi second trip and the starting
point of pj third trip should also be less than Vfree. Te
concept of spatial confict is shown as follows:

S conflict pi, pj  �

1, ∃T
s

p
YT
j

− t
e

p
Xt
i

≤ δ1,
geodesic l

e

p
YT−1
j

, l
s

p
Xt
i

 

time T
e

p
YT−1
j

, t
s

p
Xt
i

 

>Vfree or
geodesic l

e

p
YT
j

, l
s

p
Xt+1
i

 

time T
e

p
YT
j

, t
s

p
Xt+1
i

 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠>Vfree,

1, ∃ t
s

p
Xt
i

− T
e

p
YT
j

≤ δ2,
geodesic l

e

p
Xt−1
i

, l
s

p
YT
j

 

time t
e

p
Xt−1
i

, T
s

p
YT
j

 

>Vfree or
geodesic l

e

p
XT
i

, l
s

p
YT+1
j

 

time t
e

p
Xt
i

, T
s

p
YT+1
j

 

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠>Vfree,

0, else,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where Ts

p
YT
j

− te

p
Xt
i

≤ δ1 indicates when there is an access

transfer between trips Xt and YT. ts

p
Xt
i

− Te

p
YT
j

≤ δ2 indicates

when there is an egress transfer between tripsXt andYT.Te
function geodesic() indicates the distance between two
points, which can be obtained using the geodesic function in
Python’s geopy library [33].

4.3.3. Spatial-Temporal Similarity. Individuals exhibit sub-
stantial spatial-temporal consistency in travel dynamics and
preferences, irrespective of their chosen mode of trans-
portation. Tis consistency resembles patterns observed in

historical areas, temporal, routes, or ODs [34]. Conse-
quently, assessing the similarity of travel characteristics
between DBS riders and metro passengers across diverse
matched pairs can assist in identifying genuine matches.

To evaluate the spatial pattern similarity between a DBS
rider pi and a metro passenger pj in a matched pair 〈pi, pj〉,
this study defne a spatial similarity metric S Sim〈pi, pj〉 based
on textual similarity principles [35]. To calculate S Sim〈pi, pj〉,
visit frequency vectors are constructed for pi and pj at their
respective TAZs. Te TAZs co-visited by both are then itera-
tively traversed, calculating the cumulative cosine similarity at
each co-visited TAZ, as demonstrated in the following equation:
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where Zp represents the set of TAZ visited by either pi or pj,
represented as Zpi

or Zpj
, respectively. w

pi
q or w

pj

q denotes
the frequency aq of the q-th TAZ visited by pi or pj, where
aq ∈ Zpi

∩Zpj
. len(Zp) is the frequency of overall weighted

TAZ visits, indicated as len(Zpi
) or len(Zpj

), for either pi or
pj. As there must be an access transfer or egress transfer for
both pi and pj, the TAZs visited by both are not empty, i.e.,
S Sim〈pi, pj〉> 0. When Zpi

� Zpj
, S Sim〈pi, pj〉 � 1.

Temporal pattern similarity is pivotal in individual
mobility patterns. Te analysis of smart card and DBS trip
data reveals mobility patterns of matched DBS riders and
metro passengers across various time intervals. A normal-
ized weight assignment is utilized to create a time distri-
bution for each interval, where the weight indicates density.
Te temporal correlation depends on the similarity of these
distributions. Earth Mover’s Distance (EMD) [36] is
employed to measure the dissimilarity between temporal
patterns, capturing the minimal cost to transform one
distribution into another. Tis metric efectively addresses
transportation complexities by comparing entire distribu-
tions [37]. Tus, the study uses EMD to assess the temporal
similarity of matched pairs.

Te temporal similarity between DBS rider pi and metro
passenger pj in matched pair 〈pi, pj〉 at a specifc TAZ is
determined by overlapping patterns in their respective time
distributions, denoted as hpi
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represent the quantities of supply and

demand, respectively. Te Earth Mover’s Distance (EMD) is
defned as the minimum work needed to facilitate the
transportation of supply to meet the demand. To quantify
this similarity, a scoring function labelled as T Sim
〈Hpi

, Hpj
〉, as detailed in the following equation:
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where fzpi
,zpj

represents the set of fows that symbolize the
required transport work. Tis study calculate the ground
distance, denoted as |t

pi
zpi

− t
pj

zpj
|, between positions t

pi
zpi

and

t
pj

zpj
using |t
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|. It is important to note that v

pi
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and v
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values are normalized, resulting in Zpi
,Zpj

fzpi
,zpj

being equal
to 1. When the two histograms are identical, the Earth
Mover’s Distance (EMD) between hpi

and hpj
equals 0,

yielding a T Sim〈Hpi
, Hpj

〉 of 1. Conversely, as the EMD
increases, the T Sim〈Hpi

, Hpj
〉 converges toward 0.

To quantify the similarity between DBS rider pi and
metro passenger pj in the matched pair 〈pi, pj〉, accounting
for both temporal and spatial patterns, a novel similarity
function, denoted as ST Sim〈pi, pj〉, is introduced, defned
as follows:

STSim pi,pj  � SSim pi,pj  × T
Sim Hpi

,Hpj
 

. (15)

4.4. Determination of DBS-Metro Transfer Travelers from
Matched Pairs. After obtaining matched pairs and the
spatial-temporal relationships denoted as temporal confict,
spatial confict, and spatial-temporal similarity between DBS
riders and metro commuters, the subsequent steps involve
eliminating invalid matched pairs and distinguishing the

Time
PT user Pj in metro Station

DBS user Pi in the trip O/D point 

DBS user Pi' in the trip O/D point

Bufer of metro station entry/exit

Path of O to D

Access/Egress transfer related

Detecting Spatial confict

Longitude

Latitude

Figure 4: Illustration for spatial confict.
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presence of many-to-one matched pairs. Te precise
workfow for this procedure is illustrated in Figure 5.

Te determination process comprises two primary
phases: the frst phase is used by temporal confict and spatial
confict to decrease the quantity of potential matched pairs,
which is subsequently followed by spatial-temporal simi-
larity to discern many-to-one matched pairs. Tis process
strikes a balance between the count of identifcations and
identifcation accuracy.

5. Results and Discussion

Tis study employs the open-source unifed analytics engine
Apache Spark [38] formatched pairs identifcation.Tis system
is built upon the Hadoop Distributed File System (HDFS),
boasting a storage capacity of 68TB, and comprises 22 nodes.
Each node is outftted with 32 cores and 32GB of RAM. Te
entirety of the DBS-metro transfer identifcation process,
spanning data cleansing, PT/DBS mobility chain construction,
access transfer and egress transfer identifcation, as well as
spatial-temporal confict and spatial-temporal similarity cal-
culations, determination of matched pairs is executed through
a meticulously orchestrated sequence of spark jobs.

Utilizing the methodology outlined in Section 4,
matched pairs were derived, ensuring each smart card ID
and DBS rider ID are distinct and unique. Te results are
shown in Table 3, each matched pair corresponds to a single
metro smart card ID paired with one unique DBS rider ID.
Notably, all the matched pairs exhibit notably high spatial-
temporal similarity values, signifying a substantial degree of
spatial-temporal similarity among these matched pairs.

5.1. Verifcation of Identifcation of Matched Pairs. To verify
the accuracy of the method proposed in this study for
identifying DBS-metro transfer-matched pairs, smart card
IDs and DBS rider IDs were obtained from a survey targeting
frequent metro and DBS users, primarily including col-
leagues, family members, and friends, to ensure high re-
liability. We recruited a total of 448 volunteers who provided
their DBS trip data and PT trip data. Tis dataset includes
a total of 10,864 metro trips, among which 5,849 involved
access transfers and 5,250 involved egress transfers. Detailed
information is presented in Table 4.

Subsequently, a comparative analysis was performed on
the identifcation results obtained through six diferent
methods within the context of the study dataset, evaluating
their accuracy when applied to survey data.Method 1 applied
metro station 300m bufers fromMa et al. [14] and Zhao et al.
[5] along with transfer time thresholds used in this study.
Building on the foundation of Method 1, the mobility chain
construction method introduced in the research was applied
to establish Method 3, which was then further enhanced by
integrating spatial-temporal similarity to develop Method 5.
Similarly, this study uses a method based on station entry/exit
points for identifcation of DBS-metro transfer travelers is
Method 6. Method 4 represents Method 6 without the utili-
zation of spatial-temporal similarity, andMethod 2 isMethod
4 without the application of mobility chains.

In the context of survey data accuracy, it is essential to
clarify that when there are many-to-one matched pairs, the
accuracy is determined as follows: In Method 1 through
Method 4, where efective identifcation parameters are
lacking, accuracy equals 1 if the correct matched pair has the
highest and unique identifcation value. When the highest
identifcation value is nonunique, the accuracy is denoted as
1/n (with n representing the number of matched pairs with
the highest identifcation value). In cases where the correct
matched pair does not possess the highest identifcation
value, the precision is marked as 0. ForMethod 5 andMethod
6, the determination process aligns with the workfow in
Section 4.4.

Te performance results of the six methods on both the
study dataset and survey data 517 are displayed in Table 5,
with the best performance emphasized in bold font. It is
evident that when applied to survey data, the method sur-
passes all others, achieving an accuracy exceeding 0.96, while
the average number of matched pairs is less than 9.

Method 1 performs the least efectively among all the
methods. While Method 1 is a commonly used approach for
identifying DBS-metro transfer-related trips, its accuracy is
limited because it relies solely on spatial and temporal
thresholds and lacks the capability to flter the identifed
matched pairs. Tis is evident from the values of Identifed
DBS trips and Identifed DBS riders. Method 1 exhibits the
highest fgures for Identifed DBS trips and Identifed DBS
riders, indicating that it incorrectly categorizes numerous
nontransfer trips and riders. Shifting to Method 2, which
utilizes station entry/exit points, there is a signifcant re-
duction in the number of identifed transfer trips and riders.
Te average number of matched pairs within the survey data
shows notable improvements in both quantity and accuracy.
It is worth noting that whileMethod 2 identifed fewer transfer
riders compared to Method 1, it identifed 36,885 transfer
riders that Method 1 did not. Tis emphasizes that adopting
a station-based method may result in some omissions.

Regarding the impact of introducing mobility chains and
spatial-temporal similarity, both station-based and entry/exit-
based methods exhibit a reduction in the average number of
matched pairs in survey data and an increase in accuracy.
When comparing Methods 1 and 3 and Methods 2 and 4, the
introduction of the mobility chain resulted in a 28.27% de-
crease in the average number of matched pairs within the
survey data, coupled with an 18.36% increase in accuracy. In
addition, when comparing Method 3 with Method 5, and
Method 4 withMethod 6, accuracy increased by 19.32% upon
implementing spatial-temporal similarity to address the
many-to-one matching pair issue. Tese fndings collectively
underscore the efectiveness of the methods employed in this
research in resolving many-to-one matched pair challenges in
DBS-metro transfer identifcation, ultimately enabling ac-
curate identifcation of DBS-metro transfer travelers.

5.2.Analysisof theResults of theDBS-MetroTransferTravelers.
Tis study identifed 2,499,809 DBS-metro transfer trips
using Method 6, with 1,251,405 access transfers and
1,248,404 egress transfers comprising approximately equal
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Figure 5: Workfows of deciding DBS-metro transfer travelers from matched pairs.

Table 3: Identifed DBS-metro matched pairs.

Matched pairs (smart card ID, DBS rider ID) Number of DBS-metro
transfer

Number of access
transfer

Number of egress
transfer ST_Sim

<6100100021583387, 9a9b4a3dc8dfec6> 62 28 34 0.845
<6100100022252170, ef2110d2944ebc2> 56 28 28 0.912
<6100000100543053, 5b202a01f8684a9> 55 23 32 0.788
<6100010095193072, f17fc93511a7040> 55 29 26 0.938
<9094927857395712, bc0bcac29536e2d> 54 27 27 0.944
<9346061748873216, 5c186baa2592af6> 53 24 29 0.822
— — — — —

Table 4: Survey of passengers’ trip information.

Travel mode Passenger count Days of
travel

Number of
trips

Cycling distance
(km) Cycling durations

Metro 448 9.64 22.25 — —
Access transfer 432 8.75 13.54 0.84 512
Egress transfer 415 8.32 12.65 0.78 526
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proportions. Daily averages reached 156,238 DBS-metro
transfer cycling trips. Statistics on the number of users
who took the transfer trips (Table 6) show that a total of
883,138 riders completed transfers during the study period.
While the distribution of riders’ transfer trips followed an
exponential pattern, 39,035 riders still completed 10 or more
transfers, indicating a stable user base overall.

To analyze individual-specifc matched transfer trips,
personal travel logs were derived and visualized, with six
examples showcased in Figure 6. In this illustration, metro
trips are represented by blue dotted line segments, DBS trips
by red dotted line segments, and bus trips by solid black line
segments.Te diagram encompasses all metro, bus, and DBS
trips spanning 16 days. Te DBS-metro transfer activities of
individuals are easily discerned through the adjacency of
metro and DBS trips.

Individuals 2, 3, 5, and 6 exhibit regular commute
patterns using DBS for consistent frst/last mile with metro
trips.Tey regularly employ DBS for their frst- and last-mile
connections to the metro. Many of their metro trips are
accompanied by corresponding DBS trips, revealing specifc
symmetries between their morning and afternoon/evening
trip sequences. Among these individuals, both Individual 2
and Individual 5 consistently opt for access transfers and
egress transfers during their morning commutes but use
DBS services irregularly in the afternoon. Individual 3
maintains a fxed OD point for morning trips, pre-
dominantly relying on access transfers. However, his af-
ternoon trips lack such consistency. Conversely, Individual 6
consistently employs egress transfers for both morning and
evening trips.

On the other hand, Individuals 1 and 4 likely do not
conform to the traditional ofce worker commuting pattern,
yet they utilize DBS as a practical solution for addressing
frst- and last-mile transportation challenges. Individual 1, in
particular, selects DBS as a transfer method at various metro
stations. Individual 4, with fewer travel days, exhibited DBS
transfers at multiple metro stations on December 7, with no
other DBS trips observed during the study period.

5.3. Comparison of Travel Patterns of DBS-Metro Transfer
Travelers

5.3.1. Travel Distance and Travel Duration. To elucidate the
distinctions in travel patterns between access transfers and
egress transfers within DBS-metro transfers, this study
initial step involved a comparative analysis of the travel time
and distance associated with these two types of trips. Te

travel distance of each trip was determined using the
Manhattan distance, a widely accepted approach in trans-
portation research [39], calculated from the coordinates of
the origin and destination points. In addition, the travel
duration for each trip was directly computed by subtracting
the trip’s start time from its end time.

Figure 7 presents the probability density distributions
of travel distances and durations associated with DBS-
metro transfer trips. For DBS-metro access transfers, the
median travel distance is 943.27meters, while for egress
transfers, it is 959.77meters. Te travel distance intervals
with the highest occurrence rates are 650meters to
700meters for access transfers and 700meters to
750meters for egress transfers. Beyond 1.5 kilometers,
employing a DBS involves considerable physical efort,
which makes metro passengers more inclined to opt for
alternative transportation modes to reach the metro station
[17, 40]. Within a travel distance of 1.5 kilometers, DBS-
metro transfer is the choice of 76.69% for access transfers
and 75.61% for egress transfers. It is particularly note-
worthy that there is a signifcant diference between the
mode and median of the cycling distances for access
transfer and egress transfer. Te reasons for this phe-
nomenon may be attributed to several factors. Firstly, the
urban geographical layout signifcantly infuences cycling
distances. Certain areas become hotspots for cycling due to
geographical advantages or concentrated city functions,
leading to an increased frequency of short-distance cycling.
Additionally, the distribution of cycling distances exhibits
asymmetry; while short-distance cycling constitutes the
majority, the presence of longer-distance cycling raises the
median distance. Lastly, the diversity in starting and ending
point choices and travel preferences among diferent user
groups is a key factor causing variations in cycling dis-
tances, refecting the heterogeneity of travel needs. Tis
observation aligns with fndings from prior research. In
terms of travel durations, the median duration for access
transfer trips is 412 seconds, while for egress transfer trips,
it is 443 seconds. Notably, most of these trips have dura-
tions of less than 840 seconds. To be precise, access transfer
trips with durations under 840 seconds constitute 85.59%
of the total, and similarly, egress transfer trips with du-
rations under 840 seconds make up 82.92%.

5.3.2. Temporal Usage Patterns. Figure 8 illustrates the daily
distribution of DBS-metro transfer trips over the study period.
Notably, the number of these trips is considerably lower on
weekends compared to weekdays. Among the weekdays,

Table 5: Comparison of diferent identifcation methods.

Method Cost (hour) Identifed DBS trips Identifed DBS
riders

Survey data’s average matched
pairs

Accuracy of survey
data

Method 1 10.5 4979648 1324041 22.92 0.272
Method 2 8.9 2384959 981265 16.31 0.545
Method 3 15.8 4979648 1211156 18.48 0.471
Method 4 14.7 2384959 883138 10. 5 0.713
Method 5 16.9 4979648 1211156 18.48 0.688
Method 6 18.3 2384959 883138 10. 5 0.88 
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Table 6: Number of DBS-metro transfer rider transfers.

Number of rides Number of DBS riders Percentage (%) Number of rides Number of DBS riders Percentage (%)
1 403693 45.61 6 39682 4.48
2 160803 18.17 7 30894 3.49
3 85078 9.61 8 17538 1.98
4 50007 5.65 9 15051 1.70
5 43357 4.90 ≥10 39035 4.41

Total 883138

1216
1215
1214
1213
1212
1211
1210
1209
1208
1207
1206
1205
1204
1203
1202
1201

1216
1215
1214
1213
1212
1211
1210
1209
1208
1207
1206
1205
1204
1203
1202
1201

1216
1215
1214
1213
1212
1211
1210
1209
1208
1207
1206
1205
1204
1203
1202
1201

07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

Time of day

D
ay

 o
f m

on
th

1248 Metro station code
Metro trip
Bus trip
DBS trip

Figure 6: Individual trip log based on matched pairs.
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Figure 7: Distributions of travel distance and travel time for DBS-metro transfer trips.
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December 11 records the highest number of DBS-metro
transfers, approaching 195,000 trips, while December 3 has
the fewest, with less than 150,000 trips. Turning to the
weekends, December 6witnesses themostDBS-metro transfers
at 136,818, and December 13 has the lowest, with less than
10,0000 transfers. In terms of the ratio between access transfers
and egress transfers, the diference between the two remains
consistently within 5% throughout the study period, except for
December 5, when the diference reached 5.6%. Tis variation
can likely be attributed to reduced commuting patterns during
the weekend, resulting in irregular DBS-metro transfer be-
haviors among individuals.

In Figure 9, heat maps have been generated to facilitate
a comparative analysis of the temporal patterns of DBS-metro
transfer trips. Within the fgure, the intensity of coloration
denotes the degree of usage, with darker shades indicating
higher levels of activity. On weekdays, both access transfers
and egress transfers in theDBS trip patterns exhibit distinctive
morning peaks, occurring at 8:00 and 9:00, respectively, as
well as evening peaks at 17:00 and 18:00, respectively. It is
noteworthy that the morning peak period for access transfers
reveals two discernible peaks, whereas egress transfers exhibit
only one. Tis observation has implications for future
transport management strategies; it suggests the need to
augment bicycle availability in residential areas before the
morning peak to cater to the frst-mile demand. Subsequently,
close attention should be paid to the management of DBS
parking facilities near stations to prevent feet congestion.
Preceding the evening peak, transport managers should focus
on increasing bicycle availability near metro stations to meet
the last-mile demand. On weekends, access transfers and
egress transfers demonstrate a more evenly distributed pat-
tern. Nevertheless, access transfers continue to exhibit sig-
nifcant morning peak-hour peaks, signifying a preference
among commuters for cycling to metro stations.

5.3.3. Spatial Usage Patterns. Given the aggregation of the
DBS-metro transfer trips by station, the spatial distributions
of the total number of trips on weekdays and weekends could
be obtained, as shown in Figure 10. Overall, the DBS-metro
transfer is mainly concentrated in the urban area on both
weekdays and weekends, which may be due to two factors.
First, a few DBS bikes are distributed in the suburbs, so it is
difcult for passengers to fnd them easily and quickly.
Second, the densities of metro stations in the suburbs is low,
and the distances between the origins of passengers and
metro stations or between metro stations and their fnal
destinations are long; therefore, it is very physically de-
manding to use DBS to connect metro stations in the
suburbs.

An analysis of DBS-metro transfers at various stations
reveals that on weekdays, such transfers occur at all stations.
However, on weekends, notably suburban stations like
Tianfu New Area and Xinjin, located at the termini of Line 1
and Line 10, respectively, experience a complete absence of
transfers, both in access and egress categories. Conversely,
metro stations situated in suburban areas such as Xipu
Station (at the terminus of Line 2), Petroleum University,
and Chengdu Medical College (at the terminus of Line 3)
exhibit consistently higher transfer volumes, both on
weekdays and weekends. Tis phenomenon can likely be
attributed to the former station’s proximity to primarily
residential areas, resulting in elevated commuting activity
during the weekdays but a reduced availability of bicycles on
weekends. In contrast, the latter station enjoys its proximity
to regions with substantial DBS usage, including university
campuses, where cycling remains prevalent even on week-
ends. Considering these fndings, future operators and
transportation managers should contemplate augmenting
DBS supply in the vicinity of suburban metro stations with
relatively low transit accessibility.
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6. Conclusion and Discussion

Tis study presents an innovative data identifcation method
employing mobility chains to establish associations between
metro passengers and DBS riders sharing the same identity.
Te process commences by extracting DBS trips related to
DBS-metro transfers through the bufer zone based on
metro station entry/exit points. Subsequently, integration
with bus trip data from the same smart card system and TAZ
data enables the establishment of DBS and PT mobility
chains. Tese mobility chains serve as the foundation for
analyzing spatiotemporal conficts and similarities among
potential correspondences between DBS riders and metro
passengers. Te accuracy of the identifcation method was
validated through rigorous testing with survey data and
individual travel logs. Tis approach, in contrast to the
metro station-based method, signifcantly enhances
matching accuracy in many-to-one scenarios. Te in-
troduction of the mobility chain led to a remarkable 28.27%
reduction in the average number of matched pairs within the
survey data and an 18.36% improvement in accuracy.
Furthermore, implementing spatial-temporal similarity to
resolve many-to-one matching pairs resulted in an addi-
tional 19.32% accuracy increase. In summary, this method
amalgamates transfer identifcation, mobility chain con-
struction, spatial-temporal fltering, and similarity metrics to
precisely identify DBS-metro transfer travelers, facilitating
in-depth analysis of multimodal travel behavior.

Furthermore, based on the identifcation results, a spa-
tial-temporal analysis was conducted on the travel patterns
of DBS-Metro transfers. Te analysis revealed median travel
distances of 943.27meters for DBS-metro access transfers
and 959.77meters for egress transfers. Notably, travel dis-
tances of 650–700meters for access transfers and
700–750meters for egress transfers are the most common.
Beyond 1.5 kilometers, the physical efort required for using
DBS leads to passengers choosing alternative transport
options. Regarding temporal patterns, weekday access
transfers exhibit two morning peaks at 8:00 and 9:00, while
egress transfers have one at 17:00. Tis suggests the need for
bicycle availability adjustments near metro stations for frst-
mile and last-mile demand. During weekends, the temporal
distribution of access transfers is notably more uniform than
that of egress transfers.Tis suggests a preference for cycling
to metro stations. Spatially, DBS-metro transfers are mainly
concentrated in urban areas due to DBS availability and
metro station density. However, suburban stations like
Tianfu New Area and Xinjin have low transfer activity on
weekends. In contrast, stations near residential areas or
university campuses show higher transfer volumes. Future
transport strategies should consider enhancing DBS supply
near suburban metro stations and facilitating bike avail-
ability adjustments based on travel patterns to meet varying
demands.

However, this study is subject to certain limitations.
Firstly, when validating the survey data results, the scale of
the survey data is relatively small, consisting of only 448
individuals. Tis is signifcantly less in comparison to the
substantial numbers of metro passengers and DBS riders,

which could potentially introduce biases. Secondly, the
empirical data in this study are derived exclusively from
a 16-day dataset of DBS and PT trips in Chengdu. Conse-
quently, the analysis is confned to this specifc timeframe,
failing to encompass potential variations across distinct
months or seasons. Furthermore, while this research has
efectively examined the spatial and temporal distribution
patterns of travelers on DBS-metro transfer trips and travel
behaviors, it has refrained from delving into the underlying
causal mechanisms. Hence, future research endeavors will
prioritize the refnement of identifcation methods, the
expansion of sample sizes for empirical investigations, and
a more exhaustive exploration of urban travelers’ DBS-
metro transfer patterns along with their associated
determinants.

Data Availability

Te data used to support the fndings of this study have not
been made available because the authors have signed the
confdentiality agreement with the data providers.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was funded by the Chengdu Key Research and
Development Support Program for Technological In-
novation and Development Projects (Grant no. 2022-YF05-
00302-SN), Young Scientists Fund of the National Natural
Science Foundation of China (Grant no. 52002127), and
Sichuan Science and Technology Program (Grant nos.
2022YFG0197 and 2022JDR0324).

References

[1] X. Ma, Y. Ji, Y. Yuan, N. Van Oort, Y. Jin, and
S. Hoogendoorn, “A comparison in travel patterns and de-
terminants of user demand between docked and dockless
bike-sharing systems using multi-sourced data,” Trans-
portation Research Part A: Policy and Practice, vol. 139,
pp. 148–173, 2020.

[2] J. Lazarus, J. C. Pourquier, F. Feng, H. Hammel, and
S. Shaheen, “Micromobility evolution and expansion: un-
derstanding how docked and dockless bikesharing models
complement and compete – a case study of san francisco,”
Journal of Transport Geography, vol. 84, Article ID 102620,
2020.

[3] P. Zhao and S. Li, “Bicycle-metro integration in a growing
city: the determinants of cycling as a transfer mode in metro
station areas in beijing,” Transportation Research Part A:
Policy and Practice, vol. 99, pp. 46–60, 2017.

[4] Z. Gan, M. Yang, T. Feng, and H. J. P. Timmermans, “Ex-
amining the relationship between built environment and
metro ridership at station-to-station level,” Transportation
Research Part D: Transport and Environment, vol. 82, Article
ID 102332, 2020.

[5] D. Zhao, W. Wang, G. P. Ong, and Y. Ji, “An association rule
based method to integrate metro-public bicycle smart card

Journal of Advanced Transportation 17



data for trip chain analysis,” Journal of Advanced Trans-
portation, vol. 2018, Article ID 4047682, 11 pages, 2018.

[6] Y. Liu, Y. Ji, T. Feng, and H. Timmermans, “Understanding
the determinants of Young commuters’ metro-bikeshare
usage frequency using big data,” Travel Behaviour and Soci-
ety, vol. 21, pp. 121–130, 2020.

[7] Y. Liu, Y. Ji, T. Feng, and Z. Shi, “A route analysis of metro-
bikeshare users using smart card data,” Travel Behaviour and
Society, vol. 26, pp. 108–120, 2022.

[8] L. Liu, L. Sun, Y. Chen, and X. Ma, “Optimizing feet size and
scheduling of feeder transit services considering the infuence
of bike-sharing systems,” Journal of Cleaner Production,
vol. 236, Article ID 117550, 2019.

[9] Z. Zhan, Y. Guo, R. B. Noland, S. Y. He, and Y. Wang,
“Analysis of links between dockless bikeshare and metro trips
in Beijing,” Transportation Research Part A: Policy and
Practice, vol. 175, Article ID 103784, 2023.

[10] Y. Lv, D. Zhi, H. Sun, and G. Qi, “Mobility pattern recognition
based prediction for the subway station related bike-sharing
trips,” Transportation Research Part C: Emerging Technologies,
vol. 133, Article ID 103404, 2021.

[11] C. Zhou, X. Zhao, D. Xie, and J. Bi, “Understanding in-
dividuals’ choice-making mechanism in trip chains of shared
autonomous vehicles,” Travel Behaviour and Society, vol. 33,
Article ID 100619, 2023.

[12] F. Schneider, W. Daamen, and S. Hoogendoorn, “Trip
chaining of bicycle and car commuters: an empirical analysis
of detours to secondary activities,” Transportmetrica: Trans-
portation Science, vol. 18, no. 3, pp. 855–878, 2022.

[13] X. Liu, W. Li, Y. Li, J. Fan, and Z. Shen, “Quantifying en-
vironmental benefts of ridesplitting based on observed data
from ridesourcing services,” Transportation Research Record,
vol. 2675, no. 8, pp. 355–368, 2021.

[14] X. Ma, Y. Ji, M. Yang, Y. Jin, and X. Tan, “Understanding
bikeshare mode as a feeder to metro by isolating metro-
bikeshare transfers from smart card data,” Transport Policy,
vol. 71, pp. 57–69, 2018.

[15] Y. Guo, L. Yang, Y. Lu, and R. Zhao, “Dockless bike-sharing as
a feeder mode of metro commute? Te role of the feeder-related
built environment: analytical framework and empirical evidence,”
Sustainable Cities and Society, vol. 65, Article ID 102594, 2021.

[16] D. Lin, Y. Zhang, R. Zhu, and L. Meng, “Te analysis of
catchment areas of metro stations using trajectory data
generated by dockless shared bikes,” Sustainable Cities and
Society, vol. 49, Article ID 101598, 2019.

[17] X. Liu, J. Fan, Y. Li, X. Shao, and Z. Lai, “Analysis of integrated
uses of dockless bike sharing and ridesourcing with metros:
a case study of Shanghai, China,” Sustainable Cities and
Society, vol. 82, Article ID 103918, 2022.

[18] S. Yu, G. Liu, and C. Yin, “Understanding spatial-temporal
travel demand of free-foating bike sharing connecting with
metro stations,” Sustainable Cities and Society, vol. 74, Article
ID 103162, 2021.

[19] X. Zhou, Q. Dong, Z. Huang, G. Yin, G. Zhou, and Y. Liu,
“Te spatially varying efects of built environment charac-
teristics on the integrated usage of dockless bike-sharing and
public transport,” Sustainable Cities and Society, vol. 89,
Article ID 104348, 2023.

[20] Y. Ji, Y. Fan, A. Ermagun, X. Cao, W. Wang, and K. Das,
“Public bicycle as a feeder mode to Rail transit in China: the
role of gender, age, income, trip purpose, and bicycle theft
experience,” International Journal of Sustainable Trans-
portation, vol. 11, no. 4, pp. 308–317, 2017.

[21] J. Wang, M.-P. Kwan, W. Cao, Y. Gong, L. Guo, and Y. Liu,
“Assessing changes in job accessibility and commuting time
under bike-sharing scenarios,” Transportmetrica: Trans-
portation Science, vol. 20, pp. 1–17, 2022.

[22] K. Kim, “Investigation of modal integration of bike-sharing and
public transit in seoul for the holders of 365-day passes,” Journal
of Transport Geography, vol. 106, Article ID 103518, 2023.

[23] R. Xin, J. Yang, B. Ai, L. Ding, T. Li, and R. Zhu, “Spatio-
temporal analysis of bike mobility chain: a New perspective on
mobility pattern discovery in urban bike-sharing system,”
Journal of Transport Geography, vol. 109, Article ID 103606,
2023.

[24] M. Bordagaray, L. dell’Olio, A. Fonzone, and A. Ibeas,
“Capturing the conditions that introduce systematic variation
in bike-sharing travel behavior using data mining tech-
niques,” Transportation Research Part C: Emerging Technol-
ogies, vol. 71, pp. 231–248, 2016.

[25] X. Ma, S. Zhang, Y. Jin, M. Zhu, and Y. Yuan, “Identifcation
of metro-bikeshare transfer trip chains by matching docked
bikeshare and metro smartcards,” Energies, vol. 15, no. 1,
p. 203, 2021.

[26] D. Guo, E. Yao, S. Liu, R. Chen, J. Hong, and J. Zhang,
“Exploring the role of passengers’ attitude in the integration of
dockless bike-sharing and public transit: a hybrid choice
modeling approach,” Journal of Cleaner Production, vol. 384,
Article ID 135627, 2023.

[27] Y.-H. Cheng and W.-C. Tseng, “Exploring the efects of
perceived values, free bus transfer, and penalties on in-
termodal metro–bus transfer users’ intention,” Transport
Policy, vol. 47, pp. 127–138, 2016.

[28] X. Li, Q. Yan, Y. Ma, and C. Luo, “Spatially varying impacts of
built environment on transfer ridership of metro and bus
systems,” Sustainability, vol. 15, no. 10, p. 7891, 2023.

[29] X. Feng, H. Sun, J. Wu, Z. Liu, and Y. Lv, “Trip chain based
usage patterns analysis of the round-trip carsharing system:
a case study in Beijing,” Transportation Research Part A: Policy
and Practice, vol. 140, pp. 190–203, 2020.

[30] D. Zhao, G. P. Ong, W. Wang, and X. J. Hu, “Efect of built
environment on shared bicycle reallocation: a case study on
nanjing, China,” Transportation Research Part A: Policy and
Practice, vol. 128, pp. 73–88, 2019.

[31] Y. Liu, T. Feng, Z. Shi, and M. He, “Understanding the route
choice behaviour of metro-bikeshare users,” Transportation
Research Part A: Policy and Practice, vol. 166, pp. 460–475,
2022.

[32] Gaode Maps, “Trafc analysis report of major cities in China,”
2020, https://www.199it.com/archives/1194887.html.

[33] GeoPy, 2023,https://geopy.readthedocs.io/en/stable/.
[34] X. Zhao, Y. Zhang, Y. Hu, Z. S. Qian, H. Liu, and B. Yin,

“Modeling relation proximity of passengers using public
transit smart card data,” IEEE Intelligent Transportation
Systems Magazine, vol. 14, no. 1, pp. 163–172, 2022.

[35] X. Zhao, Y. Zhang, Y. Hu et al., “Interactive visual exploration
of human mobility correlation based on smart card data,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 8, pp. 4825–4837, 2021.

[36] Y. Rubner, C. Tomasi, and L. J. Guibas, “Te Earth mover’s
distance as a metric for image retrieval,” International Journal
of Computer Vision, vol. 40, no. 2, pp. 99–121, 2000.

[37] O. Pele and M. Werman, “A linear time histogram metric for
improved SIFT matching,” in Proceedings of the Computer
Vision  ECCV 2008, D. Forsyth, P. Torr, and A. Zisserman,
Eds., pp. 495–508, Springer, Berlin, Germany, 2008.

18 Journal of Advanced Transportation

https://www.199it.com/archives/1194887.html
https://geopy.readthedocs.io/en/stable/


[38] M. Zaharia, R. S. Xin, P. Wendell et al., “Apache spark:
a unifed engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, pp. 56–65, 2016.
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