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Precrash scenario analysis for autonomous vehicles (AVs) is critical for improving the safety of autonomous driving, yet the scenario
diferences between diferent drivingmodes are unexplored. Using the precrash scenario typology of the USDOT, this study classifed
484 AV crash reports from the California DMV from 2018 to 2022, revealing the diferences in the scenario proportions of the three
modes of autonomous driving, driving takeover, and conventional driving in 34 types of scenarios.Te results showed that there were
signifcant diferences in the proportion of six scenarios such as “Lead AV stopped” and “Lead AV decelerating” among diferent
driving modes (p< 0.05). To analyze the relative risk of diferent driving modes in specifc scenarios, an evaluation model of the risk
level of AV precrash scenarios was established using the analytic hierarchy process (AHP). Te fndings indicated that autonomous
driving has the highest risk rating and poses the greatest danger in Scenario 1, while conventional driving is associated with Scenario
2b, and driving takeover corresponds to Scenario 3, respectively. In-depth analysis of the crash characteristics and causes of these
three typical scenarios was conducted, and suggestions were made from the perspectives of autonomous driving system (ADS) and
drivers to reduce the severity of crashes. Tis study compared precrash scenarios of AV by diferent driving modes, providing
references for the optimization of ADS and the safety of human-machine codriving.

1. Introduction

Autonomous driving technology is a scientifc technology
that brings creative changes to the future automotive feld,
which is expected to provide a fundamental trans-
formation for trafc problems and will make trans-
portation safer, smoother, and more convenient [1].
However, due to the limitations of the current techno-
logical development, the current perception, recognition,
and planning decision-making systems for autonomous
vehicles (AVs) are not perfect, and they are unable to
efectively deal with the various factors afecting driving
safety [2]. Despite continuous progress in autonomous
driving technology, even advanced autonomous driving
system (ADS) cannot completely eliminate crashes due to
vehicle dynamics and trafc constraints [3]. As a result,
varying severity of hundreds of crashes have occurred in

U.S. states, which have allowed the deployment or testing
of AVs [4].

In September 2014, the California Department of Motor
Vehicles (DMV) gave permission for AVs to be tested on
California’s roadways [5]. Companies and manufacturers
authorized to conduct autonomous driving tests are re-
quired to submit a crash report (OL 316) involving an AV
and a disengagement report (OL 311R), which includes
a complete description of the crash and other specifc and
efective information such as the reason, frequency, and
mileage of AV disengaged from the system [6–8]. As of
December 31st, 2022, the California DMV has approved the
public publication of 540 crash reports involving AVs since
2014, along with nearly eight years of disengagement reports.

Between 2015 and 2022, there have been a steady rise in
the yearly count of AV crashes tested on California highways
[6], as shown in Figure 1, but the sudden drop in the number
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of crashes in 2020 is attributed to the COVID-19 epidemic.
Meanwhile, the total annual AV miles traveled in California,
as reported in the disengagement report OL 311R, has been
increasing each year for the last eight years.Te average total
miles traveled per year account for 2,197,780. Furthermore,
AV crash mileage is determined by dividing the total au-
tonomous mileage driven in a year by the number of AV
crashes that occurred during that same year. According to
the AV crash report OL 316, this calculation gives an annual
average crash mileage of 34,590 miles. Te description of the
total mileage and crash mileage of AV in California in the
past eight years is shown in Figure 2. Since the actual test of
AV is still in the initial stage, the safety of AV cannot be
verifed by miles traveled and crash mileage alone. As more
AVs are put into use, the safety performance of diferent
driving modes is also to be explored in depth because of the
switching of driving modes during driving.

In recent years, there have been many advances in re-
search for the analysis of AV crashes, but there are fewer
studies related to the safety of diferent driving modes.
Petrović et al. [9] focused on analyzing the characteristics of
AV crashes in California, U.S.A. Meanwhile, a comprehen-
sive examination was conducted to compare and analyze the
occurrence of crashes involving conventional vehicles (CVs)
at a specifc location.Te study encompassed various aspects
such as crash types, driving maneuvers, and errors made by
conventional drivers. Te statistical analysis revealed that
AVs were more prone to being involved in rear-end crashes
at this location, whereas CV crashes primarily stemmed
from drivers exceeding the speed limit or failing to maintain
control of their vehicles while following others. A com-
prehensive analysis and review of crashes involving AVs and
an in-depth evaluation of DMV crash data by Almaskat et al.
[10] showed that AVs are more likely to be involved in rear-
end crashes, but in most cases they are not the responsible
party for the crashes, further confrming that AVs have the
potential to improve road safety. Lee et al. [11] used fre-
quency theory and Bayesian methods to construct a crash
analysis framework for AVs.Te analysis results showed that

in the autonomous driving mode, the probability of rear-end
crashes is higher than that in the conventional driving mode.
Furthermore, before the crashes, when the AVs are passing
CVs, the drivers of the AVs are more likely to manually take
over the vehicle.

To drive safely, an AV requires a more optimized ADS
capable of automatically adjusting its operation mode
according to various conditions, including but not limited to
geographic area, driving speed, road type, trafc environ-
ment, and prevailing trafc laws. Tese ranges of conditions
constitute the operational design domain (ODD), which is
crucial for the ADS to function properly [12]. Hence, the
development of an ODD framework heavily relies on the
construction of driving scenarios, which is signifcant im-
portance. In analyzing driving scenarios of AVs, Song et al.
[13] defned the analysis of crash sequence and ODD as the
crash scenario of AV and constructed a crash mechanism
model using Bayesian networks. Teir analysis revealed that
considering human factors and environmental conditions is
advantageous in accurately identifying the distribution of
specifc types of ODD crash sequences. After utilizing the
precrash scenario typology developed by the National
Highway Trafc Safety Administration (NHTSA) under the
United States Department of Transportation (USDOT), Liu
et al. [14] analyzed crash patterns of AVs and CVs. Teir
comparative analysis of precrash scenarios led them to
conclude that substantial dissimilarities exist between these
two driving scenario types. However, diferent driving
modes also vary in terms of crash type and severity [15], and
comparative analysis of diferent driving modes using
precrash scenarios has greater research signifcance. Si-
multaneously, for a considerable period in the future, AVs
will be in the stage of human-machine codriving [16], and
switching driving modes before a trafc accident occurs can
help coordinate the relationship between the driver and the
ADS and achieve efective control of the AV by both humans
and the system.

In this paper, we have extracted precrash scenarios in-
volving AVs from the California DMV database, analyzed
AV precrash scenarios using the classifcation method of the
USDOT, and determined the scenario diferences between
autonomous driving, driving takeover, and conventional
driving. Based on the macro-statistical characteristics of
crashes, vehicle damage levels, and personnel injury in-
dicators, the danger level evaluation model of AV precrash
scenarios is established. Meanwhile, three precrash scenarios
with the highest crash frequency are selected for discussion,
which provides a certain reference basis for the optimization
and improvement of ADS and the safety of human-machine
codriving.

2. Literature Review

2.1. Precrash Scenario Typology. Te investigation and dis-
section of the root causes of a crash heavily rely on precrash
scenarios, which include the vehicle movements leading up
to the crash, the number of vehicles involved, and other
detailed information surrounding the crash [17]. Several
scholars have developed standard precrash scenarios by
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Figure 1: Te number of California AV crashes.
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employing crash data and natural driving data and utilizing
various mining algorithms. Char and Serre [18] created
a risk scenario database involving cycling by utilizing natural
driving data, and the objective of this database was to
provide theoretical support for developing advanced driver
assistance systems. Rui Zhou et al. [19] identifed typical
precrash scenarios of AVs and powered-two-wheelers
(PTWs) based on a scenario construction method with
real-world dynamic crash features and provided more de-
tailed scenario descriptions. Bangert et al. [20] used an
unsupervised decision tree model to group crash scenarios
with similar key features at intersections to derive 44
functional intersection crash patterns, which provide
a theoretical basis for the design of advanced assisted driving
systems at intersections. Precrash scenario studies have
primarily focused on analyzing the behaviors and charac-
teristics of vulnerable road users, examining confict points
and patterns at intersections, and studying the dynamics and
interactions among various vehicles [14].

Te technique of precrash scenario typology involves the
identifcation and classifcation of crash scenarios based on
various contributing factors, such as the driving environ-
ment, driver characteristics, and vehicle conditions. Tis
method allows for a comprehensive understanding of the
diferent types of scenarios that lead to crashes. Te NHTSA
established and statistically described a typology of precrash
scenarios for lightweight vehicles that includes 37 precrash
scenarios, summarizing previous experiences in 2007 [21].
Tese scenarios depict the condition of vehicle motion and
dynamics, along with signifcant incidents preceding at least
one light vehicle crash. Te novel typology facilitates an
understanding of all prevalent precrash scenarios and ex-
poses the crash triggers and specifc circumstances in
each case.

Encompassing both public and private organizations, the
establishment of this new precrash scenario serves to create
a collaborative research foundation for vehicle safety. Tis
initiative aims to help researchers in identifying key areas for
trafc safety research and developing efective crash
avoidance systems [22]. In accordance with the Crash
Avoidance Research Precrash Scenario Typology, Table 1
precisely outlines the specifc 37 precrash scenarios.

2.2. Analysis of the Causes of AV Crashes. Based on the AV
crash data (OL 316) released by the California DMV, the
safety of AVs has sparked prolonged and widespread con-
cerns. In analyzing the causes and safety ramifcations of
these crashes, numerous scholars have highlighted the
contributing factors that determine their severity. Zhu and
Meng [23] constructed a cost-sensitive classifcation and
regression tree (CART) model by developing a classifcation
tree of crash severity for AVs and concluded that the main
infuencing factors afecting the severity of AV crashes are
vehicle manufacturer, facility type, precrash motion, crash
type, lighting conditions, and year. Chen et al. [24] analyzed
the crash characteristics of AVs, and, by combining POI
data, they concluded, based on the XGBoost model, that the
main characteristics that determine the severity of accidents
are weather, vehicle damage, crash location, and crash type.
Zhang and Xu [25] used association rule analysis to conclude
that downhill, nighttime, and high-density trafc fow in-
crease the likelihood of crash severity for AVs.

On the other hand, the analysis of the causes of crashes in
AVs will focus on road intersections. Liu et al. [26] con-
ducted an in-depth mining based on the crash causality
analysis of precrash scenarios using an association rule al-
gorithm for the crash characteristics and causes of AVs
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located at intersections. Te analysis fndings indicate that
for rear-end scenarios involving AVs, key factors include
being located outside the intersection, trafc signal control,
autonomous driving mode, mixed-use or public land, and
weekdays, whereas the main factors for the lane-change
scenario are on-street parking and the time of day at 8
a.m. Te main factors for the lane-change scenario are on-
street parking and 8 a.m. time of day. Te combination of
these factors plays a crucial role in contributing to AV
crashes that occur at intersections. Song et al. [13] used the
data collected by the NHTSACrash Report Sampling System
(CRSS) pertaining to two-vehicle crashes that occurred at
intersections. Tey recoded the initial positions and tra-
jectories of the vehicles involved, generated crash sequences,
and categorized two-vehicle crashes at intersections into 55
distinct types. To further analyze the data, Bayesian networks
were employed as a statistical modeling technique to un-
cover the relationships between crash sequence types, crash

outcomes, human factors, and environmental conditions.
Tis analytical approach not only enhances our un-
derstanding of the underlying mechanisms of crash oc-
currence but also ofers more targeted recommendations for
crash prevention and reduction.

In addition to focusing on AV crashes that occur at
intersections, some scholars have studied whether disen-
gagement of the ADS leads to crashes, which is related to the
safety analysis of the driving mode. Liu et al. [27] used the
XGBoost algorithm to predict in real time the crash risk of
an AV on diferent sections of a motorway, while consid-
ering whether the ADS is disengaged or not. When the ADS
fails or the sensors malfunction, the driver can choose to take
over the vehicle and control the speed diference with the
vehicle in front to minimize the accident risk and optimize
the outcome. Tis predictive approach helps to improve the
safety and reliability of AVs. Khattak et al. [28] analyzed
three diferent ADS disengagement scenarios and concluded

Table 1: 37 Specifc descriptions of precrash scenarios [22].

No. Scenarios description
1 Vehicle failure
2 Control loss with prior vehicle action
3 Control loss without prior vehicle action
4 Running red light
5 Running stop sign
6 Road edge departure with prior vehicle maneuver
7 Road edge departure without prior vehicle maneuver
8 Road edge departure while backing up
9 Animal crash with prior vehicle maneuver
10 Animal crash without prior vehicle maneuver
11 Pedestrian crash with prior vehicle maneuver
12 Pedestrian crash without prior vehicle maneuver
13 Pedalcyclist crash with prior vehicle maneuver
14 Pedalcyclist crash without prior vehicle maneuver
15 Backing up into another vehicle
16 Vehicle(s) turning-same direction
17 Vehicle(s) parking-same direction
18 Vehicle(s) changing lanes-same direction
19 Vehicle(s) drifting-same direction
20 Vehicle(s) making a maneuver-opposite direction
21 Vehicle(s) not making a maneuver-opposite direction
22 Following vehicle making a maneuver
23 Lead vehicle accelerating
24 Lead vehicle moving at lower constant speed
25 Lead vehicle decelerating
26 Lead vehicle stopped
27 Left turn across path from opposite directions at signalized junctions
28 Vehicle turning right at signalized junctions
29 Left turn across path from opposite directions at nonsignalized junctions
30 Straight crossing paths at nonsignalized junctions
31 Vehicle(s) turning at nonsignalized junctions
32 Evasive action with prior vehicle maneuver
33 Evasive action without prior vehicle maneuver
34 Noncollision incident
35 Object crash with prior vehicle maneuver
36 Object crash without prior vehicle maneuver
37 Other
Note. Vehicle action refers to a range of maneuvers performed by a vehicle in response to a preceding critical event, including deceleration, acceleration,
starting, overtaking, parking, turning, reversing, lane changing, merging, and successful corrective actions. Vehicle maneuver includes braking, acceleration,
take-of, passing, parking, turning, reversing, lane change, merging, and successful recovery from a previous vehicle critical event.
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that factors related to the ADS and other road participants
increase the tendency for the system to disengage without
a crash. It is necessary to analyze the situation where the
system disengages and then performs a driving takeover and
a crash occurs, using crash data from AVs.

3. Methodology

3.1. Data Collection. From 1st January 2018 to 31st De-
cember 2022, the California DMV collected a total
number of 484 crash reports involving AVs, as submitted
by manufacturers, for use in this paper. Te crash in-
formation recorded in the OL 316 report can be viewed in
Figure 3.

Based on the standardized information provided in the
OL 316 report, specifc information on the people, vehicles,
roads, and environment where the crash occurred can be
extracted. Statistical data regarding the crash encompass
details such as the precise time and location of the crash, the
prevailing weather and lighting conditions at the time, the
type of the crash, and the number of vehicles involved, as
well as the behavior of the vehicles immediately preceding
the crash, the severity of the crash, and the driving mode
employed. Based on the accident narrative detailed in Part V
of the crash report, additional crash variables can be
extracted, as illustrated in Figure 4. In the accident narrative,
the terms “autonomous mode” and “took manual control”
are mentioned, indicating that the AV transitioned from
autonomous driving mode to manual control, i.e., the driver
took over the vehicle before the crash occurred. Addition-
ally, the phrase “making a right turn” implies that the vehicle
was in the process of turning right, presumably at an in-
tersection, at the time of the crash. Although similar ter-
minology is frequently encountered in accident narratives, it
is not consistently recorded in a standardized format.
Terefore, statistical analyses were conducted to identify
characteristic variables that impact the occurrence of crashes
involving AVs. Te specifc crash characterization variables
are shown in Table 2.

3.2. AV Precrash Scenario Mapping. Tere is a limited
amount of research available on precrash scenarios specif-
ically focused on AVs. Liu et al. [14] screened AV crash
variables, excluded AV crashes in conventional driving
mode, selected crashes involving only two vehicles, and
fnally defned 15 precrash scenarios of AV. Meanwhile, its
research team, based on previous studies, screened and
organized crash data of AVs located at intersections, re-
vealing a total of 30 precrash scenarios of AV [26].

In this paper, we will comprehensively screen the
characteristic variables of OL 316 to refne and supplement
the AV precrash scenario in all aspects. Identifying the trafc
scenarios that require priority testing and development of
crash avoidance systems is the main objective of the
implementation of the precrash scenario typology. Tere-
fore, in order to develop diferent crash scenarios as precrash
mapping for AVs, it is necessary to analyze the number of
vehicles involved in the crash, the movement of the vehicles,

the signifcant events leading up to the crash, and the cause
of the crash.

First, determine the number of vehicles involved in the
crash in the OL 316 report; when the number of vehicles is 1,
check whether the crash with the AV is with a pedestrian, or
any other object. Additionally, it is necessary to determine if
the vehicle exhibited any motorized behaviors and then
classify the crash type by referring to the detailed description
of the crash chapter. Subsequently, the relationship between
the crash and the precrash scenario can be established. If two
vehicles are involved in a crash, frst check if the AV has
stopped.Ten, determine the relative position of the AV and
CV based on the detailed description of the crash. After that
step, examine the precrash behavior of both vehicles. Finally,
establish the relationship between the crash and the precrash
scenario by taking into account the crash type. If more than
two vehicles are involved in a crash, determine whether the
process is basically the same as when there are two vehicles.
Te precrash scenario mapping fowchart is shown in
Figure 5.

By analyzing and mapping the precrash scenarios of
AVs, along with considering the driving modes of the AVs,
we can determine the quantity, types, and proportions of
precrash scenarios in various driving conditions such as
autonomous driving, driving takeover, and conventional
driving, as shown in Table 3, where the proportions in the
table are the percentages of each driving mode in all the
scenarios, and the proportions of the compared driving
modes in a single scenario show which driving mode is more
likely to cause crashes in that scenario. Te precrash sce-
narios of AV are categorized by creating a list in descending
order of occurrence frequency and deriving subcategories
(such as scenarios 2, 4, 6, 7, 8, 10, 12, 13, 15, and 22) based on
the diferent relative positions of the AV to the CV. A total of
34 types of such scenarios have been identifed, although the
AV scenarios do not include the 37 types in the crash
scenario typology due to the limitations of the number of AV
crashes.

To provide a visual representation of precrash scenarios
involving AV in Table 3 and display the relative positions of
the AV and the CV, Figure 6 illustrates the 34 precrash
scenarios that were reconstructed visually.

3.3. Comparison of AV Precrash Scenario for Diferent
Driving Modes. From Table 3, it can be concluded that
among the 34 precrash scenarios of AV, diferent driving
modes difer in the types of scenarios, for example, in the
autonomous driving mode, there are no precrash scenarios
such as 12a, 13a, and 16, and in the driving takeover mode,
there are no precrash scenarios such as 7b, 10a, and 12b,
whereas in the conventional driving mode, there are no
precrash scenarios such as 15b, 22b, and 23. Where the same
precrash scenarios existed in all three driving modes, they
also difered in their proportions.

To compare the proportions between the three driving
modes in AV precrash scenarios, we merged similar sce-
narios listed in Table 3 (e.g., scenarios 2a and 2b) resulting in
24 categories, instead of the original 34 categories. To
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determine if there were signifcant diferences in the pro-
portions of driving patterns within the 24 precrash sce-
narios, a one-way analysis of variance (ANOVA) was
conducted using SPSS software. Additionally, a non-
parametric (NPar) test was performed on diferent driving
modes within each scenario to assess if there were any
signifcant variations. Te fndings of the investigation are
displayed in Table 4, where the value of the F-test in the
ANOVA is 4.338 and the p value ≤0.001< 0.05, which shows
that the diferent precrash scenario types present signifcant
diferences for the three driving modes in general. Mean-
while, the results of the NPar test show that the p values of
scenarios 1, 3, 5, 6, 7, and 9 are all less than 0.05, which
concludes that there is a signifcant diference between the
three driving modes of AVs in the above six scenarios.

Table 4 presents the analysis results, allowing for a de-
scriptive examination of the precrash scenarios that exhibit
variability. For example, in Scenario 1 (Lead AV Stopped),
the percentage of possible crashes in autonomous driving
mode is 43.16%, which is approximately seven times higher
than that in the driver takeover mode and twice as high as in
the conventional driving. In Scenario 3 (Lead AV

Decelerating), the percentage of possible crashes in driving
takeover mode is 14.63%, which is approximately 1.5 times
higher than that in autonomous driving mode and 3 times
higher than that in conventional driving mode. In Scenario 5
(Pedalcyclist Crash with Prior Vehicle Maneuver), the
driving takeover mode is signifcantly diferent from both
the autonomous driving mode and the conventional driving
mode, with the percentage of possible crashes being about
4 times higher than the latter, a diference of roughly 13.60%.
In Scenario 6 (Vehicle Turning at Nonsignalized Junctions),
the percentage of possible crashes is similar between au-
tonomous driving mode and conventional driving mode but
difers signifcantly from the percentage of driving takeover
mode, with a diference of approximately 5.91%. In Scenario
7 (Vehicle Parking-Same Direction), the proportion of
possible crashes for the conventional driving mode is about
5 times higher than that for the autonomous driving mode
and 3.5 times higher than that for the driving takeover mode,
which is a large diference from the autonomous driving
mode. In Scenario 9 (Road Edge Departure with Prior
Vehicle Maneuver), the proportion of possible crashes in
conventional driving mode is about 5.6 times higher than

Figure 4: Section 5 of the AV crash report with a specifc description.

Figure 3: AV crash report in OL 316 form.
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that in autonomous driving mode and not much diferent
from the driving takeover mode, which is only 1.3 times
higher.

In the fve precrash scenarios (Scenarios 1, 3, 13b, 17, and
21), the AV encountered a CV rear-end crash, which
accounted for 56.83% in the autonomous driving mode,
about 2.7 times that of the driving takeover mode, and about
twice that of the conventional driving mode. In contrast, the
driving takeover mode and the conventional driving mode
accounted for only 20.73% and 27.99% in these fve sce-
narios. In the lane changing of AV or CV in the same di-
rection (Scenario 2), AV encountered lane changing crash,
which accounts for 15.85% in the driving takeover mode,
while 13.24% and 11.91% in the autonomous driving mode
and conventional driving mode, respectively. Te data
suggest that lane changing crashes are more prone to happen
during the driving takeover mode. In the crash between AV
and Pedalcyclist (Scenarios 5 and 11), the proportion of
driving takeover mode is signifcantly higher than that of
autonomous driving mode and conventional driving mode,
up to 20.73%, while for the other twomodes, the proportion is
5.98% and 8.33%, respectively. In the case of crashes (sce-
narios 6, 10, and 15) in which AV or CV turns, the proportion
of autonomous driving mode and conventional driving mode
is similar, 7.70% and 7.75%, respectively, while the proportion
of driving takeover mode is relatively high, 12.20%.

4. Evaluation System for Precrash
Scenarios of AV

4.1. Selection of Evaluation Indicators and Establishment of
Models. To analyze the degree of danger in precrash sce-
narios of AV, according to the crash characteristic variables
collected in this paper, the analytical method is used to refne
the evaluation indexes layer by layer into quantifable in-
dexes, and the evaluation elements are set to be the macro-
statistical characteristics of crashes, vehicle damage levels,
and personnel injury indicators. Te specifc evaluation
indexes include the number of vehicles involved in the crash,
the frequency of crashes, whether the vehicle is severely,
moderately, or slightly damaged, or undamaged, and
whether there are injuries to personnel or no injuries. Te
specifc indicators constructed are shown in Figure 7.

Te indicators describing the macro-statistical charac-
teristics of crashes include the number of vehicles involved
in the crash and the frequency of crashes, with the evaluation
function shown as follows:

C � w1C1 + w2C2, (1)

wherein w1 and w2 represent the weights of the number of
vehicles involved in the crash and the frequency of crashes,
respectively, w1 + w2 � 1, and C1 and C2 represent the
evaluation values of the number of vehicles involved in the
crash and the frequency of crashes, respectively, which are
taken according to the average value of crash characteristics
in a certain scenario.

Table 2: Descriptive statistics of California AV crash dataset
(sample size� 484).

Variable Frequency Percentage (%)
Someone injured
Yes 73 15.08
No 411 84.92

Vehicle damage
None 38 7.85
Minor 368 76.03
Moderate 71 14.67
Major 7 1.45

Vehicle manufacturer
Waymo LLC 193 39.88
Cruise LLC 176 36.36
Other 115 23.76

Production year of the AV
2016 71 14.67
2017 117 24.17
2018 7 1.45
2019 81 16.74
2020 71 14.67
2021 124 25.62
2022 13 2.69

Number of vehicles involved
1 77 15.91
2 402 83.06
3 5 1.03

Movement preceding crash
Stopped 188 38.84
Proceeding straight 199 41.12
Making left turn 41 8.47
Making right turn 35 7.23
Backing 21 4.34

Type of crash
Head-on 87 17.98
Rear-end 230 47.52
Left crash 85 17.56
Right crash 82 16.94

AV driving mode
Autonomous driving 234 48.35
Conventional driving 168 34.71
Driving takeover 82 16.94

Facility type
Intersection 238 49.17
Road segment 231 47.73
Parking lot 15 3.10

Time of the crash
Morning peak 7:00–9:00 47 9.71
Daytime 9:00–17:00 273 56.40
Evening peak 17:00–19:00 42 8.68
Night 19:00–7:00 122 25.21

Weather
Clear 432 89.26
Rainy 14 2.89
Cloudy 33 6.82
Fog/visibility 5 1.03

Light
Daylight 357 73.76
Dark with street lights 122 25.21
Dark without streetlights 5 1.03

Journal of Advanced Transportation 7



Te indicators describing the vehicle damage levels in-
clude major, moderate, minor, and undamaged, with the
evaluation function shown as follows:

D � y1D1 + y2D2 + y3D3 + y4D4, (2)

wherein y1, y2, y3, y4 represent the weights of major,
moderate, minor, and no damage to the vehicle, respectively,
and the sum of the four is 1. D1, D2, D3, D4 represent the
evaluation values of the damage level of the vehicle, which
are taken according to the proportion of the damage level of
the vehicle in a certain scenario.

Te indicators describing personnel injury indicators
include injuries to personnel or no injuries, with the eval-
uation function shown as follows:

E � z1E1 + z2E2, (3)

wherein z1 and z2 represent the weights of injuries to
personnel or no injuries, z1 + z2 � 1, and E1 and E2 rep-
resent the evaluation values of injuries to personnel or no
injuries, according to the proportion of personnel with or
without injuries in a certain scenario, respectively, to take
the value.

Combining the above factors, the danger level evaluation
model of AV precrash scenario is

P � n1C + n2D + n3E, (4)

where n1, n2, n3 are the weight values of indicators C, D, E,
respectively, and n1 + n2 + n3 � 1.
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Figure 6: Reconstructing precrash scenarios for AVs through visual means.
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4.2. Calculating the Weight of Each Evaluation Index Using
theAnalyticHierarchyProcess. In this section, the weights of
each evaluation indicator will be calculated using the ana-
lytic hierarchy process (AHP) methodology. Te basic idea
of the AHP is to frst establish a hierarchical structure that
describes the functions and characteristics of the system and
then compare the relative relationships between evaluation
factors by pairwise comparison. Trough the calculation,
sorting, and inspection of the judgment matrix, the weights
of each indicator are obtained, and the analysis results are
obtained. Te specifc steps are as follows [29].

4.2.1. Constructing a Judgment Matrix. Based on the ref-
erence values of the evaluation indicators and the relative

importance between two or two evaluation indicators, the
judgment matrix is constructed as

S � aij 
n×n

(i, j � 1, 2, . . . , n), (5)

wherein aij � f(xi, xj), aij > 0, aii � 1.
Te signifcance of the two evaluation indicators is refected

by the judgmentmatrix value, which ranges from 1 to 9. Table 5
provides a breakdown of the meaning behind each value.

Taking the degree of damage to the vehicle as an
example, according to the reference values of the eval-
uation indexes in Table 5, the corresponding judgment
matrix of evaluation indexes is drawn, as shown in
Table 6.

Table 6 displays the judgment matrix as follows:

Table 4: Results of one-way ANOVA and NPar test of precrash scenarios with diferent driving modes.

Precrash
scenarios

Autonomous
driving

Driving
takeover

Conventional
driving ANOVA

(mean± standard deviation)
NPar test

N % N % N % Chi-square value p value
1 101 43.16 5 6.10 36 21.43 0.236± 0.186 69.491 ≤0.00 ∗
2 31 13.25 13 15.85 20 11.90 0.137± 0.020 1.313 0.519
3 22 9.40 12 14.63 8 4.76 0.096± 0.049 11.851 0.003∗
4 12 5.13 8 9.76 17 10.12 0.083± 0.028 4.508 0.105
5 11 4.70 15 18.29 8 4.76 0.093± 0.078 31.508 ≤0.00 ∗
6 9 3.85 8 9.76 7 4.17 0.059± 0.033 8.714 0.0 3∗
7 4 1.71 2 2.44 14 8.33 0.042± 0.036 15.200 0.00 ∗
8 8 3.42 4 4.88 6 3.57 0.040± 0.008 0.667 0.717
9 2 0.85 3 3.66 8 4.76 0.031± 0.020 6.091 0.048∗
10 6 2.56 2 2.44 4 2.38 0.025± 0.001 0.000 1.000
11 3 1.28 2 2.44 6 3.57 0.024± 0.011 2.235 0.327
12 2 0.85 2 2.44 7 4.17 0.025± 0.017 5.333 0.069
13 5 2.14 0 0.00 4 2.38 0.015± 0.013 0.091 0.763
14 2 0.85 0 0.00 5 2.98 0.013± 0.015 2.778 0.096
15 3 1.28 0 0.00 2 1.19 0.008± 0.007 0.000 1.000
16 0 0.00 3 3.66 2 1.19 0.016± 0.019 3.000 0.083
17 2 0.85 1 1.22 1 0.60 0.009± 0.003 1.000 0.607
18 3 1.28 0 0.00 1 0.60 0.006± 0.006 1.000 0.317
19 0 0.00 0 0.00 4 2.38 0.008± 0.014 — —
20 2 0.85 0 0.00 1 0.60 0.005± 0.004 0.333 0.564
21 2 0.85 0 0.00 1 0.60 0.005± 0.004 0.333 0.564
22 1 0.43 1 1.22 1 0.60 0.007± 0.004 1.600 0.449
23 0 0.00 1 1.22 0 0.00 0.004± 0.007 — —
24 3 1.28 0 0.00 5 2.98 0.014± 0.015 1.600 0.206
F� 4.338 p≤ 0.001∗

Note. ∗Reject the null hypothesis at the 5% level. Te signifcance of the bold values is that the p value of the NPar test results is less than 5%, which indicates
that the null hypothesis is rejected at the 5% level, and that the proportions of the diferent precrash scenario types show signifcant diferences for the three
driving modes overall.
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Macro-statistical
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The number of vehicles
involved in the crash

The frequency
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Evaluation Elements

Evaluation Indexes

Figure 7: Establishment process of precrash scenario evaluation system for AV.
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. (6)

4.2.2. Calculation of Evaluation IndicatorWeights. Once the
judgment matrix S is constructed, the next step
involves calculating the weights of the n evaluation in-
dicators x1, x2, . . . , xn within the evaluation system and
checking the consistency of the judgment matrix. CR
is used for this purpose, and if CR <0.1, it indicates that
the judgment matrix satisfes the consistency re-
quirements. RI is the average random consistency index,
with values shown in Table 7, where n is the number of
indicators.

Te steps for calculating the evaluation index weights
and checking the consistency of the judgment matrix are as
follows:

(a) Normalize the judgment matrix by column
(b) Add up the rows to obtain the sum vector
(c) Normalize the sum vector to obtain the weight

vector
(d) Calculate the largest eigenvalue of the judgment

matrix S
(e) Calculate the consistency index of the judgment

matrix S

Take the vehicle damage degree D � y1D1 + y2D2 +

y3D3 + y4D4 as an example to calculate the weight of each of

its indicators. Sum the judgment matrix S by row to get the
vector, and normalize the sum vector to get the weight vector
as

W1 �

0.558

0.263
0.122

0.057

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Te maximum characteristic root of judgment matrix S
is λmax � 4.117, CI� (λmax − n)/(n − 1); when n� 4,
according to Table 7, RI� 0.90, CR�CI/RI� 0.039< 0.1, and
the judgment matrix meets the consistency requirements.
Terefore, the weights of vehicle damage degree index
y1, y2 y3, y4 are 0.558, 0.263, 0.122, 0.057, respectively.

Te samemethod was used to calculate the metrics of the
hazard level evaluation model for the AV precrash scenarios,
and the results of the calculations were counted in the
comprehensive evaluation table of the hazard level of in-
dividual AV precrash scenarios, as shown in Table 8.

4.3. EvaluationResults ofDiferentDrivingModes for Precrash
Scenario. After calculating the weights of each evaluation
index, this paper assigns scores to the danger level of dif-
ferent precrash scenarios and their driving modes, with
higher scores representing their corresponding higher
danger level. However, the scoring method is solely intended
for comparing diferent driving modes within a specifc
scenario. Since scenario 1, scenario 2b, and scenario 3 have
a higher proportion of precrash scenarios with AV and more
crashes have occurred compared to other scenarios, which

Table 5: Reference values for evaluation indicators using the AHP [30].

Factor xi compared
to factor xj

f(xi, xj) f(xj, xi)

Equal importance 1 1
Moderate importance 3 1/3
Strong importance 5 1/5
Very strong importance 7 1/7
Extreme importance 9 1/9
Between two adjacent judgments 2, 4, 6, 8 1/2, 1/4, 1/6, 1/8

Table 6: Importance relationship of evaluation indicators for vehicle damage degree.

Evaluation indexes
Major damage Moderate damage Minor damage Undamaged

Major damage 1 3 5 7
Moderate damage 1/3 1 3 5
Minor damage 1/5 1/3 1 3
Undamaged 1/7 1/5 1/3 1

Table 7: Random index (RI).

n 2 3 4 5 6 7 8 9 10
RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

12 Journal of Advanced Transportation



can provide a more adequate source of data, these three
scenarios with diferent driving modes are selected for
evaluation.

According to equations (1)–(4) and the evaluationmodel
indicators in Table 8, the scores for each indicator in this
scenario were calculated.Te number of vehicles involved in
the crash was taken as the average value at the time of the
crash, and the crash frequency, vehicle damage levels, and
personal injury indicators were taken as the proportion of
a certain driving mode. Te calculation results are shown in
Table 9.

According to the above results, in scenario 1, the danger
level scoring value: autonomous driving> conventional
driving> driving takeover; it can be known that the danger
level of the autonomous driving mode is the highest while
the danger level of the driving takeover mode is the lowest in
this scenario. In scenario 2b, the danger level scoring value:
conventional driving> autonomous driving> driving take-
over; it can be known that the danger level of the con-
ventional driving mode is the highest while the driving
takeover mode has the highest degree of danger, while the
driving takeover mode has the lowest degree of danger. In
scenario 3, the danger degree score value: driving take-
over> autonomous driving> conventional driving; it can be
known that the driving takeover mode has the highest degree
of danger, while the driving takeover mode has the lowest
degree of danger in this scenario. According to the scoring
and comparative analysis of diferent driving modes in the
precrash scenario, it is concluded that a certain drivingmode
in a specifc precrash scenario will have better performance
and higher safety than other driving modes, which is con-
ducive to reducing the probability of crashes and the severity
of crashes and provides a certain theoretical basis for the
improvement of the ADS and the driver’s perception of risk.

5. Discussion of AV Precrash Scenarios for
Different Driving Modes

5.1. Rear-End: Leading AV Stopped. In Scenario 1, the rear
vehicle is close to a complete stop of the AV. According to
the scoring results in Table 9, this scenario has the highest
rating value of 0.384 for the level of danger of autonomous
driving and the lowest rating value of 0.288 for driving
takeover. It can be seen that in this scenario, the autonomous

driving mode is more likely to cause dangerous rear-end
crashes, which is due to the fact that the braking time of the
ADS is shorter when it stops, and the following CV driver
cannot react to the brakes in time, which leads to the oc-
currence of rear-end crashes.

Typical Scenario. In daylight and clear weather conditions,
a CV is traveling straight on an urban roadway, heading
towards an area associated with an intersection, and
approaching a leading and stopped AV.Tis scenario usually
occurs when there is a trafc signal or when the leading AV
stops and prepares to turn.

Specifcally, since the Perception-Reaction Time (PRT)
of the ADS difers from that of human drivers [31], the
average PRT of human drivers is 1.1 seconds and the 95th
percentile is 2.0 seconds, whereas the PRT of AVs is slightly
lower than that of human drivers, with PRT values ranging
from 0.5 to 1.0 seconds, often calibrated to 0.5 seconds [32].
Terefore, due to the nearly 1-second diference in PRT
between human drivers and AVs, it increases the possibility
of rear-end crashes between AVs and CVs in emergency
situations, such as when pedestrians or pedalcyclists sud-
denly cross the road in front of them or when they have to
stop and wait before an intersection. When the ADS detects
the danger, it will take emergency braking, and the driver of
the CV behind cannot take efective braking in time to avoid
rear-end of the AV in front.

Suggestions. (1) For ADS, due to the signifcant diferences
between the operation of AVs and CVs, it is difcult for
human drivers to adapt to the operation of AVs in mixed
trafc fows [33], and it is recommended that automobile
manufacturers improve the emergency braking in-
terventions of ADS to reduce the risk factor of rear-end
crashes in mixed trafc fows. (2) For human drivers,
when approaching a pedestrian crossing or intersection
while driving and there is a following vehicle behind, they
should pay attention to the surrounding road conditions
in a timely manner, and if an emergency situation re-
quires stopping while in autonomous driving mode, the
driver should concentrate, take over the vehicle in
a timely manner, apply efective braking, and give the
following vehicle enough reaction time to avoid rear-end
crashes.

Table 8: Comprehensive evaluation of the hazard level of a single AV precrash scenario.

Evaluation elements Weights Evaluation indexes Weights

C (macro-statistical characteristics of crashes) 0.137 C1 (the number of vehicles involved in the crash) 0.333
C2 (the frequency of crashes) 0.667

D (vehicle damage levels) 0.239

D1 (major) 0.558
D2 (moderate) 0.263
D3 (minor) 0.122

D4 (undamaged) 0.057

E (personnel injury indicators) 0.623 E1 (injuries to personnel) 0.75
E2 (no injuries) 0.25
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5.2. Lane-Change: CV Traveling in the Same Direction. In
Scenario 2b, a CV changes lanes and collides with an AV
traveling in the same direction. According to the scoring
results in Table 9, this scenario has the highest rating value of
0.329 for the level of danger of conventional driving, while
the autonomous driving and conventional driving have
similar scoring values, with a diference of 0.005.Te driving
takeover has the lowest scoring value of 0.298. It can be seen
that in this scenario, autonomous driving is more prone to
lane-changing crashes, and the degree of danger is similar to
that of the conventional driving, which is due to the in-
accurate recognition of the lane-changing intention of the
other vehicle by the ADS, which leads to lane-changing
crashes.

Typical Scenario. In daytime and clear weather conditions,
a CV changing lanes on a nonintersection urban road en-
croaches on an AV traveling in the same direction. Tis
scenario usually occurs when a CV overtakes a vehicle or
when vehicles merge.

Specifcally, although the ADS can sense the in-
stantaneous position and speed of CVs changing lanes, it
is difcult to determine the intention and trajectory of
CVs changing lanes [34], and the AV cannot reasonably
control the traveling speed when overtaking or merging
with CVs, while the real-time potential risk of CVs
changing lanes is difcult to predict [35], and the fol-
lowing distance is too close, and the LIDAR of the AVs is
not sensitive enough to react, which leads to the in-
sufcient path planning of the ADS and then a lane-
change crash.

Suggestions. (1) For ADS, the development and application
of obstacle detection and avoidance systems are benefcial
for drivers to safely avoid obstacles and prevent crashes
caused by lane changing of CV [36]. It is recommended
that automobile manufacturers optimize various sensors
for obstacle detection to improve the obstacle avoidance
performance of ADS. (2) For human drivers, when the
AV is faced with an impending lane change by a CV in
front of it, the drivers need to concentrate, take over the
vehicle manually in time, and control the speed rea-
sonably to maintain the distance between the front and
rear vehicles, so as to reduce the risk of lane change
crashes.

5.3. Rear-End: Leading AV Decelerating. In Scenario 3, the
rear vehicle approaches and rear-ends a slowing AV. Sce-
nario 3 difers from Scenario 1 because the AV in front was
in the middle of slowing down and had not yet fully stopped
at the moment of the crash. According to the scoring results
in Table 9, this scenario has the highest rating value of 0.461
for the level of danger of driving takeover and the lowest
rating value of 0.319 for conventional driving. It can be seen
that in this scenario, both the autonomous driving and
driving takeover are more likely to have rear-end crashes,
which is due to the fact that in the mixed road trafc fow,
when there are pedestrians, pedalcyclists, or a sudden de-
celeration of the front vehicle in front of them, the ADS will
slow down accordingly, but the driver will overreact to the
emergency situation in order to take over the vehicle and
slow it down, which will lead to rear-end crashes of the rear
vehicle.

Typical Scenario. In daylight and clear weather conditions,
a CV is traveling straight ahead on an urban roadway,
approaching an area associated with an intersection and
approaching an AV that is leading and decelerating. Tis
scenario usually occurs with trafc signals or in complex
mixed trafc fow environments.

Specifcally, the diference between the PRT of the ADS
and the human driver obviously leads to the occurrence of
crashes in this scenario, where the AV suddenly slows down
and the driver of the vehicle behind cannot brake in time.
Moreover, the crash avoidance system of AVs in complex
road environments is not perfect enough [37], and more
complex situations will occur in mixed trafc fows near
intersections, where the sensing, planning, decision making,
and control of the ADS are not yet able to cope with complex
road environments well, and drivers taking over the vehicle
in emergencies may also produce overaggressive braking,
which results in rear-end crashes where the rear-end vehicle
is unable to react in a timely manner. Te driver may also
produce aggressive braking when taking over the vehicle in
an emergency, resulting in rear-end crashes when the vehicle
cannot react in time.

Suggestions. (1) For ADS, an important cause of crash is the
excessive braking due to encountering complex situations.
Te automatic preventive braking (APB) is to avoid rear-end
crashes without afecting driving comfort and trafc

Table 9: Calculation results of the danger level of diferent driving modes in the AV precrash scenario.

Scenario Driving
mode C1 (N) C2 (%) D1 (%) D2 (%) D3 (%) D4 (%) E1 (%) E2 (%) Rating value

1
Autonomous driving 2.01 43.16 0.99 10.89 81.19 6.93 20.79 79.21 0.384
Driving takeover 2 6.10 0.00 20.00 80.00 0.00 0.00 100.00 0.288

Conventional driving 2 21.43 2.78 16.67 66.67 13.89 16.67 83.33 0.354

2b
Autonomous driving 2 12.39 0.00 17.24 75.86 6.90 10.34 89.66 0.324
Driving takeover 2 13.41 0.00 27.27 72.73 0.00 0.00 100.00 0.298

Conventional driving 2.2 8.93 6.67 26.67 60.00 6.67 6.67 93.33 0.329

3
Autonomous driving 2 9.40 4.55 13.64 81.82 0.00 13.64 86.36 0.337
Driving takeover 2 14.63 8.33 25.00 58.33 8.33 50.00 50.00 0.461

Conventional driving 2 4.76 0.00 0.00 100.00 0.00 12.50 87.50 0.319
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efciency by applying lighter braking earlier [38]. It is
recommended that automobile manufacturers develop more
efcient APB systems to improve the safety of AVs when
braking is required. (2) For human drivers, in the complex
road environment with following vehicles, they should
predict the movement trajectory of the pedestrians or
pedalcyclists, and in the case of the need to decelerate to
avoid a crash, the drivers should focus on taking over and
manually driving the vehicle in advance, braking and de-
celerating smoothly, so as to avoid overly hasty braking by
the ADS or the driver generating a stress reaction, thus
avoiding the rear-end crashes.

6. Conclusion

In order to understand the developmental testing of three
driving modes of AVs in diferent scenarios and the safety of
human-machine codriving, this study compares and ana-
lyzes the precrash scenarios of the three driving modes. Te
precrash scenario typology defned by the USDOT in 2007 is
used to map 34 precrash scenarios of AVs.Trough statistics
and comparative analysis of crash data, it is verifed that
diferent precrash scenarios show signifcant diferences in
the proportion of autonomous driving, driving takeover, and
conventional driving modes overall. Meanwhile, there are
signifcant diferences between autonomous driving, driving
takeover, and conventional driving modes in six scenarios
such as “Lead AV stopped” and “Lead AV decelerating.”

In order to analyze the relative degree of danger of
diferent driving modes in the precrash scenario of AV,
a comprehensive evaluation was conducted using the ana-
lytic hierarchy process (AHP) on indicators such as macro-
statistical characteristics of crashes, vehicle damage levels,
and personal injury conditions. A risk assessment model for
precrash scenarios for AV was established, and three pre-
crash scenarios with the highest frequency of crashes were
selected for analysis. Te results show that in the scenario of
“Lead AV stopped,” the autonomous driving mode has the
highest rating, which means that the scenario has the
greatest degree of danger. In the scenario of “CV changing
lanes in the same direction,” the conventional driving mode
has the highest rating. And in the scenario of “Lead AV
decelerating,” the driving takeover mode was rated the
highest.

Te crash characteristics and causes of three typical
scenarios are analyzed from the perspective of the ADS and
human driver. Improvements to emergency braking in-
terventions and APB systems for AVs, as well as the de-
velopment of a reliable decision-making algorithm to
determine when the ADS should stop or slow down [39], can
reduce the risk of rear-end crashes in mixed trafc. Addi-
tionally, enhancing sensors for obstacle detection and re-
fning the lane-changing algorithm of the ADS can improve
the system’s obstacle avoidance capabilities and allow for
earlier and more accurate identifcation of lane-changing
intentions of CVs in mixed trafc fows [40]. For drivers in
complex environments requiring stopping or decelerating,
early switch to conventional driving could prevent tailgating
from excessive braking. For imminent front vehicle lane-

changes, taking over the vehicle manually can reduce the risk
of lane change crashes. Scenario comparisons by diferent
driving modes inform the testing of ADS and the safety of
human-machine codriving.

Tere are certain limitations in this study, namely, that
the assessment of precrash scenarios of AVs is largely
contingent on the precision of California DMV crash re-
ports. Tese reports do furnish an ample amount of in-
formation for precrash scenarios analysis, but details such as
prior vehicle motion parameters and trafc fow are un-
attainable. In the future, a more extensive range of AV crash
data can ofer further verifcation of the study’s outcomes.
Meanwhile, AVs are still in a testing state, and driving
behavior in mixed trafc fows is still conservative. With the
maturity of the ADS and the full-scale input of AVs, diferent
precrash scenarios and driving modes need to be reevaluated
and analyzed.
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