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Railway capacity estimation problem is typically defned as estimating the maximum number of trains that can be operated in
a railway section within a given time interval. However, trains with diferent speeds, routes, and stopping patterns in a railway
network will likely compete for the limited capacity of network nodes and sections. As these trains may provide diferent services,
it is ambiguous to simply indicate the network capacity by a scalar number of trains. To comprehensively estimate and interpret
the railway capacity considering the capacity competition between heterogeneous trains, we propose a multiobjective perspective
for the capacity estimation problem to enrich the capacity theory while handling the competition among trains with diferent
routes and stopping patterns. Based on a time-space network timetable saturation model, we extend the multiobjective capacity
estimation approach to the detailed timetable level by optimizing the saturated timetable under capacity estimation objectives with
respect to diferent routes and stopping patterns. With the ε-constraint method, we can obtain the Pareto front of saturated
timetables, i.e., a set of nondominated optimized timetables that no more candidate train can be additionally scheduled.Te result
is a more comprehensive capacity representation than a single absolute scalar number. A case study is conducted on a combined
high-speed and intercity network of Zhengzhou Railway group in China. An extensive set of Pareto-optimal saturated timetables
describing the efects on the capacity of the railway network is obtained. Te results can help infrastructure managers select
saturated timetables as the capacity utilization reference by considering the trade-of between time indexes from passengers’ and
operators’ perspectives.

1. Introduction

1.1. Background. Te intensive capacity utilization of rail-
way infrastructure has become the bottleneck restriction for
improving passenger mobility. Before implementing the
capacity enhancement measurements [1] (e.g., updating the
signal system and building some extra tracks), an important
method for increasing the railway capacity is to optimize the
railway trafc pattern to reduce the capacity loss as far as
possible.

Railway capacity is subject to many criteria, which can be
classifed into technical and operational factors. Technical
factors include track layouts, the performance and the

confguration of the signaling system, and train speed,
whereas operational factors concern timetables, implying
the trafc on infrastructures. In this paper, we discuss the
railway capacity only by considering the operation factors
and regard the facility factor as given. Te trains with mixed
routes and with mixed stopping patterns share the same
railway corridor, resulting in capacity competition. Al-
though these complicated train routes and stopping patterns
ensure the minimum transfer for passengers by the diversity
of train routes and maximize the average speed of trains by
diversifying the stopping patterns, the capacity is strongly
infuenced by the complicated trafc mix. Terefore, it
would be very necessary to estimate the capacity loss of
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implementing these mixed routes and stopping patterns and
analyze the relationship between the capacity performance
and other timetable performance aspects from operators’
and passengers’ perspectives.

In those railways with abundant capacity, the railway
company tends to minimize the operation cost to satisfy the
passenger or freight demand and evaluate the timetable
through economic performance indexes. In these cases, the
maximization of capacity utilization is not necessarily
a performance index. Tey do not push the number of trains
to the technical maximum but rather limit it such that
a reasonable level of service might be expected [2]. However,
in some capacity-intensive timetabling scenarios (i.e.,
a railway corridor where the passenger or freight demand is
far over the capacity), the train capacity utilization becomes
the most concerning performance index. In these cases, the
more trains are scheduled, the higher income the railway
company gets in general, but the transportation service
quality (e.g., the average speed and the possibility of delays)
might decrease when toomany trains are scheduled. In other
words, the operation object of these railways is to maximize
the carrying capacity while guaranteeing the worse ac-
ceptable service quality-related performance indexes. For
these capacity-intensive railways, before the train scheduling
procedure, the trafc managers need to estimate the railway
capacity in advance to decide the upper bound of the
candidate trains so as to decide the size of the candidate train
pool before the timetabling stage.

For analyzing the impact of mixed trafc (i.e., mixed
routes and mixed stopping patterns) on capacity, we frst
introduce a timetable saturation method for estimating the
railway capacity under mixed train trafc based on a set of
diferent objectives under the classifcation of competition
train groups. Te relations between railway capacity and
timetable performances of operation-centric and passenger-
centric are analyzed from the Pareto front. Te correlations
between railway capacity and service quality-related time-
table performances are helpful for railway schedulers to
arrange the trafc at the bottleneck sections better to achieve
maximum capacity utilization.

Te remainder of the paper is organized as follows.
Section 1.2 gives the background introduction and the lit-
erature review of the related research. Section 2 describes the
railway capacity estimation problem with mixed routes and
stopping patterns formally. Ten, a time-space network
representation followed by an associated integer pro-
gramming model is proposed in Section 3. A Lagrangian
relaxation-based heuristic algorithm is proposed to solve the
ε-constraint model for obtaining the Pareto front to solve the
model efciently. Section 5 provides a case study employing
the real-world instances of Zhengzhou Railway group to
show the capacity estimation result and related comparison
between the capacity and other timetable performance
indexes.

1.2. LiteratureReview. Railway capacity is defned according
to the diferent operation environments of railway systems
in diferent countries, as the enterprise architectures,

transportation volumes, and trafc patterns are diverse. Te
most common defnition describes practical capacity as “the
total number of possible paths in a defned time window,
considering the actual path mix or known developments
respectively and the IM’s own assumptions in nodes, in-
dividual lines or part of the network with market-oriented
quality” [3]. Tis defnition describes the railway capacity in
a static and deterministic manner, assuming the corre-
sponding timetables can be executed without disturbances.
Besides, several studies apply an extending defnition con-
sidering potential train delay, as well as the robustness of the
corresponding timetables. Tese studies regard the capacity
as a “resilient” value corresponding to the level of feasibility
in practice (e.g., Yuan and Hansen [4] and De Kort et al. [5]),
as the higher number of scheduled trains might result in
more frequent consecutive delays and more severe delay
propagations. In this paper, we neglect the possibility of train
delay caused by high-capacity utilization and adopt the
traditional static and deterministic capacity defnition.
Several categories of capacity estimation methods have been
proposed based on diferent fundamental methodologies:
analytical, timetable-based, and simulation methods [6].

Te analytical method calculates the capacity by pro-
posing capacity calculation formulations. Te formulations
consist of capacity-related items, such as the minimum
headway and the capacity loss caused by the mixed trafc.
Tese capacity calculation formulations are able to work
without determining a specifc timetable. Te parameters
can be calibrated by the railway trafc practice of similar
railway lines. Te simple prerequisite of the analytical
method allows it to be successfully performed in cases where
detailed information is not given (e.g., the performance of
the signaling system, the layout of the railway lines, or the
timetables). However, the results given by the analytical
methods are not as detailed and concrete compared with
timetable-based or simulation-based methods. Armstrong
and Preston [7] regard the service quality performance of
railway stations as impact factors of railway capacity and
investigate the diferent capacity utilization strategies on
diferent service levels. Lai et al. [8] propose a normalized
value of base train equivalents, which can approximately
estimate the capacity of railway sections with mixed trafc.
Based on queueing theory, Weik et al. [9] determine the
railway capacity with given service quality constraints im-
plied by consecutive delays. Rotoli et al. [10] use the capacity
calculation formulation to estimate the capacity occupation
level of the nodes and corridors of railway networks.
Goverde [11] describes a linear system description of
a railway timetable in max-plus algebra, and it can be applied
for timetable compression.

Te timetable-based methods are often used in the
operational phase when the timetable structure is pre-
defned. According to the level of freedom when tackling the
train schedule, the timetable-based methods can be further
classifed into timetable compression and timetable satu-
ration methods. Te well-known timetable compression
method recommended by UIC 406 leafet [3] and its updated
version [12] are widely used to calculate the capacity oc-
cupation. Tis timetable-dependent method provides the
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capacity occupation level of specifc timetables with fxed
train orders. In contrast to analytical methods, the timetable
compression method requires detailed data in terms of
timetabling constraints, such as the blocking time data for
determining the minimum headway between two successive
trains. To increase the level of fexibility of scheduling trains,
Landex [13] and Landex [14] randomly generate timetables
with various combinations of trains and structures and
estimate the overall capacity performances of these time-
tables. Tese methods can be used to evaluate the overall
capacity consumption without knowing the exact timetables
and can be applied in the planning and designing phases of
railway systems. Jensen et al. [15] propose a mixed-trafc
capacity estimation framework by searching timetable
structures using branch-and-bound and tabu search heu-
ristics, where a timetable compression method is embedded.
Besides, many studies apply the timetable compression
method to investigate the impact of operational or technical
factors on railway capacity, which can be referred to Jensen
et al. [16], Goverde et al. [17], Jamili [18], and Zhang et al.
[19]. Te UIC 406 method is able to express the capacity use
of one specifc timetable by a simple percentage value, but no
complex capacity competition is refected.

Te timetable saturation method is to insert as many
standardized virtual trains as possible into the original time-
table or to schedule an entirely new saturated timetable to
calculate the maximum number of feasible trains running on
the railway. Tis method could beneft from established train
timetabling research. One popular methodology set to saturate
timetables is Job-shop-based MIP model, such as Pellegrini
et al. [20], Kim et al. [21], and Zhang [22]. To estimate the
railway’s capacity by applying cyclic timetables, Petering et al.
[23] and Zhang and Nie [24] propose optimization models to
minimize the cyclic time horizon length instead of maximizing
the train number. Besides, the time-space network-based
model has got more and more attention in recent time-
tabling research. Reinhardt et al. [25] apply a time-space
network model to build a freight train schedule by minimiz-
ing train cancellation penalties. Yaghini et al. [26] and Yaghini
et al. [27] apply a rough granularity time-space network to
model the railway trafc fow and saturate timetables to es-
timate the capacity in the planning and construction phases.
Te multicommodity fow model can be solved by local
branching, Lagrangian relaxation, or column generation al-
gorithm, showing great potential for solving the capacity es-
timation problem of large-scale instances. Yaghini et al. [27]
conclude that the mixture of train types reduces the railway
capacity by applying the method proposed by Yaghini et al.
[27]. Harrod et al. [28] apply a multicommodity fow model
proposed in Harrod [29] to conduct an experiment of gen-
erating optimal timetables with mixed trains, which needs less
calculation demand compared with other simulation methods.
Similar to the UIC 406 method, the timetable saturation
method can only get the total number of trains that can be
scheduled, but no further information refecting the capacity
competition can be obtained.

Microscopic simulation is a typical method for capacity
utilization validation with given timetables and/or train
dispatching rules. Several general simulation toolkits built

on microscopic and macroscopic level infrastructure are
widely used for capacity estimation. Typically, the simula-
tion method can easily generate disturbances or disruptions
to evaluate the capacity performance under specifc potential
delays. For example, RailSys is used for microscopic sim-
ulation (Lindfeldt [30]), and Rail Trafc Controller (RTC),
reported by Shih et al. [31] and Dingler et al. [32] is used for
macroscopic simulation. Besides, a famous simulation
software, OpenTrack, is applied to simulate the train op-
eration procedure for capacity estimation purposes [33].
Some research combined diferent timetabling or simulation
tools with building the capacity estimation framework. Te
timetable compression or timetable saturation modules are
embedded into the framework, showing the roles of time-
table and facility in the railway capacity, such as Nash and
Huerlimann [33] and Pouryousef and Lautala [34].

Tese methods mentioned above mainly concern the ca-
pacity problem in given railway sections. However, many
preconditions are needed for capacity estimation to avoid
ambiguity as trains compete for capacity in one ormore critical
sections on a network scale. Diferent types of trains are not
always comparable while competing capacity, someasuring the
capacity of a railway network only by the total number of trains
or the percentage of capacity used is ambiguous. Terefore,
a train bundlemethod for diferent types of trains is established
by Vieira et al. [35]. Tis paper proposes an optimization
method to estimate the capacity with given train operating
parameters. A train bundle consists of a fxed proportion of
trains of diferent types and can only be scheduled simulta-
neously. Burdett and Kozan [36] focus on the multimodal
transportation system and propose a linear programming
model to determine the maximum fow of multimodal rolling
stocks. Similarly, Bevrani et al. [37] propose an MIP model
maximizing the number of trains considering the probability of
interference. In order to model the capacity compromise be-
tween diferent (groups of) trains, Mussone and Calvo [38]
proposes a multiobjective model and technique for analyzing
the absolute capacity of railway networks. Tis paper proposes
the idea that capacity analysis should consider the diferent
mixes of trains (i.e., passenger versus freight, competitive
network corridors, and particular train types). Still, this
timetable-free method only considers the capacity at the
strategic level and neglects a more detailed trafc mix.

1.3. Contribution Statements. Tis paper extends the scope
of capacity estimation from simple linear lines to networks.
We design a multiobjective capacity estimation approach in
this paper, including a level of detail of optimized precise
timetabling. Compared with Jensen et al. [15] where gen-
erating the timetable structure by branch-and-bound or tabu
search, we generate saturated timetables that run a maxi-
mum number of trains based on a set of diferent objectives.
Te Pareto front of the optimized solutions corresponds to
a compact representation of the competition of trains with
diferent routes and stopping patterns on the railway net-
work on the timetable level (compared with Mussone and
Calvo [38], which describes the multiobjective capacity
estimation problem on train fow level).
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Temajor contributions of our paper are based on a time-
space network timetable saturation model, and we extend the
multiobjective capacity estimation approach to the detailed
timetable level. Te multiobjective capacity estimation ap-
proach can estimate the railway capacity of various train path
combinations without enumerating timetable structures. With
ε-constraint method, we can obtain the Pareto front of satu-
rated timetables, i.e., a set of nondominated optimized time-
tables that no more candidate train can be additionally
scheduled. Te result is a more comprehensive representation
of capacity than a single absolute scalar number representing
the simple amount of trains that would be able to run or the
percentage of capacity used.

2. Problem Description

2.1. Timetable Saturation for Capacity Estimation. Railway
capacity is defned as the maximum number of trains that
can run on a given railway network during a specifc period.
When the trafc pattern has the highest level of freedom, we
can get the theoretical capacity, which refects the maximum
number of trains that can be scheduled under very homo-
geneous trafc. When the trafc pattern is predefned, the
practical capacity can be estimated by saturating a timetable
with a given candidate train set, in which the trains satisfy
the predefned trafc pattern (i.e., the predefned routes and
stopping patterns).

In order to describe clearly the impact of the mixed
trafc on capacity, we give an illustrative example, as shown
in Figure 1.

Figure 1(a) shows that trains with diferent routes on
a railway network are likely to run through one or more
shared sections. If these sections are the critical bottleneck
sections where the capacity of the section is less than the
requesting train numbers, the capacity competition of trains
with diferent routes occurs. For example, trains with Route
1, 2, and 5 share section c-d where these trains have
competition for the limited capacity. Te three timetables in
Figure 1(a) and other possible timetables not enumerated
here are instances of the saturated timetable representing the
full use of capacity. Te capacity of a railway network is no
longer appropriate to be represented by a single scalar value
(i.e., the maximum number of trains) but as a set of saturated
timetables with various combinations of trains with diferent
routes.

Similar to the capacity competition between trains with
diferent routes, Figure 1(b) shows that applying diferent
stopping patterns might result in various capacities. Te
“direct” trains without intermediate stops guarantee the
fastest running speed but are not friendly to the passengers
visiting the intermediate stations. On the contrary, the “stop-
by-stop” trains can provide maximum accessibility but re-
duce the average speed of trains. Tus, it would be necessary
to use mixed stopping patterns with various skip stops to
maintain the average speed and accessibility. Tus, it is
preferable to describe the capacity of the railway network
with various stopping patterns by a set of saturated time-
tables with diferent combinations of various stopping
patterns rather than a single maximum train number.

With the saturated timetable, the practical capacity can
approximate the number of successfully scheduled trains. It
is worth mentioning that our work is not to build an optimal
timetable in terms of the multidimensional performance
indexes but to estimate the maximum number of trains
under certain service quality by saturating timetable subject
to the related constraints. Tis work often happens before
the train timetabling procedure, even earlier than the train
line plan is decided. Te multiobjective capacity estimation
aims to fnd a balance point between the service quality and
the capacity utilization in a roughmanner for those capacity-
intensive railway lines.

Applying the idea of timetable saturation, we can use an
optimization model to maximize the total number of trains,
with the elementary constraints of the train timetabling
problem and the extra constraint for the predefned trafc
pattern. Terefore, the trafc pattern is included in the
constraint when we build the timetable saturation model. In
the typical capacity estimation problem, the trafc pattern is
given, such as the proportion of train routes, stopping
patterns, as well as the timetable structure. Te number of
successfully scheduled trains can be referred to as the railway
capacity under the given trafc pattern.

2.2. A Multiobjective Approach for Estimating the Mixed
Train Trafc. Te timetable saturation model can calculate
the maximum number of trains under a certain trafc
pattern constraint. However, this result can only refect one
capacity competition consequence under a particular trafc
pattern. When estimating the practical capacity in diferent
trafc patterns infuenced by the various combinations of
trains in categories, one available method is to change the
constraint of the train trafc patterns in the timetable sat-
uration model to get many saturated timetables with dif-
ferent trafc patterns. Tis approach is mainly used to study
the impact of timetable parameters (e.g., running time and
minimum headway) on the capacity. Te other available
method is to extend the objective function to multiobjective
ones to maximize the number of trains in diferent groups
simultaneously. Te Pareto front of this multiobjective
programming can refect the competition relation between
diferent groups of trains, thus describing the practical ca-
pacity globally in diferent but related trafc patterns (i.e.,
the gradient proportion of train routes). Tis approach
mainly focuses on the characteristics of capacity perfor-
mance under the competition of trains that share the same
infrastructure elements.

In this study, we apply the latter solution approach, i.e.,
constructing a multiobjective train timetable saturation model
to calculate the Pareto front of the maximum number of trains
of diferent competition groups. With this multiobjective
programming, we can obtain a Pareto front with many sat-
urated timetable solutions for analyzing the practical capacity
possibilities under the competition of diferent train groups.
Te multiobjective approach can fgure out more saturated
timetables with various trafc patterns, which can be referred to
as the template for improving the capacity utilization in
capacity-intensive railways.
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2.3. Saturated Timetable Performance Indexes. After
obtaining the Pareto front (i.e., the possible saturated
timetables), we need to select the most preferable saturated
timetable by comprehensively analyzing the timetable per-
formance according to the timetabling objectives from both
operator- and passenger-centric points of view. According to
Burdett [39] and Parbo et al. [40], the waiting time, travel
time, delay uncertainty, and transfer maintenance should be
considered in the passenger-centric train timetable perfor-
mance evaluation. Tus, when building a timetable, one can
directly deal with the passenger perspective by building the
passenger-centric objective function and optimizing the
structured timetable performance indexes to obtain an ideal
timetable. However, in this paper, we estimate the timetable
performance in a postevaluation manner, i.e., calculating the
performance indexes of the timetables on the saturated
timetable Pareto front. We propose two categories of
timetable performance indexes, namely operation-centric
and passenger-centric timetable performance indexes,
which are listed in Table 1.

Te calculation method for the above indexes is in-
troduced in Section 4.2. According to the timetable per-
formance indexes, the human-machine interactive
preferable timetable decision method is discussed and in-
troduced in Section 6.

3. The Multiobjective Timetable
Saturation Model

3.1. Notations. We model the timetable saturation problem
in the macroscopic level (stations, platform number, and
segments) and neglect the detailed blocking section in
stations and segments. Te railway network applied in the

paper can be referred to in Figure 2. Te notations used in
the paper are listed in Table 2.

3.2. Time-Space Network Model for Timetable Saturation.
In this study, we propose a time-space-state network (with
simplifed platform assignment improvements compared to
Parbo et al. [41] and Caprara et al. [42]) to describe the train
movement for timetable saturation considering station track
assignment. A continuous time-space path on the network
represents each scheduled train path.Te components of the
time-space network are shown in Figure 3.

Te time-space network shown in Figure 3 has the
following nodes and arcs, describing the diferent pro-
cedures of train mobilities.

(i) Origin or sink node: they are the origin and sink
point of the train time-space fow, which are
denoted by vOf and vSf, respectively.

(ii) Arrival node: it represents the arrival event that
happens at the moment t at station s for train f,
denoted by vf(s, t,A).

(iii) Departure node: it represents the departure event
that happens at the moment t at station s for train f,
denoted by vf(s, t,D).

Correspondingly, the time-space network has three types
of arcs as follows.

(i) Virtual arcs: origin virtual arc is denoted by
af(vOf , v) representing the train coming to the
railway network. Sink virtual arc is denoted by
af(v, vSf) representing the train missing from the
railway network.
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Figure 1: An illustrative example of the impact of mixed trafc on capacity. (a) Diferent routes at sharing sections. (b) Diferent stopping
patterns.
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(ii) Train running arcs: representing that the train
moves from node v (a departure node) to node v′

(an arrival node), denoted by af(v, v′).
(iii) Train dwelling arcs: denoted by af(v, v′, k), repre-

senting that the train dwelling from node v (an
arrival node) to node v′ (a departure node). Note
that the train without stopping is denoted by a dwell
arc with a length of 0.

Te time-space-state network generation follows the
following rules.

(1) Arrival and departure nodes: in order to reduce the
number of time-space nodes, we only generate
the arrival and departure nodes that fall within the
possible scheduling time slot of the train as follows:

Vf � vf(s, t,ω) | ETf ≤ t≤ LTf􏽮 􏽯, ∀s ∈ S,ω ∈ A,D{ }.

(1)

(2) Train running arcs: the train running arc af(v, v′)

can be generated between a pair of time-space nodes
if v � vf(s, t,D) and v′ � vf(s′, t + τ,A) for any
e(s, s′) ∈ E and τ � RTf(e). Considering the accel-
eration and deceleration process, we have the fol-
lowing formula to calculate RTf(e) where
e(s, s′) ∈ E:

RTf(e) � Rf(e) + Accf(s) × δf(s) + Decf s
′

􏼒 􏼓 × δf s
′

􏼒 􏼓.

(2)

Te stopping pattern remains unchanged in the
train timetabling process. Tus, the variable δf(s)

remains constant when we generate the running
arcs. Te above formula considers the running
time diference caused by train stopping in the
time-space arc.

(3) Train dwelling arcs: the train dwelling arc af(v, v′, k)

can be generated between a pair of time-space nodes
if v � vf(s, t,A) and v′ � vf(s, t + τ,D) for any s ∈ S

and DTmin
f (s)≤ τ ≤DTmax

f (s), and k ∈ Ks. Note that
if the train is designated to pass through station s

without stopping, τ is set to 0. Te platform as-
signment is considered in a dimension of the label of
the dwelling arc.

(4) Virtual arcs: we specify a departure time window for
each train to limit the layout fexibility of the train
paths. Te train departure time window constraint is
considered when generating the origin virtual arcs.
Te origin virtual arc af(vOf , v) is generated where
v � vf(s, t,A) ∀ESTf ≤ t≤ LSTf.

3.3. Time-Space Resources. We use the concept of time-space
resource (Meng and Zhou [43]) to model the block section
occupation. Te time-space resource representation can
implicitly denote minimum arrival, departure, or platform
occupation headway restriction between two successive
trains. Every running arc and dwell arc occupies a certain set
of time-space resources (associated with block sections in
segments or platforms in stations).

Table 1: Timetable performance indexes used in the paper.

Timetable performance series Operation-centric Passenger-centric

Performance indexes

(i) Capacity (i) OD coverage
(ii) Average waiting time before boarding
(iii) Travel time onboard
(iv) Passenger needing transfer
(v) Train loading factor

(ii) Average train travel speed
(iii) Heterogeneity
(iv) Extra stopping time
(v) Train departure shift
(vi) Service frequency for stations

Station

Segment

Platform
track
k

Train f1

Train f2

SO
f1
 = S1

s1

e1

s2 s3 s4

e2

e3

e4

e5

e6

SO
f1
 = S3SD

f1
 = S1

SD
f1
 = S4

Sf1 = {s1, s2, s3, s4}
Ef1

 = {e2, e4, e6}

Sf1 = {s1, s2, s3, s4}
Ef1

 = {e1, e3, e5}

A -Arrival event
D -Departure event

Ω

Figure 2: Te railway network structure.
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Table 2: Notations.

Notation Description
Elements and sets for infrastructures and trains
s ∈ S Station element and station set
e ∈ E Segment element and segment set
k ∈ Ks Platform track element and platform track set of station s

f ∈ F Train element and candidate train set
Sf Station set that train f traverse by
sOf , sDf Origin and destination station of train f

Ef Te segment set that train f traverse by
ω ∈ Ω Event type, Ω � A, D{ }, “A” denotes arrival, and “D” denotes departure
Elements and sets for time-space network
t ∈ T Time index (discrete time stamp)
v Generic node of the time-space-state network
vOf , vSf Origin and sink virtual node of train f

vf(s, t,ω) Time-space node of train f at station s at the moment t with event ω
Vf Node of the time-space-state network belongs to train f

a, af Generic arc of the time-space-state network
af(vOf , v), af(v, vSf) Origin and sink virtual arc
af(v, v′) Running arc
af(v, v′, k) Dwelling arc
A+

v , A−
v Arc set entering/leaving node v

Af Te arc set belongs to train f

As
f Te dwelling arc set belongs to train f

g Train group categorized by multiobjective function
G Train group set
Fg Train set that belongs to group g

r ∈ R Time-space resource
Ar Arc set that occupies time-space resource r

εg ε value of train group g

Parameters (numbers)
[ETf , LTf] Te time range of train operation
RTf(e) Running time of train f through segment e

Rf(e) Free fow running time through segment e

Accf(s), Decf(s) Acceleration and deceleration time loss for train stopping at station s

δf(s) Binary indicator denoting whether train f stops at station s. 1 for stop, 0 otherwise
[DTmin

f (s), DTmax
f (s)] Te time range of train f dwells at station s

[ESTf, LSTf] Te departure time window for train f

Decision variables
zf Binary variable, zf � 1 if train f is scheduled, 0 otherwise
xa Binary variable, xa � 1 if the time-space arc a is selected, 0 otherwise
cg Total number of scheduled trains in train group g

λr Te Lagrangian multiplier for time-space resource r

ρg Te Lagrangian multiplier for train group g

Elements and sets for timetable performance indexes calculation
F∗ Successfully scheduled train set
P Passenger set
P∗ Assigned passenger set
Fp Train set that in which the passenger p assigned
Pe

f Passenger set that travels with train f at segment e

fp(n) Te n th train during passenger p’ journey
FCp Available train connection set for passenger p

FCon∗e Successive train pair set running at segment e

Parameters (numbers) for timetable performance indexes calculation
arrs

f, dep
s
f Arrival and departure time of train f at station s

js1 ,s2
Binary indicator, 1 denotes that there exists a train service from s1 to s2

le Te length of segment e

ESTp Te earliest departure time of passenger p
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For railway segments, a train running arcs occupies
a series of time-space resources according to the layout of
block sections in the segment, as shown in Figure 4. For
a running arc, the starting and ending time for occupying
a block section can be calculated according to the blocking
time theory. Note that with the predefned train running
time, many of the block sections are redundant (i.e., the
trains will never have occupation confict in these block
sections if they have no occupation confict in other bot-
tleneck block sections) and can be neglected without losing
the feasibility. Te departure and arrival headways between
two successive trains are guaranteed if the selected train
running and dwell arcs are confict-free with respect to the
time-space resources occupation. For example, in Figure 4,
train f1 and f2 running through the segment with block
section b1, b2, and b3.Te train running arcs of the two trains
occupy a series of predetermined time-space resources. Te
minimum departure and arrival headway (6 and 5, re-
spectively) is guaranteed if the occupation does not overlap.
Te details of the representation can be referred to Liao [44].

For the block section associated with platforms, a train
dwelling arc occupies a series of time-space resources. Te
time interval between the departure time of the former train
and the arrival time of the latter train is described by the
occupation of the time-space resources of the platform. For
example, in Figure 5, as train f1 and f2 use the same
platform, train f2 can only arrive at the platform 3 time
instances after train f1 leave the platform.Tis headway can
be guarantee with the restriction of occupation overlapping.

With the time-space network introduced above, the
timetable saturation problem can be modeled as fnding the
maximum number of train paths selected in the time-space
network without time-space resource occupation confict
(i.e., every time-space resource is nonoccupied or only
occupied by one arc).

3.4. Multiobjective Optimization Model for Saturating the
Timetable. For saturating the timetable to the maximum
number of trains, a network fow-based integer pro-
gramming model is proposed to maximize the number of
trains that are scheduled. Based on the multiobjective

characteristic analysis in Section 2.2, the multiobjective
function of the timetable saturation problem can be written
as follows:

maximizeg∈G 􏽘
f∈Fg

zf

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

s.t.

(3)

􏽘
af∈A+

v

xaf
� 􏽘

af∈A−
v

xaf
, ∀f ∈ F, v ∈ Vf,

(4)

􏽘
af∈A+

vS
f

xaf
� 􏽘

af∈A−

vO
f

xaf
� zf, ∀f ∈ F,

(5)

􏽘
af∈Ar

xaf
≤ 1, ∀r ∈ R,

(6)

zf ∈ 0, 1{ }, ∀f ∈ F, (7)

xa ∈ 0, 1{ }, ∀a ∈ A. (8)

In the objective function (3), G is the train group set,
which can be defned according to the train competition that
needs to be studied (i.e., grouping the trains by routes or
stopping patterns).Te objective function is to maximize the
number of trains for each train group simultaneously.
Formulations (4) and (5) are the fow balance constraints. If
a train is scheduled (zf � 1), the train must have a contin-
uous time-space path from its origin node to its sink node.

Running arc
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Figure 3: Time-space network considering platform assignment.
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Formulation (6) is the time-space resource occupancy
constraint described in 3.3. It ensures that each time-space
resource can only serve one train. Te type of headway it
denoted depends on the type of block section that the time-
space resource r is associated with. If the time-space resource
is associated with a block section in segments, it denotes the
arrival or departure headway. Otherwise, it denotes the
headway of trains using the same platform. Formulations (7)
and (8) indicate the domain of the variables.

3.5. ε-Constraint Reformulation. Tis integer programming
model is a multiobjective programming model. We apply an
ε-constraint reformulation to convert the multiobjective
optimization model to a single-objective one. By this
transformation, we can calculate the Pareto front of the
model, showing all possibilities of the saturated timetable
generated under the competition of trains in diferent
groups. Te model of ε-constraint reformulation can be
written as follows:

maximize cg � 􏽘
f∈Fg

zf

s.t.

cg′ � 􏽘
f∈F

g′

zf ≥ εg′ ∀g
′ ∈ G − g.

Formulation (4)–(8).

(9)

By enumerating the possible value of εg′ , we can compute
the Pareto front of the multiobjective programming. Te
capacity of the railway line can be represented by a solution
of the objective programming, namely,

cg1
, cg2

, . . . , cg|G|
􏼒 􏼓. (10)

Te Pareto front is the set of the dominant optimal
solutions, namely,

PF � cg1
, cg2

, . . . , cg|G|
􏼒 􏼓

1
, . . . , cg1

, cg2
, . . . , cg|G|

􏼒 􏼓
n

􏼨 􏼩,

(11)

in the Pareto front set, each element represents a saturated
timetable. Te entire Pareto front PF represents all possible
saturated timetables considering the competition between
the groups g ∈ G.

4. Solution Approach

4.1. Solving the Timetable Saturation Problem. Te proposed
MIP model with ε-constraint can be solved by commercial
solvers (e.g., CPLEX and Gurobi). However, obtaining
a solution in a reasonable computational time for large-scale
problems is difcult. Terefore, we apply a Lagrangian re-
laxation algorithm with the intensity-based heuristic pro-
posed by Meng and Zhou [43] and make the following
modifcation to the algorithm framework to adapt to the
extra-added ε-constraint.

Te Lagrangian relaxation reformulation of the ε-con-
straint programming can be written as follows:

minimizeλ,ρ maximize 􏽘
f∈Fg1

zf − 􏽘
r∈R

λr 􏽘
af∈Ar

xaf
− 1⎛⎜⎝ ⎞⎟⎠ + 􏽘

g′∈G−g1

ρg′ 􏽘
f∈F

g′

zf − εg′
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (12)

Subject to formulation (4) and (5), and (7) and (8), the
objective function can be reformulated to train-based items
as follows:

minimizeλ,ρ maximize 􏽘
f∈F

ϕfzf − 􏽘
af∈Af

δaxa
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ + 􏽘
r∈R

λr − 􏽘

g′∈G−g1

ρg′εg′

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (13)

where

δa � 􏽘
r∈R: a∈Ar

λr,

ϕf �

1, f ∈ Fg1
,

ρg′ , f ∈ Fg′ .

⎧⎪⎨

⎪⎩

(14)

With this reformulation, the Lagrangian relaxation
problem can be referred to as a series of train-based shortest
path subproblems for each train f, thus can be solved ef-
fciently by directed graph shortest path algorithm (e.g.,
topological ordering). Te Lagrangian relaxation pro-
gramming can be solved according to Meng and Zhou [43].
Te fundamental solution procedure is shown in
Algorithm 1.
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4.2. Saturated Timetable Performance Indexes Calculation.
After generating the saturated timetables, we can compre-
hensively estimate the timetable performance quality by the
performance indexes listed in the following.Te comparison
between these indexes, especially the capacity, and the others
can be very helpful for timetable schedulers to realize what
level the capacity can realize and what level of timetable
performance can be achieved with the competition of cat-
egorized trains. In order to estimate the performance of the
timetable in both operational and passenger-centric aspects
for all saturated timetables (i.e., the dominant optimal so-
lutions in the Pareto front PF), we defne the following
indexes to evaluate the saturated timetable, helping the
timetable scheduler to evaluate and balance the capacity
utilization and the railway trafc quality. Te timetable
performance indexes of a given saturated timetable can be
classifed into two categories as follows.

4.2.1. Operation-Centric Timetable Performance Indexes.
Te successfully scheduled trains form a train set F∗. Te
arrival and departure time of train f at station s can be
parsed from the solution of the time-space network model as
follows:

arrs
f � 􏽘

af v s,t1 ,A( ),v s,t2 ,D( )( )∈Af: xaf
�1

xaf
× t1,

deps
f � 􏽘

af v s,t1 ,A( ),v s,t2 ,D( )( )∈Af: xaf
�1

xaf
× t2.

(15)

Te following operation-centric timetable performance
indexes can be calculated with a given saturated timetable.

(1) Capacity. Te railway capacity is the total number of
trains on the saturated timetable as follows:

􏽘
f∈F∗

zf,
(16)

where C is the railway capacity. Moreover, we can separately
calculate the total number of diferent groups of trains to
better refect the detailed train combination on the saturated
timetable.

(2) Average Train Travel Speed. Te train travel speed is the
average speed during its entire journey, including the
running and dwelling time. Train travel speed refects the
train operation efciency from the perspective of railway
operators and can be calculated as follows:

􏽐f∈F∗􏽐e∈Ef
le

􏽐f∈F∗arr
D
f − depOf

, (17)

where �v is the average train travel speed of the saturated
timetable.

(3) Heterogeneity. Te heterogeneity of the saturated time-
table refects the capability of recovering to its normal
condition while facing unexpected disturbances or disrup-
tions. In general, the higher heterogeneity results in more
signifcant capacity loss. We apply the following defnition of

Input: Te candidate train set F, and the necessary timetabling parameters.
Output: a set of saturated timetables.
Step 1. Initialization
Generate the time-space network according to the conditions introduced in Section 3.2.

Step 2. Calculate utopian point
Calculate the utopian point: solving the following single-objective programming for g ∈ G by the Lagrangian relaxation algorithm

introduced by Meng and Zhou [43].
maximize εmax

g � 􏽐f∈Fg
zf

Formulation (4)–(8)
With the utopian point (εmax

g1
, εmax

g2
, εmax

g3
, . . . , εmax

|G| ), enumerate all possible (εg2
, εg3

, . . . , ε|G|) ∈ E, for all g ∈ G and 0≤ εg ≤ εmax
g .

Step 3. Lagrangian relaxation for train shortest path subproblems
Given (εg2

, εg3
, . . . , ε|G|), solve the Lagrangian relaxation problem iteratively by the shortest path algorithm introduced by Meng

and Zhou [43]. Te Lagrangian relaxation solution can be obtained from the Lagrangian relaxation dual problem.
Step 4. Heuristic method for fxing the Lagrangian relaxation solution
Execute the intensity-based train-by-train scheduling heuristic introduced in Meng and Zhou [43] to get a feasible solution from

Step 3. During the train-by-train scheduling procedure, check whether satisfying the ε-constraint if the train is successfully scheduled
before scheduling a train. If the ε-constraint is violated, abandon the train and turn to the next train.
Step 5. Update ε
Turn to the next (εg2

, εg3
, . . . , ε|G|) ∈ E, go to Step 3.

Step 6. Output timetables
Output the saturated timetables and the associated successfully scheduled train sets F∗.

ALGORITHM 1: Solving the epsilon constraint multiobjective programming.
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heterogeneity to indicate the potential stability and ro-
bustness of the timetable.

􏽐 s,s′( )∈E 􏽐 f,f′( )∈FCon∗e
dep

s
f − dep

s
f′􏼐 􏼑 − arr

s′

f − arr
s′

f′􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
/ FCon

∗
e

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 1􏼒 􏼓

|E|
.

(18)

In the formulation, FCon∗e can be generated with
a given timetable by ordering the trains according to their
departure time at station s for each segment e(s, s′). In the
ordered train list, a pair of successive trains can compose
(f, f′) and to be included in FCon∗e . It is calculated
according to the diference between the actual arrival and
departure headway of two successive trains running
through the same segment.

(4) Extra Stopping Time. Extra stopping time is the diference
between the actual train dwell time and the planned train
dwell time. Tis parameter refects the extra time loss while
maximizing the capacity. A train might allow a faster train to
overtake by extending its dwell time to increase the overall
capacity. Te total extra stopping time can be calculated as
follows:

􏽘
f∈F∗

􏽘
s∈Sf

d
s
f − a

s
f − DT

min
f (s).

(19)

(5) Te Time Shift between Actual and Desired Departure
Time. Tis parameter refects the diference between the
desired scheduling timeslot and the actual one. While in-
creasing the capacity, the train paths might be redistributed,
thus deviating from their desired timeslot. Te total time
shift between actual and desired departure time can be
calculated as follows:

􏽘
f∈F∗

depOf − ESTf.
(20)

(6) Service Frequency for Stations. Tis parameter indicates
the number of trains that stop at the station. It would be
useful to estimate the relationship between capacity and the
workload of the station. Te total service frequency for
stations can be calculated as follows:

􏽘
f∈F∗

􏽘
s∈Sf

zf × δs
f􏼐 􏼑.

(21)

4.2.2. Passenger-Centric Timetable Performance Indexes.
Te passenger-centric timetable performance indexes might
need to be calculated with a saturated timetable and a pas-
senger-to-train assignment result. Terefore, we design
a simple agent-based passenger assignment algorithm to
assign the passengers to trains before calculating the
passenger-related timetable performance index. With
a given saturated timetable and time-dependent passenger

OD matrix, we apply a random-sequence passenger as-
signment algorithm, applying the frst-come-frst-serve
principle with the following assumption for simplifying
the passenger fow assignment procedures.

(1) Te passengers depart within their desired departure
time window.

(2) If more than one train is available in the departure
time window, the passenger prefers the faster train
(the shortest total travel time from his or her origin
to destination).

(3) We assume that passengers have at most one transfer
during the entire journey.

(4) Te trains have maximum loading factors. Te
passenger cannot be assigned to a train that has
already reached its loading limitation.

Te detailed passenger-to-train assignment procedure is
shown in Algorithm 2.

With this approach, we can approximately estimate
passengers’ satisfaction by calculating the passenger-centric
timetable performance indexes with given saturated time-
tables. Note that other sophisticated passenger assignment
methods can replace this approach (e.g., simulation ap-
proaches considering passenger choice behavior and seat
reservation strategy), obtaining a more accurate passenger-
related performance index.

In this paper, we apply the following passenger-centric
timetable performance indexes.

4.2.3. OD Coverage. OD coverage denotes the total amount of
the OD pairs that the saturated timetable can serve. Te sat-
urated timetable might abandon some OD services to increase
the capacity due to the neglecting of intermediate stops. Tis
measurement might reduce the passenger utilities, especially
for those travelers between intermediate stations.

􏽘
s1∈S

􏽘
s2∈S−s1

js1 ,s2
,

(22)

where

js1 ,s2
�

0, ∀f ∈ F
∗
, δs1

f � 0∨ δs2
f � 0,

1, otherwise.

⎧⎨

⎩ (23)

4.2.4. Average Passenger Waiting Time before Boarding.
Tis waiting time at its origin station is a very important
index to passenger experience, as passengers are most
sensitive to this part of time loss.
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􏽐p∈P∗dep
sO

fp(1)

fp(1) − ESTp

P
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (24)

where fp(1) is the frst train that passenger p takes.

4.2.5. Average Travel Time Onboard. Te average travel time
onboard can be calculated as follows:

􏽐p∈P∗arr
sO

fp Fp| |( )

fp Fp

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

− dep
sD

fp(1)

fp(1)

P
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

.
(25)

4.2.6. Number of Lost Direct Passengers. Due to the loading
limitation, some passengers must fnish their journey by
transfer. Te number of lost direct passengers is a direct
measurement of passenger satisfaction. Tis index can be
calculated according to the passenger assignment result.

4.2.7. Average Loading Factor. Te average loading factor is
the index that refects the crowdedness of the train, which
describes the level of service onboard.

􏽐f∈F∗ 􏽐e∈EF
P

e
f

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/ Ef

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

F
∗􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (26)

where Pe
f is the passenger set in which the passenger tra-

verses through the segment e by train f.

5. Case Study

5.1. Experiment Setup. Te multiobjective analyses are
conducted to study the competition of capacity based on
diferent routes and stopping patterns. All of the instances
are conducted on a personal computer with an AMD R9-
5900X CPU, and 64GB of internal memory.Te instances of
the mathematical programming are solved by Gurobi 9.5
with default settings invoked by a C# program (for imple-
menting the ε constraint method). For each instance, the
solving process is terminated when the optimal solution is
obtained unless the solving time reaches the limit of
300 seconds. Tis means the entire Pareto front can be
determined in a couple of hours maximum.

Te data for the case study are extracted from the high-
speed (HSR) and intercity (IC) railway network of
Zhengzhou railway group of China Railway, as shown in
Figure 6(a).Te passenger fow data shown in Figure 6(b) are
greater than the maximum carrying volume, which implies
that some passengers might not be able to be transported due
to capacity limitations. We design the following instances
containing diferent amounts of trains to study the algo-
rithm’s performance, which are described with detailed
confgurations in Tables 3 and 4 for IC trains andHSR trains,
respectively.

5.2. Comparison between Single- and Multiobjective Solution.
In this section, we frst compare the computational per-
formance of Gurobi solver and the Lagrangian relaxation
heuristic. Ten, the comparison between single-objective
and multiobjective capacity estimation results is shown to

Input:A given saturated timetable, passenger set P (each passenger agent p ∈ P has his/her origin station sOp , destination sDp , and their
desired departure time ESTp).
Output: passenger-to-train assignment result Fp and Pe

f.
Step 1. Initialization
Sort the passengers p ∈ P in random order.
Step 2. Direct passenger-to-train assignment
Foreach p ∈ P

Foreach f ∈ F∗

If δ
sO

f

f � δ
sD

f

f � 1 (train f can serve the passenger OD) and ESTp ≤ dep
sOp
f (passenger p can get on train f) and the loading

limitation of train f is satisfed
Fp ≔ Fp ∩ f􏼈 􏼉

If Fp � ∅ Ten P0 ≔ P0 ∩ p􏼈 􏼉, and go to Step 3.
Else select the f ∈ Fp with the earliest departure time at station sOp , and set Fp � f􏼈 􏼉, and go to Step 4.

Step 3. Transfer passenger-to-train assignment
Foreach p ∈ P

Foreach f1 ∈ F∗ and sOp ∈ Sf

Foreach f2 ∈ F∗ and sDp ∈ Sf

If passenger p can fnish his/her journey by transferring from train f1 to train f2, let train pair set FCp ≔ FCp ∪ (f1, f2).
If Fp � ∅ Ten
Else select the (f1, f2) ∈ FCp with the earliest departure time at station sOp , and set Fp � f1, f2􏼈 􏼉.

Step 4. Output passenger assignment result
Output the passenger assignment result:

For each passenger p, the assignment train set Fp � fp(1), fp(2), . . . , f(|Fp|)􏽮 􏽯.
For each train f and each segment e, the loading passenger set Pe

f.

ALGORITHM 2: FCFS passenger-to-train assignment algorithm.
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Figure 6: Continued.
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Figure 6: Te high-speed (HSR) and intercity (IC) railway network of Zhengzhou railway group. (a) Train lines. (b) Passenger fow from
origins to destinations.

Table 3: Te instances for case study (IC).

Instance (departure
time horizon
length, minute)

# Candidate trains
Categorized by lines Categorized by stopping pattern

Total
Zhengjiao IC Zhengji IC Zhengkai IC Direct (0

inter. stop)
Skip-stop

(≥1 inter. stop(s)) Stop-by stop

60 10 10 12 12 12 8 32
120 30 40 38 40 42 26 108
180 53 64 60 65 75 37 177
240 62 90 86 92 101 49 238
300 69 106 96 103 115 53 271

Table 4: Te instances for case study (HSR).

Instance (departure time
horizon length, minute)

# Candidate trains

Categorized by railway lines Categorized by origins and
destinations

Total
Jingguang

HSR (noncross line)
Xulan

HSR (noncross line) Cross line HSR Terminating or originating Passby

60 40 42 42 36 88 124
120 80 74 84 66 172 238
180 124 106 90 92 228 320
240 146 124 110 124 256 380
300 146 124 110 124 256 380
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display the capacity variant under diferent competition
patterns.

As the commercial solver Gurobi can only solve the
small instances, it is necessary to use the LR heuristic for
solving the large-scale instances. Before applying the LR
heuristic, the comparison of Gurobi and LR heuristic is
conducted for small-scale instances to show the reliability
and efectiveness of the LR heuristic. Te results are shown
in Table 5.

Table 5 shows the computational performance com-
parison between Gurobi solver and LR heuristic approach.
As the train timetable saturation problem is difcult to solve,
the Gurobi can only tackle small instances. However, the LR
heuristic approach’s computational performance shows that
it can obtain high-quality solutions in small instances
compared to the Gurobi optimal solution and can solve
large-scale instances in an acceptable computational time.

5.3. Te Capacity of the Mixed Route. In this section, we
conduct a joint analysis between capacity and timetable
performance indexes for the Pareto solutions under the
competition between trains with diferent routes. We cat-
egorize the trains into three categories, namely noncrossline
HSR train, crossline HSR train, and intercity train, by their
routes.

For each instance, we get the Pareto front from the
abovementioned solutions. In the instance of HSR-300
(competition of trains with diferent routes), we get
33 Pareto-optimal solutions (i.e., saturated timetables) to
constitute the Pareto front, which is displayed in Figure 7
with blue dots. Te grey lines in Figure 7 show the total
number of trains. Te related utopian point is also shown in
Figure 7.

It can be concluded from Figure 7 that the Pareto front of
the mixed train route shows the trade-of between crossline
trains and crossline trains. When 97 crossline trains are
scheduled, there is nearly no noncrossline train that can be
scheduled. However, when 120 noncrossline trains are
scheduled, there are still 34 crossline trains that can be
scheduled. With the contour of the total train number, we
can see that the total number of trains reaches the maximum
(174 trains) when the number of crossline trains is 62, and
the number of noncrossline trains is 112.Te Pareto solution
that is closest to the Utopian point is 62,112. It can be
concluded from Figure 7 that some of the crossline trains
seldom have capacity competition with noncrossline trains.
However, nearly all noncrossline trains are likely to have
capacity competition with crossline trains. Terefore,
schedulers should fully use the noncompetitive capacity to
schedule noncrossline trains.

Furthermore, we sample the timetables in the feasible
domain (i.e., fx the numbers of crossline trains and non-
crossline trains and optimize the passenger-related timetable
performance indexes), located on the left-bottom side of the
Pareto front. Figure 8 shows the timetable performance
indexes (namely extra stop time, direct passenger loss, av-
erage loading factor, and average passenger waiting time)
with a given number of crossline and noncrossline trains.

Te x-axis and the y-axis are the numbers of crossline trains
and noncrossline trains, respectively, while the z-axis is
timetable performance indexes.

From Figure 8, we can conclude that, in the capacity-
intensive railway (i.e., the passenger fow reaching the
capacity limit of the railway), the performance indexes
related to passenger accessibility have a positive corre-
lation to the number of scheduled trains, such as the direct
passenger loss (as Figure 8(b)). Tis is because the more
trains are scheduled, the more passengers can be trans-
ported. If passenger accessibility is regarded as the most
important evaluation metric of railway capacity utiliza-
tion, the trafc manager prefers to build a timetable close
to the Pareto front. However, for the performance indexes
related to the service quality, such as the extra stop time
(as Figure 8(a)), the average loading factor (as
Figure 8(c)), and the average passenger waiting time (as
Figure 8(d)), the phenomenon shows that full utilization
of railway capacity might result in the deterioration of
service quality. Te fndings of the results support the
signifcance of the multiobjective capacity estimation
study. Tis may help determine the appropriate train
combination in capacity-intensive railways based on the
evaluation of timetable performance indexes.

Besides, it can be observed in Figure 8 that, on the Pareto
front, diferent combinations of crossline trains and non-
crossline trains lead to various timetable performances.
Terefore, we calculate the timetable performance indexes
for all Pareto solutions based on the Pareto front. Te
timetable performance indexes, which show a strong cor-
relation with the proportion of crossline trains, are reported
in Figure 9. Each point represents a Pareto solution (satu-
rated timetable). Te size of the point is associated with the
capacity (i.e., the total number of scheduled trains). Te
trendline and the corresponding confdence interval are also
displayed in the fgures.

From Figure 9, we can see that the total extra stop time
has a linear negative correlation with the proportion of
crossline train, while the total departure shift time and the
average passenger waiting/onboard time shows a linear
positive correlation with the proportion of crossline train. In
terms of the passenger-centric timetable performance in-
dexes, the OD coverage, the average loading factor, and the
direct passenger loss show a complicated nonlinear corre-
lation to the proportion of crossline trains.

Two conclusions can be drawn from the above data.
First, considering several timetable performance indexes,
such as extra stop time, there is an optimal crossline train
proportion for OD coverage and indirect passenger.Tis can
be a crossline and noncrossline train proportion reference
while scheduling the train timetable. Besides, the passenger-
related timetable performance indexes strongly depend on
the distribution of the passenger OD matrix. As the non-
crossline passenger is dominant to the crossline passenger in
the given passenger OD matrix (63.27% of the passengers
traveling by HSR are noncrossline passengers), the loading
factor shows a monotone decreasing pattern with the in-
crease of the crossline train proportion. Besides, the indirect
passenger shows a “U” shape curve pattern, as a high
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Table 5: Computational performance comparison between Gurobi and LR heuristic (100 iterations) without ε-constraint.

Instance
Init. obj. (# trains) Best obj. (# trains) Opt. gap (%) Computational time (sec)

Gurobi LR heuristic Gurobi LR heuristic Gurobi LR heuristic Gurobi LR heuristic
HSR-60 31 30 31 31 0.00 1.33 7 72
HSR-120 61 60 60 60 0.00 5.62 88 141
HSR-180 92 86 92 91 0.81 6.90 300 205
HSR-240 — 136 — 142 — 19.32 300 281
HSR-300 — 161 — 174 — 33.16 300 300
IC-60 48 40 48 46 0.00 3.32 13 84
IC-120 89 85 89 92 7.35 4.86 107 172
IC-180 — 131 — 138 — 13.88 300 257
IC-240 — 157 — 172 — 26.90 300 300
IC-300 — 216 — 230 — 38.52 300 300
—: cannot get any nonzero feasible solution within 300 seconds.
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proportion of crossline trains might reduce the direct travel
possibility of noncrossline passengers and vice versa. It can
be surmised that when the noncrossline passenger and
crossline passenger are unbalanced, these indexes might
show a diferent distribution. Tese conclusions would be
useful for timetable schedulers to schedule a reasonable
proportion between crossline and noncrossline trains,

considering the above timetable performance indexes when
planning the train line service.

5.4. Te Capacity of Mixed Stopping Pattern. Tis section
also conducts a similar joint analysis for the Pareto solutions
under the competition between trains with diferent
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Figure 9: Timetable performance indexes and capacity by saturated timetables. (a) Total extra stop time. (b) Total departure shift time.
(c) OD coverage. (d) Avg. passenger waiting/onboard time. (e) Average loading factor. (f ) Direct passenger loss.
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stopping patterns. Te trains can be classifed into three
categories according to their stopping pattern, namely direct
train, stop-by-stop train, and skip-stop train. Based on this
train categorization, we solve the multiobjective optimiza-
tion to obtain the Pareto front of the competition of trains
with diferent stop patterns, as shown in Figure 10.

Figure 10 shows the three-dimensional Pareto front of
diferent categories of trains, which is like a “Y” shape. From
Figure 10, we can see that when the number of the stop-
by-stop train is greater than 30, the shape of the Pareto front
is the two branches of the “Y,” as in this area, the major
capacity competition is between direct trains and skip-stop
trains. Each “branch” represents the dominant corre-
sponding train type (the skip-stop train on the left and the
direct train on the right). However, when the number of
stop-by-stop trains is less than 30, the direct and skip-stop
trains can almost reach their maximum value by sacrifcing
them. From the Pareto front, we can conclude that the
railway network’s capacity varies from mixed trafc. Lower
stopping pattern heterogeneity results in higher capacity.
Te diferent mixed train trafc might result in diferent
passenger satisfaction performances. Te detailed perfor-
mance is displayed in Figure 11.

Concerning the timetable performance indexes, the
passenger-independent indexes, such as heterogeneity, de-
parture shifts, and service frequency, have a remarkable
correlation with the total number of trains that can be
scheduled, namely the capacity. Specifcally, the heteroge-
neity is shown to negatively correlate with the total number
of trains, as achieving higher capacity requires a more
compatible stopping pattern to make consecutive trains run
closer. Te correlation between heterogeneity and the total
amount of trains is stronger in this case than in the route
competition cases. Tis phenomenon implies that, in the
capacity competition between trains with stopping patterns,
the very important impact factor on capacity is the com-
patibility of train paths, which can be denoted by hetero-
geneity. Besides, we report the train departure shift time by
the total number of trains and the proportion of direct trains
(with no intermediate stop). Concerning the total amount of

trains, the departure shift time shows a linear trend.
However, concerning the proportion of direct trains, the
departure shift time shows a trend of increasing then de-
creasing with the maximum departure shift time at the
proportion of direct trains of 0.4.

Concerning the loading factor, there is a saddle when the
proportion of direct trains reaches between 0.4 and 0.5.
Specifcally, in Figure 11(d), the loading factor of stop-
by-stop trains increases with the proportion of direct trains.
However, the proportion of direct and skip-stop trains
decreases and then increases as the corresponding pro-
portion increases, as the loading factor depends on the
number of trains available, the number of onboard pas-
sengers, and stopping pattern combinations. Te passenger
average waiting time reaches its maximum when the pro-
portion of direct trains is about 0.4, as the high-capacity
performance reduces the number of trains chosen for the
passengers visiting intermediate stations.

Tese conclusions would be useful for balancing the
number of direct trains (with fewer stops) and local trains to
satisfy the passenger demand and increase the capacity.

6. Discussions

Reviewing our research background, the timetable satura-
tion approach is applied to fgure out the possible maximum
train combinations and the timetable performance for
capacity-intensive railways. Tus, we only focus on the
Pareto front of saturated timetables, and obtaining an op-
timized timetable in terms of operation cost and passengers’
utility is not our frst goal. In this paper, our research focus is
on revealing the correlation between the maximum number
of scheduled trains and the corresponding performance
indexes. From the analysis, we can help trafc managers to
fnd a better balance point between the scheduled train
number and the timetable performance under the condition
of fully utilizing the railway capacity.

However, the multiobjective timetable saturation
method has the following limitations that need to be further
investigated. Firstly, the number of objective functions is
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limited. It would be very difcult to conduct the ε-constraint
method to obtain the Pareto front with many objectives (i.e.,
more than three objectives). Besides, the saturated timetable
cannot be used directly as the objective functions only
consider maximizing the train number rather than the
comprehensive timetabling evaluation metrics. How to use
the saturation timetable solutions is a challenge and becomes
an open question for future research.

To our best understanding of the railway capacity esti-
mation, there are several potential directions to utilize the
capacity evaluation results and the corresponding saturated
timetables. Te capacity estimation results can provide the
upper bound of railway capacity for the train service
planning stage. By reviewing the train service proposal from
the perspective of capacity, the timetable scheduler can give
feedback to the railway operators to make further amend-
ments to their train service proposal. Besides, the capacity
can be used in the train pool generation for the train
timetabling procedure, as generalizing the candidate train
pool is an essential measure to the practical train timetabling
problem.

7. Conclusions

A multiobjective measurement of train capacity is proposed
to extend the original railway capacity defnition. Tis
measurement overcomes the difculty of railway capacity
estimation when facing competition between diferent types
of trains. In mixed trafc with diferent train routes and
stopping patterns, railway capacity estimation is regarded as

getting a set of saturated timetables where timetables with
diferent train combinations are included. By analyzing this
saturated timetable set, we can quantify realistic timetables
and compare diferent capacity utilization strategies under
dense railway trafc to better understand the capacity of
railway networks. In the methodology aspect, we use a time-
space network and a corresponding integer programming
model for saturating the train timetable. An ∈ constraint
method is used to obtain the Pareto solutions.

In the route competition case study, the analysis shows
that the diferent combinations of trains with various routes
might result in diferent capacity performances, and there
are trade-ofs between the maximum total amount of trains
and other timetable quality indexes on both operators’ and
passengers’ views. For the stopping pattern case study, we
are able to quantify diferent Pareto-optimal saturated
timetables from multiple points of view, addressing oper-
ator’s and passengers’ wishes. Te Pareto front describes
a large trade-of between the total amount of trains that can
be scheduled and the service quality indexes that strongly
depend on the stopping pattern design.

Such an analysis is very useful for determining service
intentions, which can be related to a specifc Pareto-optimal
saturated timetable. Tis latter would be a reference for
determining the capacity utilization of a production time-
table. Resolving the trade-of between the various objectives
is able to determine the most desirable heterogeneity level
for the timetable.

In policy, the infrastructure manager can reasonably
distribute the railway capacity (i.e., by arranging the time
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slots for train paths) to diferent users (passenger and freight
operator companies) based on the capacity estimation re-
sults to balance the capacity competition among them. Te
railway passenger and freight operators can refer to the
capacity estimation results to develop their product struc-
tures to better use the remaining unused capacity. Te in-
frastructure managers can also make targeted infrastructure
investments to increase the capacity of the bottlenecks in
accordance with the capacity estimation results.

In practice, timetable schedulers can obtain the upper
bound of the train numbers that satisfy the given quality
performance indexes by this method and refer to these
values to decide the candidate train pool (i.e., the train set
that is ready to be scheduled) in the train line planning stage
under certain service quality index requirements, focusing
on using the railway capacity to the utmost extent. Besides,
the corresponding timetable structures of the saturated
timetable are also very useful for the trafc manager when
scheduling the train paths on the dense railway. Te trafc
manager can refer to the structure of the timetable (i.e., the
scheduling sequence and the corresponding overtaking ar-
rangement) as a template to achieve such a high level of
capacity utilization.

For further research, larger and more networked test
cases can be studied. Moreover, the interactive multi-
objective analysis would enable railway infrastructure
managers to select and investigate attractive solutions on the
Pareto front interactively and dynamically.
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