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Optimal energy-efcient train operation optimization is one of the widely studied areas in transportation science, which can
signifcantly reduce energy consumption that accounts for a large proportion of operating costs. In order to adapt to the complex
and changeable railway line conditions such as gradient, slope length, and speed limit and avoid the error in tracking speed curve,
an optimal driving strategy decision-making (ODSD) model is proposed in this paper. Te model considers the non-fxed
sequence of driving regimes, and the regimes are directly selected in the discrete micro-subsegments of an equal time-division
pattern. To solve this model efciently, an improved ant colony system algorithm with the diference edges (ACSd) is proposed,
which takes the heuristic efect of the diference between the best solutions of two adjacent iterations, i.e., “the diference edges,”
into account. Additionally, energy-efcient heuristic factor and speed heuristic factor are presented to balance energy saving and
speed. Te results demonstrate that ACSd performs better than the basic ant colony system algorithm in solving traveling
salesman problem (TSP) and provides more fexible driving strategies for the ODSD model.

1. Introduction

Transportation energy consumption of China reached 9.0%
of the total energy consumption in 2019 [1], and the railway
sector consumed 14 billion kilowatt hours of electricity in
2021 [2]. Te train operation consumes so much energy, and
thus how to improve energy efciency in train operation has
attracted more attention in recent years. Many energy-
saving strategies have been considered for energy ef-
ciency, such as equipment innovation in lightweight vehicle
body. Despite the fact that such a hardware modifcation can
promote energy conservation, the improvement on train
operations is a highly promising choice for energy saving [3]
since it does not require any costs. Te improvement may be
achieved by solving the train driving regime selection
problem for fnding an optimal sequence of the driving
regimes. An energy-efcient driving model should be de-
veloped before solving this problem.

Ichikawa [4] introduced Pontryagin’s maximum prin-
ciple into an energy-efcient driving model and frst pro-
posed the analytic method for optimizing driving regimes.

Since then, this method has widely been used in the energy-
efcient models [5–9]. Te analytic method refers to getting
the optimal driving regime sequence through strict analytic
function derivation upon the optimal control theory. Spe-
cifcally, the optimal driving regimes of train operation and
the sequence of the regimes are derived through the analytic
equation constructed by Pontryagin’s maximum principle,
and then the location of the regime switching point is de-
rived under diferent constraint conditions.

Te optimal driving regime sequence derived is diferent
from the diferent established energy-efcient models in the
literature. For gentle slopes and short intervals, Milroy [10]
established an optimization model and derived the optimal
driving regime consisting of maximum traction, coasting,
and maximum braking. On this basis, Lee et al. [11] thought
that for longer operating ranges, the optimal driving regime
should include cruise regime. As for the combination of
diferent slopes, Cheng and Howlett [12] derived the optimal
driving regime corresponding to diferent slopes. To es-
tablish a model that adapts to any slope and speed limit, Liu
and Golovitcher [13] divided the cruising into partial
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traction cruising and partial braking cruising and provided
the necessary conditions for the existence of the optimal
switching points between two regimes. Furthermore,
Albrecht and Howlett et al. [14, 15] provided a calculation
formula for the optimal regime switching point on a slope,
while ensuring the minimum local energy. Te results from
the analytic method are accurate but not suitable for solving
the problems with many regime switching points. Te
models established to solve such a problem are often
oversimplifed to the point where there is a gap between
theoretical analysis and practical applications.

To avoid the impact of the simplifcation of the actual
solution, the simulation methods based on the actual situ-
ation of the railway line are often used. For example, Mao
et al. [16] proposed the target-speed-control method, which
allows the train to run within the preset target speed range
and determines the change of driving regimes according to
energy efciency. Feng [17] analyzed the traction energy cost
and transport operation time of trains at diferent target
speeds through computer-aided simulation. However, it is
difcult for such method to determine the accurate target
speed. Moreover, the solutions from such simulation are
rough, and the results cannot be guaranteed to be the global
optimal solution.

Due to the advantages of heuristic search methods such
as genetic algorithm [18–21], ant colony algorithm
[18, 22–24], simulated annealing algorithm [3, 25, 26], and
particle swarm optimization algorithm [27, 28] in solving
nonlinear problems, they have become mainstream tools in
current research on train energy-efcient optimization.
Various heuristic search methods are combined into dif-
ferent energy-efcient models to obtain the optimal com-
bination of driving regimes.

Two typical strategies are usually considered in the
process of establishing a train energy-efcient driving model
when the heuristic search methods are utilized.

One strategy is to preset a relatively fxed sequence of
driving regimes, and then on it the switching points between
driving regimes are searched and a combination of driving
regimes containing the optimal transition point is obtained.
Wong and Ho [29] dynamically allocated the number of
coasting switching points, and the locations of these points
are searched with the genetic algorithm. Similarly, San-
didzadeh and Alai [30] determined switching points of
diferent regimes in a continuous domain with genetic al-
gorithm and ant colony optimization. To fnd the optimal
traction utilization coefcient, braking utilization co-
efcient, cruise position, coasting position, and braking
position, He et al. [31] proposed a simulation model with an
improved diferential evolution algorithm. However, such
models usually can only deal with a relatively fxed regime
sequence, and they are not suitable for those railway lines
whose gradients, slope lengths, and speed limits are kept
with a constant change.

Another strategy is to directly construct a speed curve to
serve as an auxiliary tool to form an optimal driving regime
combination. Te “speed code” model is known for con-
structing speed curve with a lattice composed of discrete
operating intervals and speeds, and then the speed change

points of the curve are obtained through the optimization
search. To construct the speed curve, Lu et al. [18] applied
ant colony algorithm, genetic algorithm, and dynamic
programming to search the speed change points in diferent
lattices on the “speed code” model. Zhan et al. [32] for-
mulated the detailed train speed profle between two stations
as a multiple-phase optimal control model, which is solved
using a pseudo-spectral method. He et al. [33] optimized the
end speed of each discrete subsegment to construct speed
curve based on an improved chicken swarm optimization
algorithm, considering both train energy consumption and
regenerative braking energy. However, in the “speed code”
model, the gradient of the connecting line between adjacent
preset speed points may not reach the maximum dynamic
characteristics of the train (maximum traction or maximum
braking), and thus the optimal regimes derived from Pon-
tryagin’s maximum principle may not be fully utilized.
Furthermore, even if a speed profle has been generated, the
train will still not be able to track the profle accurately under
the driving regimes determined from it since there are speed
errors [34, 35].

A railroad line usually involves some complex condi-
tions, such as many diferent slopes with diferent gradients
and lengths, and these slopes are superimposed with dif-
ferent horizontal curves, as well as diferent speed limits on
diferent gradients. Te established model using the above
two strategies faces difculties in adapting to such complex
conditions. To cope with such conditions mentioned above,
we divide the train running section into many micro-
subsegments. Because the line conditions in such sub-
segments are unchanged, the choice of driving regimes
becomes easier. Hence, with the micro-subsegments, we
propose a novel optimal driving strategy decision-making
(ODSD) model for minimizing energy consumption. In this
model, the required driving regimes rather than the speed
curve can be directly obtained as a driving strategy is directly
represented by a combination of driving regimes, avoiding
the speed tracking error.

On the other hand, there are too many discretized
subsegments in this case, so the driving regime selection
problem becomes a discrete optimization problem for
obtaining a driving regime combination. For solving discrete
optimization problems, ant colony algorithm [36] and its
various variants have been used naturally and widely in
engineering problem [37–42]. An important component of
this algorithm is a record of pheromone trails that refect
colonies’ experiences with previously constructed solutions.
Although the algorithm has the robustness in performance,
it has also some inherent defects in updating pheromone
trails [43]. Traditionally, there are two diferent strategies for
updating pheromone trails: global-best and iteration-best.
However, the former may cause a too-fast convergence of
the algorithm toward some suboptimal solutions, while the
latter may sometimes converge too slowly and lack focus. To
improve the performance of ant colony algorithm, many
scholars have studied the methods of updating pheromone
trails. Afek et al. [44] presented the minimum number of
pheromones necessary for a colony of ants to fnd a food
source. Acharya et al. [45] introduced an exponentially

2 Journal of Advanced Transportation



increasing pheromone deposition approach by artifcial ants.
For updating pheromone value, Myszkowski et al. [46] se-
lected the worst or best ant found solution in a given it-
eration and updated the pheromone value by the worst.
Ivkovic et al. [47] analyzed the efect of diferent pheromone
trail reinforcement strategies and confrmed that numeri-
cally adjustable strategies can signifcantly improve algo-
rithmic performance.

A pheromone updating strategy depends on the type of
problem, heuristic information, conditions, and parameters
[47, 48]. For the driving regime selection problem, the
heuristic efect of the diference between the best solutions of
two adjacent iterations is exploited to update pheromone for
improving computing performance of ant colony system
(ACS algorithm) to deal with many subsegments in
the model.

Te main contributions of this study are as follows:

(1) A novel fexible ODSDmodel is established, which is
not dependent on an unfxed sequence of driving
regimes. Tis model divides the railway section into
multiple micro equal time subsegments, and fnally
the energy-efcient driving regime in each sub-
segment can be obtained directly, which adapts to
complex railway line conditions and avoids the speed
tracking error since there is no need to generate
a speed curve.

(2) An improved ACS algorithm (named ACSd algo-
rithm) is presented. Due to the increasing solving
difculty from many discretized subsegments, the
diference edge strategy is introduced into the ACS
algorithm to improve its global pheromone updating
rule, which can avoid premature convergence and
further improve the optimization performance.

(3) For achieving balance of the average speed and
energy saving on the selection of driving regimes,
heuristic information is presented and introduced
into the ACSd framework in solving the
ODSD model.

Te remaining of this paper is as follows. Te section
“Optimal Train Driving Strategy Decision-Making Model”
constructs the ODSD model with equal time-division pat-
tern. Te section “Solving the ODSD Model with ACSd”
explains the proposed the ACSd algorithm and combines it
with the ODSD model. Te section “Experiments on TSP
with the ACSd Algorithm” tests and analyzes the perfor-
mance of ACSd in solving TSP. Te section “Experiment on
the ODSD Model with ACSd” applies the ODSD model and
the ACSd algorithm to a case and gives the experimental
results. Finally, the section “Conclusions” summarizes the
main fndings.

2. Optimal Train Driving Strategy Decision-
Making Model

2.1. Mathematical Model Formulation. Te shorter the total
running time of a train on the same railway line, the greater
the energy consumption [49]. Tis paper considers

a scenario of timing requirements, i.e., the train runs with
a fxed running time (T) between two adjacent stations. In
the given and fxed running time, the train passes the railway
section with length L from the center O of a station (initial
speed v0 � 0) to the center D of another station (fnal speed
vN � v(T) � 0).

Te objective function of the ODSD model for the
energy-efcient train is the total trip energy consumption.
Since the maximum energy consumption of train traction
systems can account for 85% of the total energy con-
sumption [43], we aim to minimize the energy consumption
of the train traction system. Terefore, the basic model for
the energy consumption to be minimized is the work done
by the traction power [3, 50]:

E � min 
T

0
u

+
(t)v(t)dt

s.t

_x(t) � v(t);

_v(t) � u(t) − r(v(t));

x(0) � 0, x(T) � L, v(0) � 0, v(T) � 0;

v(t)≥ 0, u(t) ∈ −umin, umax(v(t)) ,

(1)

where v(t) is the speed of train; x(t) is the distance traveled
over time; _v(t) is the derivative of speed to time; r(v(t)) is
the resistance experienced by a unit mass train traveling at
speed v(t); and u(t) is the traction force or braking force,
when u(t)≥ 0 is the traction force, and when u(t)< 0 is the
braking force; the integral only considers the positive
traction force, i.e., u+(t) � max(u(t), 0).

2.2. Equal Time-Division Pattern. Our aim is to fnd out
a driving strategy that meets the above conditions and
minimizes the energy consumption of the train.Tis strategy
is composed of a driving regime sequence and its switching
points.

For a free selection of driving regimes instead of a fxed
sequence, we divide the total running time into N micro
equal time subsegments (Figure 1), represented by
SEi(i � 1, 2, . . . , N).

We name the structure in Figure 1 the equal time-
division pattern. Te total energy is the sum of the
energy of each subsegment according to Figure 1. With
this discrete time subsegment SEi, equation (1) is replaced
by

E � min
N

i�1
Ei, (2)

where Ei � u+(t)v(t)∆t, which is the energy consumption of
the train running in SEi. Te consumed energy in SEi de-
pends on traction force under the railway line conditions of
SEi. Besides, the regime ri, the inlet speed vi−1 (arriving at
SEi), and the time step size Δt make a diference in the
amount of energy consumed in SEi.

Let the equal time subsegment size ∆t � T/N. Tus, the
running distance of the train in segment SEi is as follows:
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Si � vi−1 · ∆t +
1
2

a∆t
2
,

a �
Ft − Fb

m
− R − Rg,

(3)

where a is the acceleration and vi−1 is the inlet speed of SEi.m
denotes the mass of a train, Ft is the traction force, Fb is the
braking force, and R is the rolling resistance. Rg is the re-
sistance caused by the slope, and Rg � g · sin θ, where θ is
the gradient of slope and g is gravitational acceleration. ∆t is
the equal time span corresponding to each subsegment, and
there is always a certain amount of coasting time for the
conversion from traction to braking, and vice versa. Con-
sequently, the equal time subsegment size depends on the
least regime-conversion time.

Tus, the sum of the running distance Si in each equal
time subsegment is equal to the total trip length L:

L � 
N

i�1
Si. (4)

Te exit speed of SEi (expressed as vi,exit) is equal to the
inlet speed of SEi+1 (expressed as vi+1,inlet):

vi,exit � vi+1,inlet. (5)

Te speed in any subsegment should not exceed the
speed limit vmax,i required by SEi:

0≤ vi ≤ vmax,i. (6)

Te energy consumption of trains is controlled by the
regimes and the line conditions (the gradient, slope length,
speed limit, etc.). In a subsegment, the gradient, slope length,
and speed limit are constants, but the regime is the only
decision variable in the energy consumption function. Tat
is to say, in a subsegment, the selection of regimes has
nothing to do with changing line conditions. Terefore, with
these subsegments, the equal time-division pattern ofers the
opportunity to determine the driving strategy for a variety of
line conditions, i.e., the advantage of the pattern is that the

ODSD model can adapt to the changes of line conditions.
Furthermore, the pattern is provided to the ACSd algorithm
for regime selections: select only one regime in each sub-
segment and patch each one sequentially into a combination
of regimes, i.e., a regime strategy (or a solution).

3. Solving the ODSD Model with ACSd

In this section, we propose an improved ant colony system
for the resolution of the ODSD model, which mainly in-
volves the regime representation, the regime choice rule, and
the pheromone update rule.

3.1. Te Regime Representation. Te train operation from
one station to the next involves three stages.

Stage 1. Starting acceleration: traction regime is always
adopted, and especially, the maximum traction force
should be used to speed up in a short time.
Stage 2. Energy-efcient driving stage: a combination of
maximum traction and coasting is usually adopted at
this stage.
Stage 3. Parking brake stage: coasting and maximum
braking are adopted successively, so that the speed is
zero when the train reaches the station center.

From three stages, the choice on regimes at Stage 1 and
Stage 3 is clear. As shown in Figure 1, Stage 1 takes the
traction regime, and Stage 3 takes the coasting regime and
then braking regime, which are usually certain. Tere is no
need for regime decisions at these two stages. By contrast,
regime decisions mainly happen at Stage 2, where there are
three regimes provided for decision making (see Figure 2).
According to the optimal train control theory, the optimal
driving regime consists of maximum acceleration, cruising,
coasting, and maximum braking. However, for urban rail
trains with short travel distance (generally less than
5,000m), the cruising regime is not generally contained [51].
Besides, according to the study, driving strategies with or
without cruise regime have advantages over each under

v

o

SE1 SE2 SE3 SE4 SE5 SEi SEN–1 SEN

...... ......

Stage 2
Energy-efficient Driving

Stage 3
Parking Brake

Stage 1
Starting Acceleration

tT

Figure 1: Equal time-division pattern.
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diferent line environments and trainloads [31]. Terefore,
to reduce the complexity of train operation optimization, we
consider only maximum traction, coasting, and maximum
braking in this regime decision but ignore cruising.

Finding out an optimal regime sequence is the aim of
solving the ODSD model for minimizing energy con-
sumption. A regime sequence is an orderly combination of
regimes, and it is here regarded as the route of an ant when
we use the ACSd algorithm to solve the model.

Let ri(ri ∈ I � −1, 0, 1{ }) represent one of the three
driving regimes of SEi, where the set I includes three re-
gimes: maximum traction, coasting, and maximum braking,
and they are, respectively, denoted as 1, 0, and −1.

In Figure 3, the edge Ri,u(i � 1, 2, . . . , N; u � 1, 2, 3)

represents the regime ri of SEi. Tere are three edges in each
subsegment (SEi) of the pattern, and they represent the three
possible regimes in a subsegment. An ant selects one of the
three edges which means that a driving regime is selected,
and the successive selected regimes in each subsegment
would construct a route.

Te decision-making process is embedded in the ACSd-
based framework, where the driving regimes are selected in
each subsegment. A route is composed of a sequence of
edges from the start to the end. In other words, a route, as
a combination of the regimes on each SEi, is a feasible
solution for the energy minimization problem. A route is
constructed with an ant passing through each SEi.

Te candidate set allowedi(allowedi ⊆ I) is a component
of the ACSd algorithm, which stores the possible selected
regimes of the subsegment SEi as follows:

ri ∈ allowedi �

1, 2{ }, if ri−1 � 1,when SEi at Stage 1;

1, 2{ }, if ri−1 � 1,

1, 2, 3{ }, if ri−1 � 2,

2, 3{ }, if ri−1 � 3,

⎫⎪⎪⎬

⎪⎪⎭
,when SEi at Stage 2;

2, 3{ }, if ri−1 � 2,

3{ }, if ri−1 � 3,
,when SEi at Stage 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

allowedi considers the continuity of the regime in ad-
jacent subsegments, and there is always a coasting regime in-
between traction and braking for their conversion.

3.2. Te Regime Choice Rule in Equal Time Subsegments.
In the process of solution construction, an ant selects a re-
gime in each equal time subsegment (SEi) with probability,
i.e., the state transition rule is of ACS is used when selecting
regimes. Te rule is originated from heuristic information
and pheromone level of the regime in the route graph.

In the ACS, an ant uses the transition rule (random
proportional rule) to make probabilistic choices for its next
node. Similarly, in the ODSD model, an ant iteratively
chooses one regime ri (i.e., the edge u of the ACS algorithm)
in allowedi(i � 1, 2, . . . , N) according to the following
formula:

ri �
argmax
u∈allowedi

τiu  · ηiu 
β

 , if ζ ≤ ζ0,

U, otherwize,

⎧⎪⎨

⎪⎩
(8)

where ζ is a random number uniformly distributed in [0, 1],
ζ0 is a parameter (0≤ ζ0 ≤ 1), and U is a selected regime
produced by roulette wheel selection for ant k according to
the following:

p
k
i,u �

τiu  · ηiu 
β

u∈allowedi
τiu  · ηiu 

β, if u ∈ allowedi,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where τiu is the accumulating pheromone (i.e., the level of
pheromone deposited) on edge Rk

i,u; ηiu is the heuristic
information of edge Rk

i,u; β is the parameter controlling the
relative importance of pheromone τiu versus heuristic in-
formation ηiu(β> 0); and τiu and ηiu are considered the key
for solving the ODSD model, and they are discussed in the
next two subsections.

3.3. Heuristic Information. Heuristic information on the
edge Rk

i,u works for ants to decide which regime to be se-
lected. Reducing the energy consumption and keeping the
appropriate speed are the main considerations of the heu-
ristic information for the ODSD model. Tus, we introduce
two heuristic factors η1 and η2 to express the heuristic in-
formation for the edge section.

3.3.1. Energy-Efcient Heuristic Factor. Te energy-
efcient heuristic factor η1 refects the heuristic and
guiding efect on the energy consumption when selecting
a regime in SEi (i � 1, 2, . . . , N). We frst thought that
1/Eir may be used as the heuristic factor. However, it
would malfunction because the energy consumption of
the coasting is zero. Tus, a modifcation is considered as
follows:

η1 �
1

λ + Eir

, (10)

where λ is a regulator for alleviating the excessive infuence
of some regimes on the regime decision, and let
λ � c · (Ei1 + Ei2 + Ei3), where c is the amplifcation factor
(let c � 10 from our experiments) and Ei1, Ei2, and Ei3

v

o
SE1 SE2 SE3 SE4 SE5 SEi

......

Traction

Coasting

Braking

t

Figure 2: Choosing one of the three driving regimes in a sub
segment.
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represent the energy consumption of using traction,
coasting, and braking in SEi, respectively.

3.3.2. Speed Heuristic Factor. Although the energy-efcient
heuristic factor η1 is the main heuristic factor for reducing
the energy consumption, the train speed will fall too low if
this factor exerts excessive impact. Tis is because low
consumption requires coasting. Nonetheless, it brings about
low-speed operation and is prone to violate the timing
requirements.

To overcome this problem, the reference speed of
the slope is hereby introduced into the heuristic in-
formation as another factor (η2) to guide the decision of
regimes. Te reference speed of slope q(vq, q � 1, 2, . . . , Q)

refers to a rough speed, as a reference baseline for the
running speed (diferent slopes have diferent reference
speeds).

Te reference speed vq is represented by the ratio of the
slope length Lq to the reference running time
tref ,q(q � 1, 2, . . . , Q) on slope q:

vq �
Lq

tref ,q
, (11)

where tref ,q is the running time on slop q of the current best
solution (i.e., current best regime combination).

To provide the guiding efect on the running speed and
avoid overusing coasting, vq is introduced into the heuristic
factor η2:

η2 �
1

vir − vq



 + ε
, (12)

where vq is the reference speed on slope q, which can be
calculated by equation (11), and vir is the speed in SEi under
regime r. |vir − vq| refects the diference between the current
speed and the reference speed. Te closer vir is to vq, the
larger the denominator is.Tis indicates a higher probability
of regime r being selected. A small number ε is added into
the denominator (for example, let ε� 0.001) to avoid that the
denominator is zero. In addition, the smaller the deviation,
the greater the visibility of regime for an ant. In other words,
the introduction of the reference speed vq provides a trade-
of between timing requirement and energy-efcient
consumption.

With the above process, we can get η2; however, at the
frst iteration, because no solution is constructed at this time,
we cannot get tref ,q. For this case, tref ,q is estimated by

equation (13). Suppose that tref ,q at the frst iteration is
directly proportional to the time cost on slope q at the
allowed speed vmax,q:

tref ,q

Lq/vmax,q

�
tref ,q+1

Lq+1/vmax,q+1

� . . . �
tref ,Q

LQ/vmax,Q

,

(13)

where Lq is the length of slope q(q � 1,2, . . . , Q).
For solving tref ,q, tref ,q+1, . . . , tref,Q of equation (13), we

add the following formula to support it. Let SEp be the last
subsegment on slope q − 1, and hence 

q−1
j�1Lj � 

p
i�1Si.

According to ti � i · ∆t(i � 1,2, . . . , N), we obtain



Q

j�q

tref ,j � T − 

p

i�1
ti, (14)

where 
p
i�1ti is the time that the train has run on reaching the

end of SEp. With equations (13) and (14), we can also attain
vq at the frst iteration by equation (11).

Energy-efcient heuristic factor η1 and speed heuristic
factor η2, from two diferent views, provide heuristic in-
formation for an ant to choose a regime. For a synthetic efect,
let ηir be a heuristic function in equations (10) and (12):

ηir � η1 × η2. (15)

3.4. Te Pheromone Update Rule. Te local pheromone
updating rule of the ACS algorithm can usually avoid the
accumulation of pheromone on an edge, so that ants can fnd
other new edges, whereas the global pheromone updating
rule can result in those edges of the best route to be selected
with high probability. However, there may be missing
heuristic information in the diference edges between the
best routes of two adjacent iterations. Terefore, based on
the global pheromone updating rule, we propose the dif-
ference edge strategy.

3.4.1. Te Local Pheromone Updating Rule. Te local
pheromone updating rule means that whenever an ant
moves from one subsegment to another, the pheromone on
the edge is eliminated/evaporated, i.e., the pheromone of the
edge (regime ri in SEi) is calculated by equation (16). Te
local adjustment and evaporation of pheromone can reduce

R1,1

R1,2

SE1 SE2 SEi SEN–1 SEN

R2,2

R2,1 RN–1,1 RN,1

RN–1,3
RN,3

RN–1,2
RN,2

R1,3
R2,3

Figure 3: Te route graph of the ants.
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aggregation of pheromone and promote ants to fnd new
edges in a wider neighborhood of the previous tour.

τiu � (1 − ξ) · τiu + ξ · τ0, (16)

where ξ ∈ [0, 1] is the evaporation rate of the local pher-
omone and τ0 is the initial pheromone level on the route.

3.4.2. Te Global Pheromone Updating Rule. After all ants
have reached the end at iteration s(s � 1, 2, . . . , ite max),
the global pheromone updating rule updates the pheromone
of the best route of the current iteration (called the iteration-
best route), and the pheromone of each edge is updated by
the following equation:

τiu � (1 − ρ) · τiu + ∆τbestiu , (17)

∆τbestiu �
EI Routes

 
− 1

, if Ri,u ∈ I Routes,

0, otherwise.

⎧⎨

⎩ (18)

In equation (17), ρ ∈ [0, 1] is the evaporation rate of the
global pheromone and ∆τbestiu is the pheromone increment on
the iteration best edge. In equation (18), I Routes represents
the iteration-best route at iteration s and EI Routes

is the
minimum energy consumption under the regimes corre-
sponding to the iteration-best route.

3.4.3. Pheromone Updating Strategy on Diference Edges.
With the increase of the complexity of optimization prob-
lems, the original ACS algorithm should be revised to avoid
the premature convergence and improve the solution
quality.

During the pheromone update, the pheromone of the
original ACS algorithm is deposited on the best route [39].
With the increase of the iterations, more pheromones would
accumulate on the best route, which would lead to search
stagnation. However, the diference between two successive
iteration-best solutions may suggest a new heuristic [52].
Hence, we propose a new pheromone updating strategy for
the ACS algorithm and introduce it into the ODSDmodel to
improve the calculation performance for the optimal driving
strategy.

During the iteration, the iteration-best route works in
a state of change. Comparing the two iteration-best routes at
iteration s and iteration s− 1, those diferent edges between
them are defned as diference edges. Te diference edges
come from the comparison between the current iteration-
best route (represented by I Routes) and the preceding
iteration-best route (represented by I Routes−1). For
exploiting diference information, we add reinforcement of
pheromone to these diference edges in addition to the
pheromone changes in equations (16) and (17).

For example, suppose that

I Routes−1 � R1−2, R2−3, R3−4, R4−5 ,

I Routes � R1−2, R2−3, R3−5, R5−4 .
(19)

We add the diference edges to the set SDif :

SDif � R3−5, R5−4, R3−4, R4−5 , (20)

where RA−B represents the edge linking node A to B.
Tus, the new ACS (ACS with diference edges, i.e.,

ACSd) performs the additional pheromone updating by
increasing the extra pheromone ∆τNbestiu to each edge in SDif :

τiu � τiu + ∆τNbestiu ,

∆τNbestiu �

1
EI Routes

, if Ri,u ∈ SDif ,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

Te diference edge strategy is illustrated in Figure 4. We
assume that the initial pheromone on each edge is zero, and
the pheromone increment is 1 on the edge once an ant passes
through it.

Figure 4(a) shows the iteration-best route of iteration
s− 1, and according to the global pheromone updating rule
(see equation (17)), the pheromone amount increases to 1 on
each edge. Te red route in Figure 4(b) is the iteration-best
route of iteration s. For the two routes, many edges are the
same. Tis is because under the induction of pheromone
aggregation, ants always prefer to pass through those edges
with high pheromone density; thus, the ants walk over some
edges again, which results in many overlapped edges be-
tween the two routes. However, some edges do not overlap,
and these nonoverlapped edges are the very diference edges.
Tus, the pheromone increases to 2 for the same edges,
whereas the pheromone increases to 1 for the diference
edges. Obviously, the pheromone of diference edges is less
than those same edges.

In fact, the two routes are iteration-best routes, so they
are heuristic for further search, and the lower pheromone
concentration on diference edges may reduce the heuristic
efect. Terefore, as shown in Figure 4(c), pheromone is
added to the diference edges. Adding pheromone on the
diference edges may intensify the heuristic efect, as addi-
tional pheromone can provide guidance for exploiting
search space. Tis may help to avoid premature convergence
and provide better solution compared with the original ACS
algorithm.

Te new pheromone updating strategy for diference
edges is diferent from ACS. For the sake of distinction, we
call the algorithm ACSd. Te experiment in Section 4 shows
that ACSd has signifcant efect and performs better
than ACS.

3.5. Constraint Violation and Repair. Tere are some con-
straints in the problem of optimal energy-efcient train
driving strategy, such as speed limits and reaching next
station at the stipulated time.

Te penalty methodmay be the most common technique
to solve constrained optimization problems. However,
a large penalty value would result in premature convergence,
while a small penalty would produce many infeasible so-
lutions [53]. Hence, we take a repair procedure for
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constraints to replace the penalty method. Tis procedure
attempts to fx infeasible solutions by considering the ODSD
model itself.

3.5.1. Speed Constraints. During the route construction, at
some positions such as steep downgrade, the speed of the
train would reach the limit. To reduce the speed, the traction
regimes of some subsegments should be substituted for
braking or coasting, and the substitution is conducted in
a trial-and-error manner. For example, assuming the speed
violation happens in SEi, replace the traction regime in SEi−1
with coasting regime backward and then recalculate the
speed in SEi. Ten, check if the speed limit is exceeded; if
exceeded, change the regime with braking regime.

If the speed still exceeds the speed limit, the above
process will be repeated ahead of subsegment SEi−1 (i.e.,
SEi−2).

3.5.2. Distance Constraints. ACSd selects driving regimes in
each subsegment SEi(i � 1, 2, . . . , N), on which the time is
equal, but the length Si is not equal. Si varies with the
diferent regimes of SEi, and 

N
i�1Si is the sum length of all

subsegments, theoretically equal to the total trip distance L.
Equation (22) represents this relationship within the al-
lowable error δ:

∆S � L − 
N

i�1
Si




≤ δ. (22)

Since the length of each subsegment varies with diferent
regimes, we change the regimes used in some subsegments
to reduce or increase the subsegment length when equation
(22) is not satisfed.

According to the Davis equation [54], for the train in
traction, energy consumption increases with the increase of
speed on the uphill slope. Tus, for reducing the energy
consumption, we modify the regimes in subsegments that
produce the maximum speed.

Accordingly, if 
N
i�1Si > L, the traction regimes of some

subsegments should be modifed to coasting regime for
reducing 

N
i�1Si; if 

N
i�1Si < L, some selected coasting regimes

should be substituted to traction regimes for increasing


N
i�1Si.
Te case of

N
i�1Si >L is used as an example to explain the

above process as follows. In Figure 5(a), SE5 is a switching
subsegment between two regimes (i.e., before point B is
traction, and after point B is coasting). Moreover, SE5 is

a subsegment immediately preceding point B with the
highest speed in the uphill process. We substitute the
coasting for the traction in SE5 and recalculate the sum of
running distance and check whether it meets (22). During
the process of repeating the above steps, subsegments may be
too long for meeting the small δ. In this case, the subsegment
is further divided into subsegments (see Figure 5(b)). Re-
place traction with coasting in the subsegments one by one
until the results meet constraint (22).

3.6. Te Algorithm Framework for the ODSD Model.
Algorithm 1 lists the process of constructing a feasible so-
lution, which is a route of an ant from the start to the end. A
route is composed of N regimes (edges). Ant k at iteration s

selects a regime (edge) in SEi using the state transition rule.
For using the rule, the heuristic information including
energy-efcient factor and speed factor is calculated in
advance. In the process, the regime is replaced backwards
when the speed exceeds the limits, and the distance con-
straint violation is checked when the ant reaches the
terminal.

Algorithm 2 shows the process of ACSd in solving the
ODSD model. Te step of constructing a feasible solution is
a necessary component. Te diference edges are identifed
by comparing the two adjacent iteration-best routes.

4. ExperimentsonTSPwith theACSdAlgorithm

We add the diference edge strategy to update the global
pheromone in Section 3, which is a new operation on the
basic structure; therefore, it should be contrasted with the
basic ACS to examine the efect of the diference edge
strategy.

4.1. Procedure of the ACSd Algorithm. Te independent
procedure of the ACSd is described as follows (suppose there
are n cities to be visited).

Step 1. Initialize the parameters of the ACSd including
m, ite max, β, ξ, ρ, τ0, η, q0.

Step 2. For m ants, select m cities for a start randomly.

Step 3. For each ant, select the next city j in allowedi(i �

1, 2, . . . , n) according to equations (23) and (24), where
allowedi is the set of cities that remain to be visited by the ant
positioned on city i.

1

1

1

(a)

1

1

2

2

(b)

2

2

2

2

(c)

Figure 4: Pheromone change on diference edges.
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Figure 5: Two-stage correction process for an example when 
N
i�1Si >L (A-D-B-C is the original speed-time curve, and A-D-H-C is the

modifed one).

Given [τiu] in SEi(i � 1, 2, . . . , N; r ∈ I);
(1) for (i � 1, i<N, i + +)

(2) Generate a random number ζ ∈ [0, 1];
(3) Calculate vir, Si and Eir in SEi;
(4) Calculate energy-efcient heuristic factor η1;
(5) if 

i
1Si <

q
1Sq then q + +; //come into next slope

(6) Update the vq of the current slope q by using equation (11);
(7) Calculate speed heuristic factor η2 with vq;
(8) Calculate heuristic information ηir � η1 × η2;
(9) Choose a regime ui in SEi by using transition rule equation (21);
(10) if vir > vq,max then

repairing speed violation
by regimes replacement backwards until vir < vq,max;

end if
(11) end for
(12) If ∆S � |L − 

N
i�1Si|> δ, then repair distance constraint violation;

(13) return Routes.

ALGORITHM 1: Te process of constructing a feasible solution.

(1) Input: ti, T, L, Lq, vq,max, vq, I;
(2) Initialize each τiu of edge Ri,r in SEi(i � 1, 2, . . . ,N; u � −1,0,1);
(3) Set allowedi for each SEi;
(4) Set iteration counter s � 0;
(5) From m initial routes, choose the optimal route as BestRoutes
(6) for (s � 1, s< ite max , s++)

(7) for each ant k do
(8) Construct a feasible solution RouteF using Algorithm 1;
(9) if f(RouteF)< f(I Routes)

(10) I Routes⟵RouteF

(11) end for
(12) get SDif by comparing I Routes with I Routes−1;
(13) for each edge Ri,u in I Routes do
(14) if edge Ri,u ∈ SDif
(15) τiu � (1 − ρ) · τiu + ∆τbestiu + ∆τNbestiu
(16) else
(17) τiu � (1 − ρ) · τiu + ∆τbestiu
(18) end if
(19) end for
(20) Output: Global − best Routes.

ALGORITHM 2: Solving the ODSD with ACSd.

Journal of Advanced Transportation 9



j �
argmax
j∈allowedi

τij  · ηij 
β

 , if q≤ q0,

U, otherwize,

⎧⎪⎪⎨

⎪⎪⎩
(23)

where q0 is a parameter (0< q0 < 1), q is a random number
uniformly distributed in [0, 1], and U is a random selected
city according to the probability distribution given in the
following equation:

p
k
i,j �

τij  · ηij 
β

j∈allowedi
τij  · ηij 

β, if j ∈ allowedi,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(24)

Step 4. After an ant builds its route, update the local
pheromone of its tour according to the following equation:

τij � (1 − ξ) · τbestij + ξ · τ0, (25)

where ξ ∈ [0,1] is the evaporation rate of the local phero-
mone and τ0 is the initial pheromone level on the route.

Step 5. After m ants fnish their tours, iteration++.

Step 6. Update the pheromone of the iteration-best route
when it is found at iteration s.

τij � (1 − ρ) · τij + ∆τbestij ,

∆τbestij �
LI Routes

 
− 1

, if (i, j) ∈ I Routes,

0, otherwise,

⎧⎨

⎩

(26)

where I Routes represents the edge set of iteration-
best route.

Step 7. Update the pheromone of diference edges: compare
the best route of the current iteration with that of its last
iteration to fnd out diference edges and then update their
pheromone.

τij � τij + ∆τNbestij ,

∆τNbestij �
LI Routes

 
− 1

, if (i, j) ∈ SDif ,

0, otherwise,

⎧⎨

⎩

(27)

where I Routes represents the edge set of the iteration-best
route. SDif is the diference edge set, which comes from the
comparison between the two successive iteration-best
routes.

Step 8. If iteration <ite max, go to Step 3; else output the
global-best route (i.e., the fnal solution) and terminate
the run.

4.2. Diference Edge Strategy Improves the Performance of the
ACSd Algorithm. TSP is one of the famous problems for
testing a discrete optimization algorithm, and ant colony

algorithm is usually based on this problem to test the
performance; thus, to compare the performance between the
new algorithmACSd and the existing algorithmACS, we test
them with a few instances from TSPLIB standard library
(https://comopt.if.uni-heidelberg.de/software/TSPLIB95).

Due to the stochastic nature of evolution, measuring the
performance of algorithms is a challenging task. Tradi-
tionally, the arithmetic mean is used to measuring average
performance of algorithms. Ivkovic et al. [55] demonstrated
that the arithmetic mean was inadequate for measuring
average performance based on the observed number of
function evaluations, and they thought that the quantiles
were more suitable for measuring average performance [56].
Terefore, we replace the average value with the median (i.e.,
0.5 quantile, Q0.5) to measure the average performance of the
algorithm and use 0.1 quantile (Q0.1) and 0.9 quantile (Q0.9)
to measure the peak and bad-case performance of the
algorithm.

Te parameter settings of ACS and ACSd are the same
(see Table 1). We performed 20 independent runs at the
iteration number NC max � 3,000. Te results include the
maximum value, the median value (Q0.5), the 0.1 quantile
(Q0.1), the 0.9 quantile (Q0.9), the minimum value, and
standard deviation (S.t.), which are shown in Table 2.
Among them, the best results are highlighted in italic.

In Table 2, Opt. represents the best-known route length,
and Err. represents the percentage of error between the
minimum length and the best-known route length.

It can be clearly seen from this table that ACSd is sig-
nifcantly superior to ACS in all results except for the
standard deviation of instance d493 (378.12> 251.03). Also,
from the column Err., we see that the minimum route length
of the ACSd algorithm is almost close to the best-known
results, though no other advanced operations are
introduced.

Because the diference between the two algorithms lies in
only the diference edges and other structures of the ACS are
not changed, it indicates that the diference edge strategy
does play a signifcant role in improving the performance of
the ACS.

4.3. Analyzing Convergence of Diference Edges Strategy.
For analyzing the diference edge strategy, Figure 6 shows
the convergence curves of the instances in Table 2 for the
ACS and the ACSd algorithms. It is worth noting that the
vertical axis is the length of the iteration-best route, instead
of the best-so-far route. Comparing the two convergence
curves from the two algorithms for the same instance, we can
see some convergence characteristics of the two algorithms,
which may provide some special information for explaining
the efect of the diference edges.

For ACS, the iteration-best value fuctuates greatly up
and down with the number of iterations. On the whole, its
oscillation almost has no downward trend, and the best-
so-far solution is just occasionally found. In contrast, for
ACSd, the iteration-best value has an obvious downward
trend in spite of some fuctuations, which shows that the
convergence of ACSd is faster than ACS.
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Table 2: Comparison of the results between ACS and ACSd.

Instances Algorithm Opt. Max Q0.9 Q0.5 Q0.1 Min Err.
(%) S.t.

eil51 ACS 426 455.152 453.881 449.160 446.438 443.176 4.0 3.25
ACSd 429.484 429.032 428.982 428.982 428.872 0.7 0.15

KroA100 ACS 21282 22884.7 22689.2 22479.2 22374.4 22300.1 4.8 151.12
ACSd 21628 21587.8 21307.4 21285.4 21285.4 0.0 122.59

eil101 ACS 629 704.712 697.434 690.385 677.283 671.198 6.7 8.74
ACSd 665.174 655.826 650.095 644.975 642.866 2.2 5.33

d198 ACS 15780 17099.30 17069.70 16818.85 16537.02 16456.50 4.3 194.23
ACSd 16163.30 16071.74 16009.60 15963.46 15933.20 1.0 51.28

KroA200 ACS 29368 32305.10 32186.30 31802.30 31286.43 31209.70 6.3 329.95
ACSd 30098.60 29922.71 29667.55 29518.40 29469.00 0.3 160.66

d493 ACS 35002 40688.80 40403.00 40117.25 39860.34 39687.10 13.4 251.03
ACSd 39895.80 39654.84 39286.60 38747.83 38395.60 9.7 378.12

Table 1: Te set of the parameters.

Parameter ACSd
Number of ants (m) 100
Weighted value of heuristic information to pheromone (β) 2
Te evaporation rate of the local pheromone (ξ) 0.005
Te evaporation rate of the global pheromone (ρ) 0.005
Number of iterations (ite_max) 3,000
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Figure 6: Continued.
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Te curve of ACSd is generally lower than that of ACS
(i.e., the red curve is below the black curve), indicating that
the search of ACSd is in a strong level. Even at the beginning
phase of the search, it is easy for ACSd to fnd a better
solution than ACS except for d493.

Terefore, we can make the following conclusion: dif-
ference edge strategy does improve the performance of the
ACS algorithm. Tat is to say, with the information carried
by the diference edge being strengthened, the diference
edge strategy has an additional heuristic efect on the
subsequent search, and thus ACSd has better exploration
ability and faster convergence speed.

4.4. Parameter Experiments. Te values of parameters
in the ACSd algorithms could cause diferent optimal
results. For the suitable parameters, the number of ants

(m), the weighted value of heuristic information to
pheromone (β), the evaporation rate of the local pher-
omone (ξ), and the evaporation rate of the global
pheromone (ρ) are tested. Before the experiment, with
a preliminary test, we estimate ρ, ζ ∈ [0, 0.05], β ∈ [1,5] as
the parameter interval of the ACSd algorithm, and for the
number of ants, we test it in a general range
(m � 10 ∼ 200).

In the experiments, only one parameter is changed in
a trial for showing the efect of this factor.Te representative
test cases for the parameter setting are done with 20 in-
dependent runs on a selected instance (d198), and the ex-
perimental results are shown in Figure 7.

From Figure 7, we gain the appropriate value (presented
in Table 1) for the four parameters when the ftness eval-
uation value is the smallest.
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Figure 6: Convergence graph of the iteration-best route of the ACS and the ACSd algorithms. (a) eil51. (b) KroA100. (c) eil101. (d) d198.
(e) KroA200. (f ) d493.
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5. Experiment on the ODSD Model with ACSd

Te proposed ODSDmodel and ACSd algorithm are applied
to a case from a previous study for validation [57]. Most
existing methods or models for solving optimal driving
strategy of energy-efcient train problem are tested or ap-
plied on diferent real-world instances. Considering diferent
scenes or constraints, it is not easy for them to make a fair
comparison. In our work, we used the same instance of the
real-world problem for their results are available [57].

In this case, the train is required to run a total distance of
20 km and a fxed time of 25minutes. Te slope length (m)
and the gradient (‰) of each slope section are shown in
Figure 8. Te speed limit of the train is 80 km/h, and the

turnout speed limit is 45 km/h (the distance from the
turnout to the end point is 1,600m). Te train is pulled by
electric locomotive with the traction weight of 3,000 t, and
the train conversion braking rate θh � 0.3. According to the
requirement of model discretization, the trip time is divided
into 500 subsegments, i.e., the time subsegment size is set as
3 seconds in the equal time-division pattern. Additionally,
the ACSd algorithm is applied in this instance, and its
parameters ρ, β, ξ, andm are set according to Table 1, and the
number of iterations is set to 1,000.

We aim to decide the driving regime in each time
subsegment to obtain the fnal regime sequence and calculate
the speed-time curve and speed-distance curve of the train
operation to visually display the optimization results.
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Figure 7: Te test of parameter sensitivity.
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Te fnal regime sequence is {traction, coasting, traction,
coasting, traction, coasting, braking}, and their conversion
of regimes occurred at t= 5.60min, 6.15min, 6.90min,
8.60min, 9.20min, and 24.50min, respectively, or at
S= 3,617.3m, 4,142.8m, 4,865.7m, 6,551.9m, 7,219.0m, and
19,835.8m. Te speed-time curve and the speed-distance
curve are shown in Figures 9(a) and 9(b), respectively. Te
energy consumption of this strategy is 604.90 kW·h. Addi-
tionally, to check the efect on the results, the maximum
number of iterations is set as 300, and its energy con-
sumption is 609.86 kw · h.Te diference between the results
of two diferent iterations is not signifcant, which suggests
that the convergence rate becomes small from iteration 300
to iteration 1,000.

For comparison, we consider the time-efcient driving
strategy model and the target-speed control model [57]. Te
former is presented for minimizing running time, and the
latter is a kind of energy-efcient model considering timing
requirements, which allows a train to run within a preset

target speed range according to energy-saving principles.
Our ODSD model also involves the timing requirements;
however, it provides the driving strategy that consumes the
lowest energy consumption. From Table 3, compared with
time-efcient model and target-speed control model, the
energy consumption of our method is reduced by 13.5% and
7%, respectively.

In addition to the efciency brought by the improved
algorithm, the reason for this result may be owing to the
equal time-division pattern: selecting regimes in each
subsegment by the ACSd may provide more fexible
driving strategies for the ODSD model. Our approach
adopts heuristic process with the short time subsegment,
which provides more opportunities to fnd better results
from more regime combinations. Also, with dividing the
section into small subsegments, it can avoid the infuence
of slope lengths, gradients, and speed limits on regime
selection, and thus it is easy to adapt to diferent line
conditions.
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Figure 8: Te slope information of the example.
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Figure 9: Analysis of simulation results of optimal driving strategy. (a) Energy-efcient speed-time curve. (b) Energy-efcient speed-
distance curve.

Table 3: Comparison of results of diferent methods.

Model Total time (min) Total distance (m) Energy consumption (kW·h)
Time-efcient 20.53 20,000.0 692.21
Target-speed control 24.99 19,999.9 652.52
ODSD model (ACSd)1 25.00 20,003.3 609.86
ODSD model (ACSd)2 25.00 19,997.4 604.90
1,2Te maximum iteration number is 300 and 1000, respectively.
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In contrast, the other two models require the train to run
within a preset target speed range for energy-efcient
concerns, and only when the speed reaches the boundary
of the target speed range or is close to the change point of
slope, does the regime change. Terefore, this conversion is
not fexible enough to get a good solution.

6. Conclusions

Tis paper develops a novel ODSDmodel for theminimization
of train energy consumption. In the ODSD model, the driving
regimes can be directly selected and applied to control train
operation, so as to avoid the speed tracking error. Besides, with
the support of the equal time-division pattern, the model may
produce the optimal strategy for a train to adapt to a wider
range of railway line conditions. Tis pattern, which is con-
structed by discretizing the total running time into equal
subsegments, provides a basis for selecting the fexible regimes.

In addition, an improved ant colony system with a new
pheromone updating rule is proposed and used in the ODSD
model, which considers the heuristic information of dif-
ference edges that comes from the comparison of two ad-
jacent iteration-best solutions. Te comparison experiment
between the ACS and the ACSd shows that the ACSd has
better performance, which proves that the diference edge
strategy provides more exploration to avoid premature
convergence and improve the solution quality.

Furthermore, the ACSd has been embedded with new
heuristic information considering energy-efcient heuristic
factor and speed heuristic factor in favor of a compromise
between energy consumption and timing in solving the model.
A case study also demonstrates that the proposed model, in
terms of improving the fexibility of regime selection, reduces
the energy consumption compared with the other methods.

In this paper, we focus on the feasibility of the model
itself; therefore, only three traditional regimes are consid-
ered. In fact, the cruise regime should be included in our
further model in our next work to make the ODSD model
suitable for most main line railways. Besides, we will im-
prove the ODSD model to make it better to meet more
constraints for actual operation and consider the factors
such as regenerative braking, passenger comfort, and pas-
senger fow change. In terms of the algorithm, the strategy of
diference edges can not only be integrated into the original
ACS algorithm but also allowed to be integrated into other
advanced algorithms.

Notations

Variables and Functions

E: Total energy consumption
I: Te set of driving regimes, I � r| − 1, 0, 1{ }

i: Equal time subsegment index, i � 1, 2, . . . , N,
where N is the total subsegment number

ite_max: Te maximum iteration number
L: Total trip length

Lq: Length of slope q
m: Number of ants
q: Slope index, q � 1, 2, . . . , Q

Ri,u: An edge of a route, which represents the regime u
in SEi

ri: Driving regime of the train, and ri ∈ −1, 0, 1{ },
where −1, 0, and 1 represent maximum braking,
coasting, and maximum traction in SEi,
respectively

SDif : Set of diference edges
Si: Running distance of SEi

s: Iteration counter, s � 1, 2, . . . , ite max
SEi: Equal time subsegment i
T: Total trip time
vir: Running speed at the end of SEi with regime r
vq: Te reference speed of slope q
vq,max: Speed limit of slope q
v0, vN: Starting speed and terminal speed
xi: Position at the end of SEi

x0, xN: Starting position and terminal position of the
section

∆S: Te error between the total calculated distance
and total trip length

∆τbestiu : Pheromone increment on edge Ri,u of the iteration
best route

∆τNbestiu : Extra pheromone added to edge Ri,u in SDif
β: Weighted value of heuristic information to

pheromone
δ: Allowable error between the total calculated

distance and total trip length
ηiu: Heuristic information of Ri,u

η1: Energy-efcient heuristic factor
η2: Speed heuristic factor
ρ: Evaporation rate of the global pheromone
τiu: Pheromone accumulation on Ri,u

Abbreviations

ODSD: Optimal driving strategy decision-making
ACS: Ant colony system
ACSd: Ant colony system with the diference edges
TSP: Traveling salesman problem.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was supported by the National Natural Science
Foundation of China (grant no. 51478480) and the Hunan
Provincial Natural Science Foundation of China (grant no.
12JJ3040). Te authors would like to express their gratitude

Journal of Advanced Transportation 15



to the supervisor Prof. Kun Miao for his great support and
guidance in this project. Tey also thank the research team
for their collaboration and help during gathering data for the
research.

References

[1] National Bureau of Statistics, China Energy Statistical Year-
book 2020, China Statistics Press, Beijing, China, 2020.

[2] National Railway Administration, Railway Statistical Bulletin
2020, State Railway Administration, Beijing, China, 2021.

[3] K. Keskin and A. Karamancioglu, “Energy-efcient train
operation using nature-inspired algorithms,” Journal of Ad-
vanced Transportation, vol. 2017, Article ID 6173795,
12 pages, 2017.

[4] K. Ichikawa, “Application of optimization theory for bounded
state variable problems to the operation of train,” Bulletin of
JSME, vol. 11, no. 47, pp. 857–865, 1968.

[5] A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “Te
key principles of optimal train control—Part 2: existence of an
optimal strategy, the local energy minimization principle,
uniqueness, computational techniques,” Transportation Re-
search Part B: Methodological, vol. 94, pp. 509–538, 2016.

[6] A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “Te
key principles of optimal train control—Part 1: formulation of
the model, strategies of optimal type, evolutionary lines, lo-
cation of optimal switching points,” Transportation Research
Part B: Methodological, vol. 94, pp. 482–508, 2016.

[7] X. Jia, X. Zhou, J. Bao, G. Zhai, and R. Yan, “Fusion swarm-
intelligence-based decision optimization for energy-efcient
train-stopping schemes,” Applied Sciences, vol. 13, no. 3,
p. 1497, 2023.

[8] Y. Rao, P. Sun, Q. Wang, B. Bai, and X. Feng, “Optimal
running time supplement for the energy-efcient train control
considering the section running time constraint,” IET In-
telligent Transport Systems, vol. 16, no. 5, pp. 661–674, 2022.

[9] G. M. Scheepmaker and R. M. P. Goverde, “Multi-objective
railway timetabling including energy-efcient train trajectory
optimization,” European Journal of Transport and In-
frastructure Research, vol. 21, no. 4, pp. 1–42, 2021.

[10] Milroy and P. Ian, Aspects of Automatic Train Control, ian
peter milroy, Adelaide, Australia, 1980.

[11] D. H. Lee, I. P. Milroy, and K. Tyler, Application of Pon-
tryagin’s Maximum Principle to the Semi-automatic Control of
Rail Vehicles, National Conference Publication- Institution of
Engineers, Barton, Australia, 1982.

[12] J. Cheng, Y. Davydova, P. Howlett, and P. Pudney, “Optimal
driving strategies for a train journey with non-zero track
gradient and speed limits,” IMA Journal of Management
Mathematics, vol. 10, no. 2, pp. 89–115, 1999.

[13] R. Liu and I. M. Golovitcher, “Energy-efcient operation of
rail vehicles,” Transportation Research Part A: Policy and
Practice, vol. 37, no. 10, pp. 917–932, 2003.

[14] A. Albrecht, P. Howlett, P. Pudney, and X. Vu, “Optimal train
control: analysis of a new local optimization principle,” in
Proceedings of the 2011 American Control Conference, San
Francisco, CA, USA, June 2011.

[15] A. R. Albrecht, P. G. Howlett, P. J. Pudney, and X. Vu,
“Energy-efcient train control: from local convexity to global
optimization and uniqueness,” Automatica, vol. 49,
pp. 3072–3078, 2013.

[16] B. Mao, S. Chen, H. Liu, and T. K. Ho, “A simulation-based
study for higher speed trains on busy railway mainlines,” in
Proceedings of the International Conference on Applications of

Advanced Technologies in Transportation Engineering,
pp. 305–312, ASCE- American Society of Civil Engineers,
Washington, DC, USA, June 2002.

[17] X. Feng, “Optimization of target speeds of high-speed railway
trains for traction energy saving and transport efciency
improvement,” Energy Policy, vol. 39, no. 12, pp. 7658–7665,
2011.

[18] S. Lu, S. Hillmansen, T. K. Ho, and C. Roberts, “Single-train
trajectory optimization,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 2, pp. 743–750, 2013.

[19] H. Sun, J. Wu, H. Ma, X. Yang, and Z. Gao, “A Bi-objective
timetable optimization model for urban rail transit based on
the time-dependent passenger volume,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 2, pp. 604–615,
2019.

[20] N. Zhao, C. Roberts, S. Hillmansen, and G. Nicholson, “A
multiple train trajectory optimization to minimize energy
consumption and delay,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 5, pp. 2363–2372, 2015.

[21] A. S Ghiduk and A. Alharbi, “Generating of test data by
harmony search against genetic algorithms,” Intelligent Au-
tomation & Soft Computing, vol. 36, no. 1, pp. 647–665, 2023.

[22] J. Eaton, S. Yang, and M. Gongora, “Ant colony optimization
for simulated dynamic multi-objective railway junction
rescheduling,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 11, pp. 2980–2992, 2017.

[23] B. R. Ke, C. L. Lin, and C. W. Lai, “Optimization of train-
speed trajectory and control for mass rapid transit systems,”
Control Engineering Practice, vol. 19, no. 7, pp. 675–687, 2011.

[24] X. Wang, Z. Guo, H. Zhang, C. Wang, and Y. Wang,
“Snowmelt detection on the Antarctic ice sheet surface based
on XPGR with improved ant colony algorithm,” International
Journal of Remote Sensing, vol. 44, no. 1, pp. 142–156, 2023.

[25] A. Rocha, A. Araujo, A. Carvalho, and J. Sepulveda, “A new
approach for real time train energy efciency optimization,”
Energies, vol. 11, no. 10, p. 2660, 2018.

[26] J. Pei, L. Xu, Y. Huang et al., “A two-step simulated annealing
algorithm for spectral data feature extraction,” Sensors,
vol. 23, no. 2, p. 893, 2023.

[27] M. Domı́nguez, A. Fernández-Cardador, A. P. Cucala,
T. Gonsalves, and A. Fernández, “Multi objective particle
swarm optimization algorithm for the design of efcient ato
speed profles in metro lines,” Engineering Applications of
Artifcial Intelligence, vol. 29, 2014.

[28] R. Geng, R. Ji, and S. Zi, “Research on task allocation of UAV
cluster based on particle swarm quantization algorithm,”
Mathematical Biosciences and Engineering, vol. 20, no. 1,
pp. 18–33, 2022.

[29] T. K. Ho, “Dynamic coast control of train movement with
genetic algorithm,” International Journal of Systems Science,
vol. 35, no. 13-14, pp. 835–846, 2004.

[30] M. A. Sandidzadeh and M. R. Alai, “Optimal speed control of
a multiple-mass train for minimum energy consumption
using ant colony and genetic algorithms,” Proceedings of the
Institution of Mechanical Engineers, Part F: Journal of Rail and
Rapid Transit, vol. 231, no. 3, pp. 280–294, 2017.

[31] D. He, L. Zhang, S. Guo, Y. Chen, S. Shan, and H. Jian,
“Energy-efcient train trajectory optimization based on im-
proved diferential evolution algorithm and multi-particle
model,” Journal of Cleaner Production, vol. 304, Article ID
127163, 2021.

[32] S. Zhan, P. Wang, S. C. Wong, and S. M. Lo, “Energy-efcient
high-speed train rescheduling during a major disruption,”

16 Journal of Advanced Transportation



Transportation Research Part E: Logistics and Transportation
Review, vol. 157, Article ID 102492, 2022.

[33] D. He, G. Lu, and Y. Yang, “Research on optimization of train
energy-saving based on improved chicken swarm optimiza-
tion,” IEEE Access, vol. 7, pp. 121675–121684, 2019.

[34] J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao,
“Research and development of automatic train operation for
railway transportation systems: a survey,” Transportation
Research Part C: Emerging Technologies, vol. 85, pp. 548–572,
2017.

[35] Y. Cao, Z. C. Wang, F. Liu, P. Li, and G. Xie, “Bio-inspired
speed curve optimization and sliding mode tracking control
for subway trains,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 7, pp. 6331–6342, 2019.

[36] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: op-
timization by a colony of cooperating agents,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.

[37] P. V. Matrenin, “Improvement of ant colony algorithm
performance for the job-shop scheduling problem using
evolutionary adaptation and software realization heuristics,”
Algorithms, vol. 16, no. 1, p. 15, 2022.

[38] W. Deng, J. Xu, and H. Zhao, “An improved ant colony
optimization algorithm based on hybrid strategies for
scheduling problem,” IEEE Access, vol. 7, pp. 20281–20292,
2019.

[39] M. Dorigo and L. M. Gambardella, “Ant colony system:
a cooperative learning approach to the traveling salesman
problem,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 53–66, 1997.

[40] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in
cloud computing,” Journal of Computer and System Sciences,
vol. 79, no. 8, pp. 1230–1242, 2013.

[41] K. Socha and M. Dorigo, “Ant colony optimization for
continuous domains,” European Journal of Operational Re-
search, vol. 185, no. 3, pp. 1155–1173, 2008.
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