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Improving the spatial-temporal balance between the supply and demand of urban transportation and alleviating trafc congestion
are important ways to build sustainable cities. Te travel reservation strategy (TRS) is more fexible and refned than traditional
trafc demand management methods. Tis study aims to determine the optimal reservation volume (ORV) for urban roads and
verify the efectiveness of the TRS. First, we employed the sustained fow index to estimate the ORV from the degree of trade-of
between the road breakdown probability and capacity. Ten, a bilevel programming model based on ORV constraints was
established to analyse the efectiveness of the TRS. Te results indicated that the ORV range is 0.79–0.89 times the road capacity.
Te TRS can achieve the best steady beneft when the demand for reservation travel reaches at least 40%. Selecting the most
congested critical roads in the network to implement TRS is more efective than on a large area. Te driver default behavior will
increase the V/C ratios and travel costs of all roads in the network. It has been proven that the reservation transportationmode will
promote the spatial-temporal balance between supply and demand to alleviate trafc congestion.

1. Introduction

Te increasing imbalance between supply and demand in
urban transportation systems aggravates trafc congestion.
It signifcantly afects residents’ daily lives, causing economic
losses and environmental pollution and aggravating the
hidden dangers of travel safety [1, 2].Te core cause of trafc
congestion is the mismatch between transportation in-
frastructure supply and residents’ travel demand, manifested
by the lack of efective trafc demandmanagement measures
to adjust to the growing travel demand. With the devel-
opment of emerging technologies such as instant messaging
and artifcial intelligence, the travel reservation strategy
(TRS) has become a new method for solving urban trafc
congestion [3].

TRS is a more fexible and refned trafc supply and
demand balance strategy. It refers to the regulation of the
total number of vehicles that can pass through the key roads
in recurrent congested areas during specifc peak hours. Te
implementation of TRS should frst determine the recurrent

congested roads and periods that require reservations by
monitoring the trafc state of the urban road network.
Second, it is crucial to determine the optimal reservation
volume (ORV) for the corresponding roads and periods. A
small ORV wastes road resources, whereas a large ORV
causes road congestion. Terefore, a reasonable ORV is the
basis for ensuring the efective implementation of the TRS.
Finally, by creating a travel reservation timetable for private
cars, travellers can choose the appropriate route and de-
parture time on the reservation platform. Private cars
without reservations are prohibited from driving on the
reservation road during the reservation period, except buses
and special vehicles (such as police cars, fre trucks, and
ambulances). TRS can transform queues at roadway bot-
tlenecks into virtual online queues. Travellers can reserve
passage roads and time in advance on an open reservation
platform, thus realising precise regulation of regional trafc
travel demand. Akahane and Kuwahara [4] frst introduced
a travel reservation method for managing urban trafc
demand. Tey explored the possibility of using reservations

Hindawi
Journal of Advanced Transportation
Volume 2024, Article ID 6628446, 13 pages
https://doi.org/10.1155/2024/6628446

https://orcid.org/0000-0002-2345-4668
https://orcid.org/0000-0001-5195-3416
https://orcid.org/0000-0002-1339-9669
mailto:2019021060@chd.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/6628446


to adjust the departure time of travellers to alleviate trafc
congestion on holidays. Since then, several studies have
applied travel reservations to various scenarios, such as
highways [3], urban roads [5], and urban perimeters [6].Te
complex network structure and diverse trafc behavior in
urban transportation make it more challenging to establish
an urban road travel reservation system.

Te urban reserved transportation mode is further di-
vided into the regional reservation, road reservation, and
lane reservation, according to the scope of the reservation
space. A regional reservation strategy means that the trafc
demand of an area is limited to below the critical capacity of
the area. Only when the area’s trafc volume is below the
critical capacity can vehicles enter the area. Zhao et al. [6]
built a downtown space reservation system to mitigate trafc
congestion in a cordon-based downtown area by requiring
people who want to drive to this area to make reservations in
advance. Menelaou et al. [7] assumed that a heterogeneous
urban area is partitioned into multiple homogeneous re-
gions. Te vehicle is allowed to enter a region only if it is
anticipated that the region will stay within its critical ca-
pacity during the time interval that the vehicle will be re-
quired to traverse an urban region. Te apparent advantage
of the regional reservation strategy is that it is easy to im-
plement and only needs to control the boundaries of each
region. However, the trafc fow within the region needs to
be more delicately managed; otherwise, congestion may still
occur, and queuing may occur when entering the region
boundary.Te lane reservation strategy refers to establishing
a high-priority lane on the road for reserved vehicles. Bai
et al. [8] showed that the lane reservation strategy could
reduce the travel time and air pollution of reserved lanes
based on real trafc data. Zhang et al. [9] investigated
a bilevel optimisation model for the hazmat transportation
problem with lane reservation. Tey found that the bilevel
model can efectively reduce the total risk of hazmat
transportation while considering the interests of hazmat
carriers and ordinary travellers.Te lane reservation strategy
will inevitably aggravate trafc congestion in nonreserved
lanes; however, the convenience of reserved lanes will
gradually change residents’ travel concepts. TRS implies that
all lanes of a road are only available for reserved vehicles.
Menelaou et al. [10] proposed a time-dependent route
reservation method for relieving trafc congestion. Some
studies have increased the fexibility of travellers’ choice of
appointment time by introducing evolutionary [11] or
pricing [12] mechanisms that combine a dynamic auction
with capacity control rules. TRS combines the advantages of
road charging and a tradable credit scheme strategy. Te
core idea of TRS is to encourage travellers to choose
a reasonable travel route and period. Trough peak load
shifting management, travel demands are reasonably
arranged in diferent periods, and congestion queues on the
road are transformed into virtual online queues. TRS can
alleviate trafc congestion by guiding travel behavior,
controlling trafc fow within a reasonable range, and en-
suring travel time and speed from departure to destination.

Te premise of implementing TRS is to determine ORV.
However, previous studies primarily focused on the design
of vehicle scheduling models and algorithms for TRS and
less on calculating the ORV of reserved roads and analysing
the trafc state of the road network under the ORV con-
straint. Some studies have analysed specifc problems with
travel reservations by directly setting the reservation volume,
such as considering road capacity or the sum of road and
parking capacities as the reservation volume [6, 13]. It does
not consider the trafc state of reserved roads, which de-
viates from the essence of TRS. Terefore, in recent years,
scholars have preferred tomine trafc fow data to determine
reservation volumes [14]. Menelaou et al. [15] replaced the
capacity constraint with the density constraint and used
infnitesimal perturbation analysis to capture the dynamic
change in the critical density value. By comparing the es-
timated capacity and critical density distribution function,
Geistefeldt and Shojaat [16] showed that the relative vari-
ability of the capacity is lower than that of the critical
density. It revealed that the trafc volume is more appro-
priate than density to represent the trigger of trafc con-
gestion. Traditionally, road capacity has been treated as
a constant value. However, various studies demonstrate that
road capacity is not a fxed number but a random variable
[17]. Brilon et al. [18] proposed a method to estimate the
stochastic capacity function, which can evaluate the
breakdown probability for any given volume representing
the capacity. Shojaat et al. [19] used the sustained fow index
(SFI) to analyse freeway fow performance. Te SFI repre-
sents the theoretical volume that can maintain fuid trafc
under capacity uncertainty. Although stochastic capacity is
generally accepted, only a few studies have applied it to
quantify road performance in practical trafc management.
Furthermore, the complex network structure and various
trafc behaviors in urban transportation make it more
challenging.

While the literature extensively explores the TRS and its
applications, there is a notable dearth of data-driven research
specifcally targeting its implementation on urban roads.
Predominantly, prior studies emphasize vehicle scheduling
models and TRS algorithms, sidelining the pivotal task of
determining the ORV and assessing the road network’s trafc
state under ORV constraints. Tis study seeks to bridge these
identifed gaps and contribute a novel perspective. To achieve
this goal, this study frst used the SFI to calculate the ORV of
the reservation roads. Ten, a bilevel programming model
based on ORV constraints was established to explore the
infuences of the number of reservation roads and reservation
tendency on road network capacity, V/C ratio, and travel cost
under the implementation of TRS. It can provide managers
and decision makers with new ideas for alleviating trafc
congestion and determining the critical parameters for
implementing TRS.

Te rest of this study is organized as follows. Section 2
introduces the method used in this paper in detail. Section 3
conducts a case study with real trafc data and discusses the
results. Section 4 concludes this paper.
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2. Methodology

2.1. Preliminaries. Setting a scientifc and reasonable ORV is
the premise of implementing the TRS. It can maximise the
reserved road’s trafc volume to ensure a smooth road and
avoid wasting road resources. Based on the traditional three-
phase trafc fow theory (as shown in Figure 1), as the speed
increases, the trafc state of the road experiences the evolution
process from the “stop-and-go” congested fow to the smooth
fow. Terefore, when the road reaches the critical speed, the
trafc volume is the theoretical maximum volume. When the
road speed exceeds the critical speed, the road remains
smooth, but the road resources are not fully utilised. Trafc
congestion occurs when the road speed is lower than the
critical speed. In the process of trafc fow transition from
smooth fow to congestion fow, there is an oscillating region,
and trafc fow in this regionmay lead to congestion once it is
subjected to signifcant external interference. Terefore, de-
termining the critical speed is the key to calculating the
optimal total reservation. Te speed threshold can be de-
termined by mining the road trafc data. Brilon et al. [18]
used the boundary between the upper and lower branches of
the speed-fow scatter plot to distinguish noncongested and
congested fows. Shojaat et al. [20] determined the speed
threshold as the boundary between the fuid and congested
trafc by analysing the speed and fow time series. Given this,
from the perspective of road network resilience, we used the
previous research results to determine the critical threshold of
trafc congestion difusion by using the percolation theory to
determine the critical speed of the road [21, 22].

2.2. ORV Calculation Based on SFI Method. Tis section
describes the ORV calculation method in detail. First, the
capacity distribution function of the road is estimated based
on the product limit method. Te SFI approach is then used
to determine the optimal road capacity.

2.2.1. Estimation of the Road Capacity Distribution Function.
Te capacity distribution function of the road was estimated
using the product limit method (PLM) [18]. Capacity is
defned as the maximum fow that sustains fuid trafc
conditions [23]. Te road performance was acceptable when
the trafc volume was below the maximum fow. Beyond this
fow, the average travel speed drops sharply, causing trafc
congestion.Te term “breakdown” of the fow has been used
to describe the transition from relatively free-fowing trafc
to congestion, which is usually called stop-and-go trafc
[24]. Generally, the trafc fow observed before the break-
down can be regarded as capacity (momentary). Te
breakdown can be detected by a sudden and sharp reduction
in the trafc speed; therefore, the speed threshold must be
determined frst. After determining the speed threshold, the
period was divided into several time intervals (typically
5min), and the interval set was defned according to the
collected data.

Set B: Te average speed in interval i is above the speed
threshold and falls below the threshold in the next interval
i + 1, and thus i ∈ B. In this case, the fow in interval i is the

trafc volume observed before trafc breakdown, which can
be regarded as the momentary capacity of the road.

After determining the set of breakdown intervals, the
PLM was used to estimate the road capacity distribution
function, and the calculation formula is as follows:

F(q) � 1 − S(q) � 1 − 􏽙
i:qi≤q

ki − bi

ki

􏼠 􏼡, i ∈ B, (1)

where F(q) is the capacity distribution function, S(q) is the
capacity survival function, q is the trafc volume, qi is the
trafc volume in interval i, ki is the number of intervals with
trafc volume qi ≤ q, and bi is the number of breakdowns at
volume qi. B is the set of breakdown intervals.

2.2.2. Determination of ORV Based on SFI Method. Te
ORV is determined to fnd an optimal trafc volume in the
capacity distribution function to sustain fuid trafc con-
ditions. Shojaat et al. [19] introduced the sustained fow
index (SFI) method. Te SFI is defned as the product of the
trafc volume and probability of survival at that volume,
which calculates the theoretical average volume that can be
sustained in fuid trafc under capacity uncertainty. Te SFI
provides a joint performance measure, and the maximum
SFI is the best compromise between maximising the volume
and minimising the probability of trafc breakdown. Before
the maximum SFI, the risk of trafc breakdown was low, but
road resources were underutilised. After themaximum SFI is
reached, the trafc volume becomes larger and more vul-
nerable to trafc breakdown. Te SFI was calculated using
the following formula:

SFI � qi · S qi( 􏼁

� qi · 1 − F qi( 􏼁( 􏼁,
(2)

where SFI is the sustained fow index, S(qi) is the probability
of survival at volume qi, and F(qi) is the probability of
breakdown at volume qi.

Te PLM is a nonparametric estimation method that
depends on a large number of samples. Obtaining an ac-
curate estimation of the entire capacity distribution function
is difcult, and we cannot obtain a relatively accurate
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Figure 1: Schematic diagram of theoretical maximum volume.
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maximum SFI. Terefore, it is necessary to know the
mathematical distribution functions for parameter estima-
tion. First, we compare the ft of diferent distributions
through experiments and select the most suitable function as
the capacity distribution function. Ten, we used the SFI to
calculate the optimal capacity of the road, as shown in the
following equation:

z

zq
(q · (1 − F(q))) � 1 − (F(q) + q · f(q)) � 0, (3)

where f(q) is the density function of capacity.

2.3. Bilevel Programming Model Based on ORV Constraints.
Tis study used the weekday morning rush hour as an
example to verify the efectiveness of TRS. Travellers who
enter reservation roads during this period must make res-
ervations in advance. Te traveller must detour if the road
has reached the reservation volume. Tis study assumes that
all travellers who have obtained the right-of-way through
reservations arrive evenly within the reserved period. Te
parameters and variables used in this section are listed in
Table 1.

Te optimal capacity calculated in Section 2.1 is set as the
ORV constraint, denoted by qresa . Terefore, the admissible
state of the request of the vehicle j to enter link a in a certain
period is denoted by resj

a. If the request of vehicle j is
admissible, resj

a � 1; otherwise, resj
a � 0. Terefore, resj

a can
be calculated as follows:

resj
a �

1, if 􏽘

J

j�1
resj

a ≤ q
res
a , a ∈ A1,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Tis study divides vehicles into two types: those with
reservation tendencies and ordinary vehicles. Vehicles with
reservation tendencies will make reservations on the res-
ervation platform before travel and can drive on the res-
ervation road after success. By contrast, ordinary vehicles
cannot drive on reservation roads. To simplify the problem,
we assume that vehicles with reservation tendencies follow
the travel route provided by the reservation system, which is
based on the system optimization. In contrast, ordinary
vehicle travel is based on the user equilibrium. A bilevel
programming (BP) model based on reserved capacity was
established to explore the infuence of TRS on the trafc state
and travel cost of the road network. Te upper-level opti-
misation objective is to maximise the trafc demand, and the
constraint condition is the capacity limit of the reservation
road. Te lower-level optimisation objectives are the system
optimal for reservation travellers and user equilibrium for
ordinary travellers.

Te upper-level model is as follows:

MaxZup � 􏽘
w

μw
d

w
, (5)

s.t. qa ≤ q
res
a , a ∈ A1. (6)

Equation (5) shows the objective function of the upper-
level model. w is a set of OD pairs and w ∈W; dw represents
the original travel demand for the OD pair w. μw is the OD
pair w and the value of μ indicates whether the current
network capacity has spare capacity [25]. If μ> 1, the net-
work has a spare capacity; otherwise, the network is over-
loaded. 􏽐wμwdw represents the total capacity of the road
network. Equation (6) represents the capacity constraint on
the reservation road, where qa is the trafc fow on link a.

Under the TRS, two types of travellers exist in the road
network that pursue optimisation under the infuence of
each other. Te lower-level model is a mixed trafc equi-
librium model, which can be expressed as follows:

MinZ
so
down � 􏽘

a

q
so
a × ta q

so
a + q

ue
a( 􏼁, (7)

s.t. d
so
w � λμw

d
w

, ∀w ∈W, (8)

d
so
w � 􏽘

r

u
so,w
r , ∀w ∈W, r ∈ R, (9)

q
so
a � 􏽘

w

􏽘
r

u
so,w
r δso,w

a,r , ∀w ∈W, r ∈ R, a ∈ A, (10)

q
so
a ≥ 0, u

so,w
r ≥ 0, ∀w ∈W, r ∈ R, a ∈ A. (11)

Equation (7) is the objective function of the system
optimal model, which is constrained by equations (8)–(11).
qsoa and quea represent trafc fow on link a under the system
optimal and user equilibrium model, respectively. ta(q) is

Table 1: Description of parameters and variables.

Notations Description

G � (N, A)
Te transportation network, where N represents the

set of nodes and A represents the set of links
a A directed road link, a ∈ A

A1 Set of reservation road links, A1 ⊆A

A2 Set of common road links, A2 ⊆A

W Set of O-D pairs
w An O-D pair, w ∈W

R Set of paths from origin to destination
r A path from origin to destination, r ∈ R

qa Trafc fow on the link a

qresa Optimal reservation volume

resj
a

Te admissible state of the request of the vehicle j to
enter the link a

μw O-D pair w demand multiplier
dw Te original travel demand for O-D pair w

λ Te reservation tendency
uw

r Te trafc fow on the path r on the OD pair w

δw
a,r

Te path-link relation: if the link a is on the path r
between O-D pair w, then δw

a,r � 1; otherwise,
δw

a,r � 0

εw
r

Te reservation section-path relation: if there is no
reservation section on the path r between O-D pair

w, then εw
r � 1; otherwise, εw

r � 0
ta(qa) Te travel cost function of link a

t0a Te free fow time of link a

Ca Te capacity of the link a
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the travel cost function of link a. Equation (8) represents the
fow conservation constraints scaled by the OD matrix
multiplier μ. μ is a variable from the upper-level program. dso

w

represents the travel demand of the reservation-tendency
vehicle and λ is the reservation tendency. Equation (9)
ensures that the sum of the fows assigned to paths equals the
travel demand, where R represents the set of paths, r ∈ R,
and uso,w

r is the trafc fow on path r on the OD pair w.
Equation (10) ensures that the sum of all path fows through
link a is equal to qsoa . δ

so,w
a,r are path-link relations. If link a is

on path r, then δso,w
a,r � 1; otherwise, δso,w

a,r � 0. Equation (11)
indicates that the variables are positive.

MinZ
ue
down � 􏽘

a

􏽚
quea

0
ta q

so
a + q( 􏼁dq, (12)

s.t. d
ue
w � (1 − λ)μw

d
w

, ∀w ∈W, (13)

d
ue
w � 􏽘

w

u
ue,w
r εue,wr , ∀w ∈W, r ∈ R, (14)

q
ue
a � 􏽘

w

􏽘
r

u
ue,w
r δue,wa,r , ∀w ∈W, r ∈ R, a ∈ A2,

(15)

qa ≥ 0, u
ue,w
r ≥ 0, ∀w ∈W, r ∈ R, a ∈ A2. (16)

Equation (12) represents the objective function of the
user equilibrium model, which is constrained by equations
(13)–(16). In equation (13), due

w represents the travel demand
of an ordinary vehicle. Equation (14) ensures that the sum of
the fows assigned to paths equals the travel demand, where
uue,w

r is the trafc fow on the path r on the OD pair w. εue,wr is
the reservation section-path relation, which ensures that
ordinary vehicles cannot enter the exclusive section of the
reservation travel. If no reservation section exists on path r,
then εue,wr � 1; otherwise, εue,wr � 0. Equation (15) ensures
that the sum of all path fows through link a is equal to quea .
δue,wa,r are path-link relations. If link a is on path r, then
δue,wa,r � 1; otherwise, δue,wa,r � 0. Equation (16) indicates that
the variables are positive.

Tis study used the BPR function as the performance
function:

ta qa( 􏼁 � t
0
a 1 + α

qa

Ca

􏼠 􏼡

β
⎡⎣ ⎤⎦, (17)

where α and β are fxed parameters, which are assumed to be
α � 2.05 and β � 4. We used the least squares method
combined with GPS and historical trafc data to determine
the values of α and β by ftting the function. We used
calibration values to ensure that the BPR function accurately
represents the observed relationship between travel time and
trafc fow in the study area. Given the limited length of this
study and the fact that the parameter calibration process has
been widely used in previous studies [26–28], we will not
elaborate on it again in this paper.

Te solution efciency was signifcantly reduced because
of the numerous roads in the study area while solving the BP
model. Surrogate models (e.g., polynomial regression, radial
basis function, neural networks, and Kriging models) have
been applied to transportation problems in recent years
because of their superior computational speed and good
analytical properties [29, 30]. Some studies have indicated
that the Kriging model has the highest ftting accuracy [31].
Terefore, this study adopted the Kriging model to solve the
BP model. A single-projection algorithm was used to solve
the lower-level model. Refer to [32–34] for more details. Te
specifc modelling and solving steps of the Kriging model are
as follows [35, 36].

Te Kriging model is an interpolation method, and its
interpolation result is defned as the linear weighting of the
response value of all sample points.

􏽢y(x) � 􏽘
n

i�1
ϖ(i)

y
(i)

. (18)

As long as the weighting coefcient ϖ is provided, the
performance prediction value of any scheme in the design
space can be obtained. To calculate the weighting co-
efcients, the unknown function was regarded as a Gaussian
process.

Y(x) � β0 + Z(x), (19)

where β0 is an unknown constant and the mathematical
expectation of Y(x) and Z(x) is a stochastic process with
a mean of 0 and a variance of σ2. In the design space,
these random variables are correlated and their co-
variance is

Cov Z(x), Z′(x)􏼂 􏼃 � σ2R x, x′( 􏼁, (20)

where R(x, x′) is the correlation function. Tis study adopts
the Gaussian exponential model:

R x, x′( 􏼁 � exp − θ 􏽘
n

k�1
x − x′

����
����
2⎛⎝ ⎞⎠, (21)

where θ is the hyperparameter. Te maximum likelihood
estimation was used for hyperparameter training to increase
the solving accuracy of the model. Because the values of
hyperparameters cannot be provided analytically, hyper-
parameter training is generally solved using numerical
optimisation methods such as genetic, simulated annealing,
and nongradient algorithms. In this study, a simulated
annealing algorithm was used.

Based on the above assumptions, the Kriging model aims
to fnd the optimal weighting coefcient ϖ so that the fol-
lowing mean square error is minimised and unbiased
condition is satisfed.

MSE[􏽢y(x)] � E ˆ
TYs − Y(x)􏼐 􏼑

2
􏼔 􏼕. (22)

Using the Lagrange multiplier method, the Kriging
model can be obtained through derivation:
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􏽢y(x) �
r(x)

1
􏼢 􏼣

T R F

FT 0
􏼢 􏼣

− 1
ys

0
􏼢 􏼣,

F � 1 1 · · · 1􏼂 􏼃
T
,

r(x) �

R x
(1)

, x􏼐 􏼑

⋮

R x
(n)

, x􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R �

R x
(1)

, x
(1)

􏼐 􏼑 · · · R x
(1)

, x
(n)

􏼐 􏼑

⋮ . . . ⋮

R x
(n)

, x
(1)

􏼐 􏼑 · · · R x
(n)

, x
(n)

􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(23)

Te Kriging model is an interpolation model, and the
infll criterion generally adopts expected improvement (EI)
maximisation to generate new sample points. Let the current
optimal objective function value be ybest and let the Kriging
prediction result satisfy the normal distribution with mean
􏽢y(x) and standard deviation s(x).

Te expected improvement at point x is expressed as
follows:

E[I(x)] �

ybest − 􏽢y( 􏼁Φ
ybest − 􏽢y

s
􏼠 􏼡 + sϕ

ybest − 􏽢y

s
􏼠 􏼡, s> 0,

0, s � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(24)

where I(x) is the improvement at point x and Φ and ϕ are
functions of the standard normal cumulative distribution
and standard normal distribution probability density, re-
spectively. Te new sample point can be obtained by solving
the suboptimization problem that maximizes the E[I(x)].

Because the road capacity constraint is a strong con-
straint, this study adopts the penalty method to incorporate
it into the objective function while solving the BPmodel, and
the objective function is as follows:

max z0 � 􏽘
w

d
w

+ τ q
res
a − qa( 􏼁, a ∈ A1, (25)

where τ is the penalty coefcient. Te specifc solution al-
gorithm is given below:

Step 1. Enter the maximum number of iterations Nmax,
maximum consecutive successes Cmax

succ, maximum
consecutive failures Cmax

fail , and the initial perturbation
probability p0

select. Generate an initial set of evaluation
points I0 using Latin hypercube sampling and set the
number of iterations n � 0.
Step 2. Obtain the vector of objective function values for
all evaluation points Z � [Z(Qi), Qi ∈ I0] and the
current optimal solution Qbest.
Step 3. Based on the evaluation point set In, the sim-
ulated annealing method is used to obtain the hyper-
parameters and update the Kriging model.
Step 4. Based on the current optimal solution ybest and
perturbation probability pn

select, the simulated annealing
method is used to solve the maximum EI to obtain the
candidate point yn+1.
Step 5. Te single-projection algorithm is used to solve
the lower-level mixed trafc equilibrium model and
then calculate Z(yn+1).

Step 6. If Z(yn+1)<Z(ybest), then ybest � yn+1, Z(ybest)

� Z(yn+1), continuous success count Csucc � Csucc + 1,
and consecutive failure count Cfail � 0; otherwise, Cfail
� Cfail + 1 and Csucc � 0.
Step 7. Update the set of evaluation points In+1 � In ∪
yn+1􏼈 􏼉. If Csucc >Cmax

succ, then pn+1
select � pn

select/2 and Csucc
� 0. If Cfail >Cmax

fail , then pn+1
select � 2∗pn

select and Cfail � 0.
Set n � n + 1.
Step 8. If n≥Nmax, stop, and output ybest. Otherwise,
return to Step 3.

3. Experiments and Analysis

Tis section presents a case study that demonstrates the
efectiveness of the proposed methodology. Tis could
provide essential parameter values for implementing the
TRS in a specifc environment, which provides a theoretical
and practical basis for the promotion of the strategy.

3.1. StudyArea andDataDescription. As the most important
political and cultural centre in Northwest China, Xi’an is the
beginning of the ancient Silk Road and an important node of
the “One Belt, One Road” policy. Terefore, improving the
intellectual level of urban trafc management and relieving
urban trafc congestion are urgent. Tis study took part of
the urban road network in Xi’an, China, as the study area,
including 19 nodes and 56 directional links, as shown in
Figure 1 Te label on the link in Figure 2 is denoted by
(t0a, Ca). Links 3-8-11-16 and 16-11-8-3 are commuter roads
with large trafc fow and obvious congestion during peak
hours. Terefore, we chose these links as reservation roads,
and the reservation period was from 8:00 to 9:00 in the
morning rush hour. During this period, only reserved ve-
hicles could enter the reserved roads.
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Tis study used the geomagnetic sensor data during the
working days in Xi’an, China, in June 2019, and obtained the
initial trafc demand (as shown in Table 2) by OD matrix
inversion.

Parameter values of the BP algorithm are as follows:
maximum number of iterations Nmax � 200, maximum
consecutive successes Cmax

succ � 3, maximum consecutive
failures Cmax

fail � 3, and initial perturbation probability
p0
select � 0.5. Parameter values of the single-projection al-

gorithm of the lower-level model are as follows: the pro-
jection step size was 0.01, convergence accuracy was
1 × 10− 5, and path set update frequency was 20.

3.2. Calculation of Reservation Road ORV. As mentioned
before, from the perspective of road network resilience, we
used the previous research results to determine the critical
threshold of trafc congestion difusion by using the per-
colation theory to determine the critical speed of the road
[21, 22].Te critical speed of reserved road was approximately
30 km/h. Referring to the research on the road capacity
distribution function in highway scenarios [19], this study
frst used the PLM to estimate the road capacity distribution
function (F(q)) according to equation (1). Te PLM is
a nonparametric estimation method that cannot estimate the
complete F(q). Terefore, three types of functions with an-
alytical solutions (Weibull, logistic, and Gumbel distribu-
tions) were used in this study to ft the distribution function of
road capacity. Finally, the best-ftting function was selected,
and the optimal volume was determined by estimating the

corresponding SFI based on equation (3). Te calculation
results are presented in Figure 3 and Table 3.

As shown in Table 3, the logistic distribution function
has the largest adjusted R-squared value and the smallest
residual sum of squares compared to the other two distri-
bution functions. Moreover, combined with Figure 3, the
logistic distribution function was more consistent with the
evolution law of the road capacity distribution function. Te
calibration parameters c and ϑ under the logistic distribution
were 2292.323 and 188.513, respectively. By substituting the
parameters into Table 3, the optimal volume of the logistic
distribution and the corresponding breakdown probability
were calculated to be 1879 vph and 0.1, respectively, as
shown at point B in Figure 3. When the fow rate was
1879 vph, SFI reached a maximum value of 1691 vph. Te
link performance reaches its maximum value, as shown at
point A in Figure 3. Te breakdown probability increased
when the fow rate was greater than 1879 vph, which in-
creased the probability of congestion. Although the

(167.1,3091) (53.1,2772) (44.9,2772)

(43.3,1253)

(44.2,1253)

(41.9,1794)

(39.6,1794)

(85.5,2772)(81.8,2295)

(58.2,1485)

(65.5,4080) (74.2,2772)

(67.2,3727)

(72.9,3966)

(54,3250)

(55.6,3727)

(62.7,2295) (75.6,1279)

(35.2,1865)

(46.2,2056)

(31.7,2534)

(45.2,1794)

(41.2,1865)

(46.1,
1937)

(57.7,
2772)

(38.8,
1818)

(42.8,
1865)

(41.4,
1865)

1918171615

14131211

8 9 10

54321

76

reservation road
arterial road
secondary road

Figure 2: Te study area.

Table 2: Initial trafc demand (vph).

Origin
Destination

1 3 5 15 16 19
1 0 916 1104 1007 2809 263
3 282 0 1004 916 1307 1187
5 597 1210 0 651 151 1304
15 396 400 136 0 2795 1745
16 3624 640 248 2050 0 436
19 246 1137 993 1596 1503 0
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breakdown probability is reduced when the fow rate is less
than 1879 vph, the low fow rate indicates that road resources
are not completely utilised. In summary, the ORV for link 8-
11 was 1879 vph.

Te same method was used to determine the best-ft
function and optimal road volume. Table 4 shows the results
for the diferent links. As shown in Table 4, the Weibull and
logistic distribution functions provided the best ftting efect
for urban roads. Te adjusted R-squares were all above 0.95,
and the residual sum of squares was below 0.2. Considering
the highways, most roads were suitable for the Weibull
distribution. Table 4 also shows the best-ft distribution,
calibrated parameters, optimal volumes, and breakdown
probabilities of diferent links. Te results indicated that the
optimal volume range is 0.79–0.89 times the road capacity.
Previous studies have demonstrated that the breakdown
probability of highways is approximately 5% [19]. Te
breakdown probability of urban roads mostly exceeded 10%,
indicating that urban roads face a greater risk of trafc
congestion than highways. Tis is primarily owing to the
complex road conditions of urban roads, such as signal
lights, poor driving habits, and the infuence of pedestrians
and nonmotor vehicles [37].

Tis study assumed that the trafc demand of the road
network remained unchanged before and after the imple-
mentation of TRS. Te rationality of ORV is verifed by
comparing the original trafc assignment (no reservation
roads in the network) results based on user equilibrium and
the results after implementing TRS. As mentioned above,

links 3-8-11-16 and 16-11-8-3 are set as reservation links
during the morning rush hour. Terefore, only reserved
vehicles can drive into these links during this period. Te
ORV and road capacity constraints (Ca) of each link are
substituted into the BPmodel, and the calculation results are
listed in Table 5.

As shown in Table 5, the average V/C ratio of the arterial
road is 0.931 before strategy implementation, indicating se-
vere trafc congestion. However, the average V/C ratio of the
secondary road was only 0.278, indicating that road resources
were not completely utilised. After the strategy imple-
mentation, the congestion of the arterial road is alleviated, the
usage of secondary road resources increases, and the total
travel cost is reduced. It has been proven that implementing
this strategy reduces trafc congestion on the road network
and alleviates the imbalance of trafc fow in spatial distri-
bution. Further observation shows that under the ORV
constraint, the travel cost is lower and the V/C ratio of the
arterial road is lower, which proves that it is reasonable to
determine the road reservation capacity using the SFImethod.

3.3. Verifcation of TRS Efectiveness. Tis section explores
the efect of diferent factors (e.g., reservation tendency and
number of reservation roads) on the road network capacity,
service level, and travel cost, as shown in Figures 4(a)–4(c)).

Figure 4(a) shows the calculation results of the road
network capacity under diferent numbers of reservation
roads and λ. Te dotted line indicates the network capacity

1691
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Figure 3: Capacity distribution function and sustained fow index of the link 8-11.

Table 3: Goodness of ft for diferent distribution functions.

Distribution type F(q) Optimal volume (vph) Adjusted R-squared Residual
sum of squares

Weibull 1 − e− (q/ϑ)c

ϑ(1/c)1/c 0.983 0.070
Logistic 1/1 + e− q− c/ϑ ϑ(W(ec/ϑ− 1) + 1) 0.988 0.024
Gumbel 1 − e− eq− c/ϑ ϑ(W(ec/ϑ)) 0.970 0.111
Note. W� Lambert function; c � shape; ϑ � scale.
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Table 4: Diferent link results.

Link
Adjusted R-squared Residual sum of squares Te results under the best-ftting distribution

Weibull Logistic Gumbel Weibull Logistic Gumbel c ϑ Optimal volume
(vph)

Optimal
volume/Ca

Breakdown
probability (%)

3-8 0.952 0.909 0.867 0.088 0.166 0.244 6.558 2721.177 2043 0.89 0.141
8-3 0.967 0.933 0.889 0.055 0.113 0.186 6.883 2425.898 1833 0.80 0.135
11-8 0.983 0.981 0.979 0.021 0.024 0.140 7.974 2300.002 1773 0.86 0.118
11-16 0.981 0.982 0.963 0.186 0.177 0.593 2398.322 179.836 1984 0.78 0.091
16-11 0.988 0.989 0.981 0.018 0.017 0.139 2511.187 184.919 2081 0.82 0.089
6-7 0.980 0.974 0.971 0.021 0.033 0.249 6.888 4221.177 3190 0.85 0.135
7-6 0.978 0.979 0.969 0.023 0.021 0.140 3492.563 261.874 2889 0.78 0.091
7-8 0.988 0.988 0.972 0.007 0.010 0.156 8.493 2508.955 1950 0.85 0.111
8-7 0.983 0.978 0.958 0.015 0.024 0.348 7.848 2386.806 1836 0.80 0.120
8-9 0.984 0.986 0.964 0.019 0.013 0.247 2762.480 237.576 2254 0.81 0.105
9-8 0.987 0.982 0.975 0.009 0.022 0.184 8.493 2908.955 2261 0.82 0.111
9-10 0.984 0.982 0.961 0.013 0.018 0.246 9.546 1853.874 1464 0.78 0.099
10-9 0.979 0.978 0.968 0.020 0.041 0.258 9.179 2053.658 1613 0.86 0.103

Table 5: V/C ratio and travel costs after implementing the TRS.

Average V/C
of all
links

Average V/C
of arterial

links

Average V/C
of secondary

links

Average V/C
of reservation

links

Travel costs
of all

links (s)
Before ORV Original trafc assignment 0.849 0.931 0.278 0.946 10636952

After ORV ORC constraints 0.791 0.821 0.585 0.661 8655867
Ca constraints 0.827 0.874 0.501 0.640 9555154

6 reservation roads
14 reservation roads
20 reservation roads
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Figure 4: Continued.
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in the original trafc assignment. It can be observed that
under the same conditions, the larger the number of res-
ervation roads, the smaller the road network capacity.
Setting reservation roads is equivalent to adding capacity
restrictions to these roads. Although it can improve the
congestion of reservation roads to a certain extent, it also
increases the trafc pressure on surrounding roads and
causes the congestion to spread to other roads. Given this, it
is unreasonable to set up numerous reservation roads during
peak hours. Terefore, selecting the most congested critical
roads in the network is necessary to implement the TRS.
With the same number of reservation roads, the network
capacity decreases and fnally becomes stable with the in-
crease in λ. Te network capacity is stable at a value less than
the original capacity, indicating that the network trafc
surges in the morning peak hour, the road network is
congested, and there is no spare capacity in the network.
Some travellers need to adjust their departure time. When λ
reaches 0.4, the network capacity reaches a stable state.
Combined with Figures 4(b) and 4(c), it can be found that
when λ reaches 0.4, the V/C ratio and travel cost of the
network both reach a stable state. Terefore, the TRS ach-
ieves the best beneft when the demand for reservation travel
reaches at least 40%. Tis stable network capacity is the
optimal capacity for travel during peak hours under the
reservation policy. Te road network capacity is controlled
within this range to achieve peak load shifting management
of trafc fow so that the queuing of vehicles on the road
during the extreme congestion period becomes the queuing
of online reservations, thereby reducing road trafc con-
gestion. Terefore, adopting the TRS for critical roads with
extreme congestion is a dynamic constraint that can realise
the dynamic adjustment of travel demand.

We further discuss the service level change of diferent
grade roads in the network with diferent λ values under the
six reservation roads, and the results are shown in
Figure 4(b). With an increase in λ, the diferent grades of
roads indicated diferent evolution trends. Te average V/C
ratios of all roads, arterial roads, and secondary roads de-
creased gradually with an increase in λ. When the value of λ
is small, the reservation travel demand is low, and the re-
sources of the reservation roads are not efectively utilised,
resulting in the remaining roads bearing part of the trafc
volume of the reservation roads with a large V/C ratio of the
remaining roads. With an increase in λ, the V/C ratio of the
reservation roads frst increased and fnally stabilised. After
λ� 0.4, the average V/C ratios of all roads and reservation
roads are stable at approximately 0.726 and 0.685, re-
spectively. Because the ORV is set on the reservation roads,
the trafc fow exceeding the ORV cannot enter the reser-
vation roads; therefore, the V/C ratio of the reservation road
will remain stable and acceptable. In conclusion, combined
with the results in Table 5, it can be found that the TRS can
alleviate the time-space mismatch between supply and de-
mand to a certain extent and reduce queuing on the road
under limited resource conditions.

Figure 4(c) shows the travel cost change of diferent
modes in the network with diferent λ values under the six
reservation roads.With an increase in λ, the travel cost of the
ordinary mode frst decreased and fnally stabilised, while
the travel cost of the reservation mode frst increased and
then stabilised. Initially, drivers who adopt the reservation
mode can enjoy smooth travel. However, with an increase in
reservation users, the trafc fow of the reservation road
gradually increases, which leads to an increase in the V/C
ratio and travel costs. After λ� 0.4, owing to the ORC
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Figure 4: Sensitivity analysis. (a) Road network capacity under diferent scenarios. (b) Average V/C ratios under diferent conditions.
(c) Travel costs for diferent situations.
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limitation, some users cannot make a reservation and choose
to take a detour; therefore, the travel cost of the reservation
mode is stable. In addition, with an increase in λ, the total
travel cost of the road network frst decreased and fnally
stabilised. It shows that implementing TRS can alleviate
urban trafc congestion to a certain extent and reduce travel
costs for residents.

Moreover, we explored the efects of varying degrees of
driver compliance on the results. Specifcally, we set six
reservation roads and λ � 0.4 and evaluated the impact on
road network service level and travel cost by considering
cases where a certain percentage of drivers did not comply
with the proposed policy. Te default ratio of 5% means that
5% of travellers who have not obtained the right-of-way
violate the regulations and pass through the reserved roads.
As shown in Figure 5(a), the travel cost in both reservation
and ordinary modes gradually increases with the increase of
the default ratio. It can be understood as defaulting by some
travellers leading to the reservation road’s trafc volume
exceeding the ORV, exacerbating congestion and delays on
the reservation roads, and afecting other travellers’ itiner-
aries. As depicted in Figure 5(b), the driver’s default be-
havior can have an adverse efect on the V/C ratios of the
entire road network. Te roads in the road network are
interconnected. Terefore, when the congestion on the
reservation roads increases sharply, it afects the sur-
rounding roads. Tese roads are also afected, with reduced
travel speed, vehicle queues, and more severe congestion. In
summary, the driver default behavior can lead to trafc
congestion and increase the V/C ratios and travel costs of all
roads in the network. Terefore, we must adopt appropriate
reward and punishment measures and improve the sup-
porting monitoring system to encourage drivers to abide by
the rules and avoid default behaviors.

4. Conclusion

Tis study aimed to determine the optimal reservation
volume (ORV) of urban roads and verify the efectiveness of
the travel reservation strategy (TRS). We employed the
sustained fow index (SFI) to estimate the ORV from the
degree of trade-of between road breakdown probability and
capacity. A bilevel programming model based on ORV
constraints was established to explore the infuences of the
number of reservation roads and reservation tendency on
road network capacity, V/C ratio, and travel cost under the
implementation of TRS.Te efectiveness of this strategy was
verifed by mining the road trafc characteristics using
geomagnetic sensor data. Te contributions of this study are
summarised as follows: (1) it is one of the few data-driven
attempts to discuss the implementation of TRS on urban
roads; (2) the proposed ORV can be widely used in general
studies of urban road network scenarios, such as optimi-
sation of trafc control strategies and vehicle routing during
emergencies; (3) it verifes the efectiveness of TRS on urban
roads, which helps alleviate the spatial-temporal mismatch
between the supply and demand, reducing queuing on the
road under limited resource conditions and helping promote
sustainable city construction; and (4) crucially, the research
elucidates that during peak hours, TRS should target key
congested road segments and becomes most efective when
at least 40% of vehicles are reserved, providing actionable
insights for urban trafc policymakers.

Te case analysis results indicate that (1) the Weibull
distribution is more consistent with the evolution tendency
of the road capacity distribution function, and the ORV
range is 0.79–0.89 times the road capacity; (2) it is more
efective to select the most congested critical roads in the
network to implement TRS than a large area; (3) the TRS can
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achieve best steady beneft when the demand for reservation
travel reaches at least 40%; (4) the TRS cannot increase the
road network capacity within a specifc period; however, it
can dynamically reduce travel costs and alleviate trafc
congestion by improving the network resource supply and
demand matching efciency; and (5) the driver default
behavior can increase the V/C ratios and travel costs of all
roads in the network.

Te results and conclusions have theoretical and prac-
tical signifcance for the implementation of TRS on urban
roads. Teoretically, it is proven that the reservation
transportation mode is benefcial for promoting the time-
space balance between supply and demand to alleviate trafc
congestion and realise the transition from user to system
optimal transition. Practically, the proposed ORV and
reservation tendency ratio can help managers and decision
makers determine the critical parameters for implementing
the TRS.

Tis study utilised the SFI to estimate the ORV for urban
roads, but the dynamic nature of road capacity and fuc-
tuating trafc demands may afect the accuracy of this es-
timation. Furthermore, while the TRS shows potential in
improving the resource supply-demand match in urban
networks, it does not consider shifts in residents’ daily travel
behavior after implementation. Tis omission can infuence
the strategy’s efcacy, especially given that driver default
behavior has the potential to alter V/C ratios and travel costs
across the network. Future research will aim to capture these
dynamic behaviors more comprehensively.
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