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Te connected and automated car-following model can provide a model reference for the queue control algorithm of connected and
automated driving and has become a hot research topic in the feld of connected vehicles and intelligent transportation. A queue of
fast-moving vehicles on urban roads can cause trafc congestion when forced to slow down and, in serious cases, can cause rear-
impact accidents.Terefore, this paper introduces information on the time delay of information reception and processing, a collision
risk quantifcation factor refecting the speed characteristics of the front vehicle, and the speed limit and proposes an improved
intelligent driver collision quantifcation model that considers drastic changes in the speed of the front vehicle. Additionally, the
model parameters are calibrated using real vehicle data from urban roads combined with an improved salp swarm algorithm. Finally,
the evolution rule of disturbance in the trafc fow under diferent states is analyzed using a time-space diagram, and the
DIDM-CSCL model is compared with the classical IDM.Te results show that the improved IDM can better describe the following
behavior at the microscopic level, which provides a basis for research related to connected and automated driving.

1. Introduction

Following behavior is a result of the interaction of various
elements of a particular driver-vehicle-environment aggre-
gation and describes the various states of afairs between two
adjacent vehicles in a one-way lane where overtaking is
restricted. Following theory is a microscopic trafc fow
theory that analyzes the efciency and stability of vehicle
operations by describing the following behavior of vehicles
and using the driving characteristics of non-free-running
convoys [1]. Te study of vehicle-following behavior from
diferent perspectives andmodeling ideas based on following
theory is an important area of research in microscopic trafc
fow simulation. Based on their development over time, car-
following models are mainly divided into the following
groups: Gazis et al. [2] proposed the general expression of
the classical GM car-following model based on the stimulus-

response principle; Kometani and Sasaki [3] proposed
a safety distance model considering the safety distance of the
car following; Michaels [4] put forward a physiology-
psychology model by defning a series of thresholds and
expected distances to refect people’s feelings and reactions;
Kikuchi and Chakraborty [5] used artifcial intelligence
technology to directly fnd the rules of car-following be-
havior from track data and formed an artifcial intelligence
model; Bando et al. [6] established an optimized speed
model by using information such as the speed of the vehicle
in front and distance between vehicles. However, with the
continuous improvement of intelligent driving systems,
V2V and V2I technologies, with the installation of devices
such as ADAS, AEBS, LIDAR, and GPS, vehicles are able to
access increasingly more accurate real-time data of the
surrounding driver-vehicle-environment network connec-
tion and thus enable alerting, assistance, and intelligent
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decision-making functions for driving operations [7]. Fig-
ure 1 shows the development process of the main car-
following model. Some scholars have improved the tradi-
tional car-following model to suit the needs of models for
connected and automated vehicles in complex
environments.

Treiber et al. [8] succeeded in obtaining an intelligent
driver model (IDM) with only a few physically meaningful
parameters that are easy to calibrate, based on the assumption
of reasonable conditions and the reproduction of realistic
bottlenecks, using simulations of real highway trafc con-
gestion data (e.g., entrance ramps, lane closures, or uphill
ramps) in a quantitative manner with boundary conditions.
Te model has a stable and smooth transition of controlled
acceleration, deceleration, and braking in describing the
following behavior and can describe diferent states from free
fow to fully congested fow with a unifed model. Sub-
sequently, diferent scholars have explored the IDM mainly
from the perspective of human-vehicle driving characteristics
and from the perspective of intelligent driving technology.

In terms of research and improvement of the IDM based
on traditional human-vehicle driving characteristics, the
following characteristics were analyzed by considering
factors such as anticipatory behavior, limited reaction time,
driving task difculty, and driving style. Chen et al. [9] added
two factors, the multianticipative behaviors and reaction
delays of drivers, to the classical IDMmodel and constructed
a multianticipation intelligent driver model (MIDM) by
considering the intervehicle distance information and speed
diference information of neighboring vehicles. Te results
show that the MIDM can maintain the stability of homo-
geneous motorway trafc fow in the presence of small
disturbances. Treiber et al. [10] developed a human driver
model (HDM) that is consistent with empirical data on high-
speed trafc, considering fnite reaction times, estimation
errors, and temporal anticipation. Te ftting results show
that the HDM can compensate for the unstable efects of
reaction times and estimation errors by reducing the
transition gradient between free trafc and congested trafc,
thus increasing the wavelength of vehicles stopping. Hoo-
gendoorn et al. [11] and Saifuzzaman and Zheng [12] in-
corporated the task-capability-interface (TCI) model
proposed by Fuller [13] into the IDM to capture the com-
pensatory efects of driver distraction. Saifuzzaman et al. [14]
developed a task difculty intelligent driver model (TDIDM)
based on human behavioral factors by measuring the in-
teraction state between driving task demands and driving
ability as driving task difculty. Te numerical simulation
results show that the TDIDM can efectively control the
following behavior of the subject vehicle under diferent
driving task difculties and maintain a relatively smooth
following speed after the driving task requirements are
accurately obtained. However, most of the abovemodels lack
real vehicle tracking data or the model parameters are not
calibrated, and a small number of models have validation
data from high-speed road sections and lack urban tracking
data for parameter calibration and validation. Terefore, the
ability of the IDM to control the following behavior on
urban roads needs to be further confrmed.

In the research and improvement of the IDM based on
connected and automated driving technology, the following
characteristics were analyzed by considering factors such as
multivehicle information for connected vehicles and in-
telligent driving systems. Xiao et al. [15] considered the
conditional heteroskedasticity of acceleration fuctuations
between vehicles in following behavior and developed an
IDM-GARCH model by combining the dynamic balance of
efciency drivers and safety drivers. Te model was more
accurate in predicting the value of changes in vehicle ac-
celeration and occurrence of risky driving behavior. Zong
et al. [16] developed a multifront and rear IDM suitable for
describing the behavior of connected and automated vehi-
cles, considering factors such as multivehicle information
and time delay. Te simulation results showed that tem-
porarily formed vehicle queues can interact and make de-
cisions about their respective driving trends in real time
while driving by receiving efective information from the
front and rear vehicles, improving the operational efciency,
comfort, and stability of the trafc fow. Sharma et al. [17]
incorporated driver compliance behavior into a connected
vehicle driving strategy, combining prospect theory and
weighting functions to design a CVDS-IDM based on low-
and high-compliance behavior to determine the level of
compliance in terms of time headway.Te calibration results
showed that driver behavior is safer and more efcient in
a connected environment. Li et al. [18] proposed an im-
proved intelligent driver model (MIDM) based on the
driver’s responsiveness to speed diferences and safety in-
formation combined with the dynamic characteristics of
connected vehicles. Te test results showed that the im-
proved model can contribute to the stability of the trafc
fow and improve the operational efciency of the feet by
obtaining efective information on the following vehicles.
However, the above improved model does not consider the
possibility of collision scenarios occurring in the following
behavior exacerbated by the speed fuctuations generated by
the subject vehicle when there are large fuctuations in the
speed of the front vehicle. Terefore, quantitative factors of
collision risk related to the speed of the front vehicle in
a connected environment are introduced into the IDM, and
appropriate weights are set to control the behavior of the
vehicle.

In the above studies on the modeling of following
behavior, there were few studies on the infuence of real-
time speed information and quantitative crash risk factors
on the following behavior of the front vehicle. Some
scholars have found that drivers have diferent re-
quirements for the desired headway under diferent road
conditions because of speed restrictions and other factors
[19, 20]. Furthermore, in addition to the need to calibrate
the improved IDM parameters using urban road trafc
following data, the solution accuracy and convergence rate
of the parameter optimization must also be considered. In
this study, an improved DIDM-CSCL model is con-
structed based on the analysis of vehicle-following be-
havior, which takes into account information such as the
time delay of information reception and processing, the
collision risk quantifcation factor refecting the speed
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characteristics of the vehicle in front, and the speed limits.
Te relevant parameters in the model were calibrated
using real vehicle data from urban roads and an improved
salp swarm algorithm. By introducing specifc driver-
vehicle-environment target state information, the stability
of the subject vehicle driving in the following behavior is
improved. In particular, it is potentially useful for tem-
porary queues consisting of AVs to improve the stability
and operational efciency of the queue and overall
trafc fow.

Te remainder of this paper is organized as follows. Te
DIDM-CSCL model is constructed in Section 2, and in
Section 3, the proposed model is analyzed for stability and
compared with the IDM. Te parameter calibration and
algorithm search are presented in Section 4, numerical
simulations are presented in Section 5, and conclusions are
presented in the last section.

2. Methodology

Te classical IDM was proposed by Treiber et al. [8, 21] as an
intelligent driving model based on generalized following
behavior characteristics (vehicles always try to maintain the
desired speed and headway spacing, etc.), including the
tendency to react to acceleration and deceleration move-
ments in free fow and congested fow states. Its formula is as
follows:

an(t) �
dvn(t)

dt

� a0 1 −
vn(t)

v0
 

4

−
s∗n (t)

sn(t)
 

2
⎛⎝ ⎞⎠,

(1)

s
∗
n (t) � s0 + Tvn(t) +

vn(t)∆v(t)

2
���
a0b

 , (2)

where a0 and v0 are the maximum acceleration and desired
speed of the nth vehicle in the free fow, respectively, vn(t) is
the speed of the following vehicle at time t, s∗n (t) is the
desired gap, s0 is the minimum gap, T is the safe time
headway, ∆v(t) is the speed diference between the following
vehicle and the front vehicle, and b is the comfortable
deceleration.

In equation (1), the acceleration in the IDM at a given
moment is related to the current speed of the vehicle, time
headway, and speed diference with the vehicle ahead.
However, in practical studies, it has been found that the
speed diference in the IDM does not ft the acceleration with
the corresponding efect well when road trafc obstruction
causes a large change in the speed of the vehicle ahead, thus
reducing the safety of the following behavior [22]. Moreover,
speed limits are an important factor in causing road trafc
congestion, signifcantly infuencing the choice of the de-
sired following distance of the rear driver. However, pre-
vious studies have shown that considering safety factors
related to crash expectations can efectively enhance trafc
fow stability. Li et al. [23] considered the time-exposed
time-to-collision (TET) and the time integrated time-to-
collision (TIT) as vehicle safety factors and developed a crash
assessment model. Te results showed that the model could
signifcantly reduce the risk of highway vehicle collisions
with a reasonable time headway and time delay. Wu et al.
[24] used time-to-collision at braking (TTC-brake) and total
travel time (TTT) as evaluation indexes for the risk as-
sessment of collisions at highway bottlenecks under foggy
conditions and efectively performed a risk assessment of the
following model and control strategy.

Te most common trafc accidents during the following
behavior are rear-end accidents [25]. In reality, it is not
possible to measure crash expectations in an extreme way
(e.g., the number of collisions and injury severity); therefore,
alternative safety measures are used to establish the re-
lationship between risk and vehicle travel variables. In
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Figure 1: Development process of the main car-following models.
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previous studies, diferent scholars have proposed several
valid crash expectation metrics, one of which is time-to-
collision (TTC) [26]. TTC represents the time it takes for two
vehicles to collide when the primary vehicle and the vehicle
in front travel in the same lane while maintaining the
existing speed. TTC is currently available in several ways,
either by means of intelligent driver assistance systems (e.g.,
FCW and AEB) or by real-time interaction with information
on the motion of the following vehicle in a connected en-
vironment [27–29].

TTCn(t) �

xn− 1(t) − xn(t) − l

vn(t) − vn− 1(t)
, vn(t) > vn− 1(t),

∞, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

It is deformed and transformed into the collision risk
quantifcation factor:

CSC � −
1

TTCn(t)

�
vn− 1(t) − vn(t)

xn− 1(t) − xn(t) − l
.

(4)

When the speed of the vehicle in front is less than the
speed of the vehicle behind it, a collision may occur, re-
quiring a slowdown.

CSC �
vn− 1(t) − vn(t)

xn− 1(t) − xn(t) − l
< 0. (5)

When the speed of the preceding vehicle is equal to that
of the following vehicle, it may continue to travel at
a constant speed.

CSC �
vn− 1(t) − vn(t)

xn− 1(t) − xn(t) − l
� 0. (6)

When the speed of the vehicle in front is greater than the
speed of the vehicle behind it, it is possible to accelerate
moderately.

CSC �
vn− 1(t) − vn(t)

xn− 1(t) − xn(t) − l
> 0. (7)

In this study, as shown in Figure 2, it is assumed that all
vehicles are ftted with a complete automation system, in-
cluding hardware and software units, as well as a V2V on-
board unit for information transfer. In this way, each vehicle
can obtain information about the surrounding vehicles with
the help of the connected devices, and in turn, all vehicles
can react automatically based on the above information. For
example, by accelerating and decelerating to follow the
preceding vehicles, each vehicle can maintain a safe distance
and emergency avoidance. Moreover, the speed limit is used
as a constraint [30] to verify the synergy and transferability
of the model. Terefore, we develop a descriptive and
empirical car-following model with linear combination of
CSC and speed limit as shown in (8) and (9).

Converting equation (1) into the DIDM-CSCL mode
yields

dvn t + td( 

dt
� a0 1 −

vn(t)

v0
 

4

−
s∗n (t)

sn(t)
 

2
⎛⎝ ⎞⎠ + cCSCvn− 1(t) + μ vlim − vn(t)( , (8)

where td is the time delay for message reception and pro-
cessing, vlim is the speed limit information, c denotes the
collision quantization sensitivity factor, and μ denotes the
sensitivity factor for the speed limits.

Substitute into equation (4) and simplify to obtain the
DIDM-CSCL model as

dvn t + td( 

dt
� a0 1 −

vn(t)

v0
 

4

−
s∗n (t)

sn(t)
 

2
⎛⎝ ⎞⎠ − c

∆v(t)

sn(t)
vn− 1(t) + μ vlim − vn(t)( , (9)

where sn(t) � xn− 1(t) − xn(t) − l is the actual gap.
Te above model can be used to explore the efect of the

additional term on the speed and the efect of speed limits by
varying the weights c and μ to improve the stability of the
trafc fow under disturbances.

3. Stability Analysis

Stability analysis is an important part of this following
model. Sun et al. [31] analyzed the local and string stability of
car-following models with diferent characteristics using

methods based on the characteristic equation and Lyapunov
criterion, compared the stability criteria of some methods
using the principles of consistency and applicability, and
investigated the efects of connectivity and time delay on the
stability of the model. Montanino and Punzo [32] proposed
a string stability modeling method that considers driver and
vehicle heterogeneity by classifying the stability correlates of
the following model into system type, domain of action, etc.,
and using the L2 induced paradigm as a stability metric. Sun
et al. [33] combined the string stability of car-following and
trafc fow oscillations by analyzing the instability factors of

4 Journal of Advanced Transportation



single-vehicle travel in the following behavior and the os-
cillation criterion in queue marching to complementarily
achieve the compressing and alleviating of trafc congestion.
In this study, the stability of the DIDM-CSCL model is
analyzed using the linear stability theory, and equation (10)
is simplifed as follows:

dvn t + td( 

dt
� fn s(t), vn(t),∆v(t), vn− 1(t)( . (10)

We assume that�s is the average time headway of adjacent
vehicles in a uniform fow. �v is the speed of vehicles in
a uniform fow, and in the initial state, all vehicles travel at
the same headway and at the same speed. Te vehicle po-
sitions in the uniform fow are

�xn(t) � (N − n)�s + �vt, n � 1, 2, 3..., N. (11)

Assuming that yn(t) is the disturbance generated by
vehicle n at time t, the disturbance is added to equation (11).

yn(t) � ceiαkn+zt
� xn(t) − �xn(t), yn(t)⟶ 0, (12)

where αk � 2πk/N (k � 0, 1, ..., N − 1) is a constant. Taking
the second derivative of both sides of equation (12) yields

yn″ t + td(  � xn
″ t + td(  − �xn

″ t + td(  �
dvn t + td( 

dt
. (13)

Substituting equation (10) into equation (13) gives

yn
″ t + td(  � fn s(t), vn(t),∆v(t), vn− 1(t)( . (14)

Linearizing equation (14) gives

yn
″ t + td(  � f

s
n yn− 1(t) − yn(t)(  + f

vn

n yn
′(t)

+ f
∆v
n yn
′(t) − yn− 1′ (t)(  + f

vn− 1
n yn− 1′ (t),

(15)

where fs
n �(zfn/zs)|�v,�s≥ 0, fvn

n �(zfn/zvn)|�v,�s≤ 0, fΔvn �

(zfn/zΔ v)|�v,�s≤ 0 and fvn− 1
n �(zfn/zvn− 1)|�v,�s≥ 0.

Rewriting equation (15) using the Taylor series expan-
sion and the frst order derivative formula yields the dif-
ference equation.

yn
′ t + 2td(  − yn

′ t + td(  � tdf
s
n yn− 1(t) − yn(t)(  + f

vn

n yn t + td(  − yn(t)( 

+ f
∆v
n yn t + td(  − yn(t) − yn− 1 t + td(  + yn− 1(t)(  + f

vn− 1
n yn− 1 t + td(  − yn− 1(t)( .

(16)

Substituting yn(t) � ceiαkn+zt and yn
′(t) � zceiαkn+zt into

equation (16) and simplifying give

e
ztd − 1

− 1  zeztd − f
vn

n − f
∆v
n 1 − e

− iαk  − f
vn− 1
n e

− iαk  � tdf
s
n e

− iαk − 1 . (17)

Substitute the following power series expansions for the
parameters in equation (17).

z � z1 iαk(  + z2 iαk( 
2

+ · · · , (18)

e
ztd � 1 + tdz +

td
2
z
2

2
+ · · · , (19)

e
− iαk � 1 − iαk +

iαk( 
2

2
− · · · , (20)
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Figure 2: Schematic diagram of the DIDM-CSCL model.
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where z is the complex growth rate and z1 and z2 are real
numbers. Expanding this gives the frst and second order
expressions for z:

z1 iαk(  + z2 iαk( 
2

+
td

2
z1 iαk(  + z2 iαk( 

2
 

2
  × z1 iαk(  + z2 iαk( 

2
+ td z1 iαk(  + z2 iαk( 

2
 

2


+
td

2

2
z1 iαk(  + z2 iαk( 

2
 

3
− f

vn

n − f
∆v
n iαk −

iαk( 
2

2
  − f

vn− 1
n 1 − iαk +

iαk( 
2

2
  � − f

s
n − iαk +

iαk( 
2

2
 .

(21)

And thus yields

z1 �
f

s
n

f
vn

n + f
vn− 1
n

(22)

z2 �
z1

2 1 − td/2( f
vn

n − td/2( f
vn− 1
n(  − z1 f

Δv
n − f

vn− 1
n  − (1/2)f

s
n

f
vn

n + f
vn− 1
n

. (23)

Trafc fows become unstable when z2 < 0 is subjected to
small perturbations and stabilize when z2 > 0 is perturbed.
Te stability condition is

fs
n

fvn
n + fvn− 1

n

 

2

1 −
td

2
f

vn

n −
td

2
f

vn− 1
n  −

f
s
n

f
vn

n + f
vn− 1
n

  f
∆v
n − f

vn− 1
n  −

1
2
f

s
n < 0. (24)

Simplifying and moving the terms give

td

2
<

1
f

vn

n + f
vn− 1
n

−
2f
∆v
n + f

vn

n − f
vn− 1
n

2f
s
n

. (25)

Te expressions for fs
n, fvn

n , f∆v
n , and fvn− 1

n can be ob-
tained from equation (25) as follows:

f
s
n �

2a0

sn(t)

s0 + Tvn(t) + vn(t)∆v/2
���
a0b


( 

sn(t)
 

2

+ c
∆v

s
2
n(t)

vn− 1(t), (26)

f
vn

n � − 2a0
2
v0

vn(t)

v0
 

3

+
T + ∆v/2

���
a0b


( (  s0 + Tvn(t) + vn(t)∆v/2

���

a0b



  

s
2
n(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ − μ, (27)

f
∆v
n �

s0 + Tvn(t) + vn(t)∆v/2
���

a0b



  vn(t)

s
2
n(t)

��
a0

b



− c
vn− 1(t)

sn(t)
, (28)

f
vn− 1
n � − c

∆v

sn(t)
. (29)
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Substituting equations (26)–(29) into equation (25), the
stability condition is obtained as

td

2
<

1
− 2a0 2/v0(  vn(t)/v0( 

3
+ T s0 + Tvn(t)( /s2n(t)   − μ

−
s0 + Tvn(t)( vn(t)/s2n(t) 

������
a0/b( 


− − c vn− 1(t)/sn(t)(  − a0 2/v0(  vn(t)/v0( 

3
+ T s0 + Tvn(t)( /s2n(t)   − μ

2a0/sn(t)(  s0 + Tvn(t)/sn(t)( 
2 ,

(30)

where sn(t) is the actual gap of vehicles in homogeneous
trafc fow.

Based on equation (30), the stability curves of the model
were obtained. Figure 3 shows the stability curves when td �

0 and td � 0.15 [34] are set with diferent parameters c and μ,
where a0 � 2, v0 � 10, s0 � 2.5, b � 1.5, and vlim � 10. As c

and μ increase, the stability curve gradually decreases, which
indicates that considering the collision risk quantifcation
factor and road speed limits can efectively improve the
stability of trafc fow. It can also be noticed that the in-
stability region for td � 0.15 is signifcantly larger than that
for td � 0, as the reaction time delays the vehicle’s response,
thus changing the vehicle’s motion.

4. Calibration

For calibration, the optimal set of IDM and their improved
model parameters are generally solved using a genetic al-
gorithm (GA) [10], which is a simple and extensible process.
However, in the actual calibration process, it is found that
when using the GA for global searches at larger population
sizes, it is unavoidable to repeatedly fall into local minima or
boundary values, which does not meet the demand for
solving the optimal solution for the calibration of the pa-
rameters of the car-followingmodel.Terefore, in this study,
the parameters of the DIDM-CSCL model were calibrated
using actual tracking data during the acceleration and de-
celeration of vehicles on urban roads, and the optimal so-
lution for each parameter was determined using an
improved salp swarm algorithm (SSA).

4.1. Improved SSA. SSA is a novel intelligent optimization
algorithm proposed by Mirjalili et al. [35] that models the
common chain behavior of leaders and followers in a salp
swarm chain. Te algorithm performs a global exploration
and local search by the leader and followers, respectively,
during each iteration, efectively reducing the number of
cases of falling into the local optima.Te completely random
population initialization process is shown in the following
equation:

XN×D � rand(N, D) ×(ub(N, D) − lb(N, D)) + lb(N, D), (31)

where the search space is N × D, N is the population size,
and D is the spatial dimension. Te upper bounds of the
search space are ub(N, D), and the lower bounds
are lb(N, D).

During the movement and foraging of the salp swarm
chain, the leader’s position updates are expressed as

X
1
d �

Fd + c1 ubd − lbd( c2 + lbd  c3 ≥ 0.5,

Fd − c1 ubd − lbd( c2 + lbd  c3 < 0.5.
 (32)

c1 � 2e
− (4l/L)2

, (33)

where d � 1, 2, 3, · · · , D; Fd denotes the position of the food
source in the dth dimension; c2 and c3 are random numbers
on [0, 1]; l and L represent the current and maximum
number of iterations, respectively. c1 is a decreasing and then
increasing weight, which has a greater impact on the con-
vergence of the algorithm and has the ability to balance the
exploration and development of the algorithm.

Te follower’s position update is represented as

X
I
d �

at2

2
+ v0t + X

i
d, (34)

a �
v − v0( 

t
, (35)

v �
X

i− 1
d − X

i
d 

t
, (36)

where i � I � 2, 3, 4, · · · , N; a and v represent acceleration
and velocity, respectively, v0 denotes initial velocity, and t is
the diference in the number of iterations. Xi

d is the position
of the ith follower in dimension d before the update, and XI

d

is the position of the follower after the update. When t � 1
and v0 � 0, equation (34) is substituted into equation (36).

X
I
d �

X
i− 1
d + X

i
d 

2
. (37)

However, SSA sufers from poor population diversity
and slow convergence when faced with numerous complex
multidimensional optimization problems [36]. To further
improve the convergence speed and solution accuracy of
SSA for the estimation of the parameters of the car-following
model, this paper introduces circle chaotic mapping to make
the algorithm jump out of the local optimum and then
explores the search space thoroughly with a higher proba-
bility of improving its convergence speed. However, it was
found that the circle chaotic mapping cannot obtain
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a uniformly distributed initial solution in the solution
process, and thus, the circle chaotic mapping is improved.

Te original circle chaotic mapping formula is
Y

n
k+1 � mod X

n
k + 0.2 −

0.5
0.2π

sin 2π · X
n
k(  , 1 . (38)

Te improved logistic-circle chaotic mapping formula is

Y
n
k+1 �

mod 7.7X
n
k + 0.8 −

1.4
7.7π

sin 7.7π · X
n
k(  , 1 , if X

n
k < 0.5,

mod 7.7X
n
k + 0.8 −

1.4
7.7π

sin 7.7π · X
n
k(  1 − X

n
k(  , 1 , if X

n
k ≥ 0.5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(39)

where Yn
k+1 are chaotic sequences for the interval [0, 1];

n � 1, 2, 3 · · · , N; and k � 1, 2, 3 · · · , D − 1.
Te initial solution dimension distribution plots and his-

tograms of the initial solution dimension distributions before
and after improvement are shown in Figure 4. Setting the
spatial dimension D � 5000, as shown in Figures 4(a) and 4(b),
it is clear that the chaotic values of the logistic-circle chaotic
mapping are more evenly distributed. Terefore, the improved
logistic-circle chaotic mapping is used to initialize the pop-
ulation and enhance the diversity of the population, which in
turn enhances the optimization ability of the algorithm.

An inverse mapping is then performed to obtain the
initial position of the population, as shown in the following
equation:

X
n
d � Y

n
k(ub(N, D) − lb(N, D)) + lb(N, D). (40)

To extend the global search efectively, individuals are
guided to explore other positions to increase the diversity of
the population and improve the local search capability of the
algorithm. Te leader positions are updated using an
adaptive disturbance strategy.

X
1
d �

Fd + c1 c2 + 0.5r1( Fd c1 ≥ 0.8,

Fd − c1 c2 + 0.5r1( Fd c1 < 0.8.

⎧⎪⎨

⎪⎩
(41)

c1 �

2e
− (4l/L)2

, t≥
L

2
,

2e
− (4(T− l)/L)2

, t<
L

2
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

where r1 is a random distribution on (0, 1), causing a per-
turbation deviation from the individual optimum of the salp
swarm, causing a change in the direction of individual
movement, and preventing individuals from falling into
a local optimum.

To validate the performance of logistic-circle and
disturbance-adaption salp swarm algorithm (LDSSA),
a comparison was made with SSA. Validation was carried
out against the benchmark functions in Table 1 by setting the
maximum number of iterations and population size. Among
them, F1–F3 are single-peaked functions with only one
global optimum, which can well refect the convergence
performance of the algorithm, and F4–F6 are multipeaked
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Figure 3: Stability curves at td � 0 and td � 0.15 for diferent c and μ. (a) td � 0. (b) td � 0.15.
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functions with multiple local optima, which can well refect
the ability of the algorithm to jump out of the local optimum.

Figure 5 shows that on the single-peaked high-
dimensional solution problems, LDSSA converges within
550 generations, proving that LDSSA has good convergence
accuracy and convergence speed. On the problem of solving
multipeak functions, the convergence curve of LDSSA shows
a stepwise decline as shown in Figures 5(d) and 5(f). Te
iterative process falls into the local optimum several times;
however, LASSA is able to jump out of the current local
optimum well, which also proves the efectiveness of the
leader’s adaptive perturbation update strategy.

4.2. Model Calibration and Validation. Diferent parameter
settings represent diferent driving behaviors in the car-
following model, and there are diferences in the trafc
scenarios to which they are adapted. In this study, the

parameters in the improved DIDM-CSCL model were pa-
rameter calibrated using the following data during vehicle
acceleration and deceleration on urban roads. Te
DIDM-CSCL model calibration results are listed in Table 2,
with the relevant parameters c � 0.31 and μ � 0.28.

To verify the superiority of the improved DIDM-CSCL
and IDM in terms of error accuracy, the trajectory ftting
results of the two models were compared with the actual
rear vehicle trajectory data. Te mean square error, mean
absolute error, and goodness of ft were calculated to
determine whether the improved model had signifcantly
improved in terms of trajectory ftting accuracy. As shown
in Figure 6 and Table 3, the improved DIDM-CSCL model
at the sum time improved the error accuracy compared to
the original model and 2.2% in ftting accuracy compared
to the original model, thus verifying that the improved
DIDM-CSCL model is better than the original IDM in
ftting accuracy.
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Figure 4: Plot of initial solution dimension distribution and histogram of initial solution dimension distribution for the two chaotic
mappings. (a) Circle. (b) Logistic-circle.
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5. Numerical Simulation

To investigate the dynamic performance of the improved
DIDM-CSCL model, we used the DIDM-CSCL model to
simulate the acceleration motion of vehicles when the trafc
signal changes from red to green and to test some properties of
the improved IDM. When the trafc signal is red, 10 vehicles
are in a line, all vehicles are at rest, and the interval between
vehicles is 2.5m. At t � 0, the trafc signal turns green and the

vehicles start to move. To compare the improvedDIDM-CSCL
model with the original model, we set the parameters for both
models as shown in Table 2, where the desired speed and speed
limits are 10m/s and the delay time is 0.15 s.

Numerical simulations using the two models were
run to obtain the acceleration, speed, and position
changes as shown in Figures 7–9. It can be seen from the
fgure that the acceleration maximum value in the
DIDM-CSCL model was larger than that of the IDM and

Table 1: Benchmark functions.

Name Function Dimension Defnition feld
F1 Sphere 200 [− 100, 100]
F2 Schwefel 1.2 200 [− 100, 100]
F3 Rosenbrock 30 [− 30, 30]
F4 Rastrigin 100 [− 5.12, 5.12]
F5 Griewank 100 [− 100, 100]
F6 Kowalik 4 [− 5, 5]
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Figure 5: Comparison of convergence curves of diferent algorithms. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6.

Table 2: Calibration results of DIDM-CSCL model parameters.

Parameters Description Boundaries Value
a0 Maximum acceleration [0.1, 5] 2.2
b Comfortable deceleration [0.1, 5] 1.6
s0 Minimum headway [0.1, 10] 3.5
T Safe time headway [0.1, 5] 1.6
c Collision quantization sensitivity factor [0.1, 1] 0.31
μ Speed limit sensitivity factor [0.1, 1] 0.28
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the acceleration process used less time than the IDM. Te
DIDM-CSCL model of the speed distribution converged
faster to the maximum value than did the original IDM,
which is consistent with the real movement of vehicles at
intersections. After the trafc light turns from red to
green, vehicles generally increase their speed to reach
maximum speed as quickly as possible under safe con-
ditions to cross the intersection.

To investigate the efects of sensitive collision factors and
speed limits on the stability of the following trafc, the
simulation was carried out on a 400m long circular road
with N� 100 vehicles evenly spaced and a simulation step
size of 0.01 s, with other parameters kept constant.

Figure 10 shows the headway distribution of 100 vehicles
at 500 s for the DIDM-CSCL model in the case of μ � 0 with
c taking the values 0, 0.1, 0.2, and 0.31. Figure 11 shows the
headway distribution of 100 vehicles for the DIDM-CSCL
model at 500 s for the case c � 0 with μ taking the values 0,
0.1, 0.2, and 0.28. Te comparison shows that changing the
value of c or μ changes the space headway of the following
trafc when all the other conditions are consistent. In
particular, the amplitude of the headway oscillation was
greatest at c � 0 and μ � 0, with a peak-to-trough diference
of 0.536m at 500 s.Te peak-to-trough diference was 0.31m

for c � 0.31 and μ � 0.28. Te experiments show that the
introduction of a collision sensitivity factor and speed limit
information into the trafcmodel is benefcial to the stability
of the trafc fow.

Figures 12(a)–12(d) show the velocity time-space dia-
grams of the perturbation propagating in the following
trafc for diferent values of c and μ. When c � 0 and μ � 0,
the model is the IDM; under the disturbance action, many
fold bands appear in the velocity time-space diagram of the
trafc fow, indicating that the velocity in the trafc fow is
constantly changing. With the passage of time, the distur-
bance propagates in the following trafc fow, eventually
afecting the stability of the trafc system, causing the entire
system to be in an unstable state (such as causing trafc
jams). Te dispersion of the disturbance was relatively poor.
In Figures 12(b)–12(d), by gradually increasing the values of
c and μ, the fuctuation in the velocity of the following trafc
began to decrease. At c � 0.31 and μ � 0.28, the speed
leveled of, indicating that the disturbance was controlled or
even dissipated in the following trafc. Te above numerical
simulation experiments and analysis results show that the
stability of trafc fow can be further improved by in-
troducing collision-sensitive factors and speed limit in-
formation into the IDM.
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Figure 6: DIDM-CSCL and IDM rear vehicle ftted trajectory data curves.

Table 3: Fitting error data corresponding to the two models.

Mode ME MAE RMSE R2 (%)
IDM 0.198 0.283 0.384 95.4
DIDM-CSCL 0.109 0.253 0.356 97.6

Journal of Advanced Transportation 11



IDM car1
IDM car2
IDM car3
IDM car4
IDM car5
IDM car6
IDM car7
IDM car8
IDM car9
IDM car10

DIDM-CSCL car1
DIDM-CSCL car2
DIDM-CSCL car3
DIDM-CSCL car4
DIDM-CSCL car5
DIDM-CSCL car6
DIDM-CSCL car7
DIDM-CSCL car8
DIDM-CSCL car9
DIDM-CSCL car10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Ac

ce
ler

at
io

n 
(m

/s2 )

50 100 150 200 250 300 350 400 450 5000
Time (0.1 s)

IDM car1
IDM car2
IDM car3
IDM car4
IDM car5
IDM car6
IDM car7
IDM car8
IDM car9
IDM car10

DIDM-CSCL car1
DIDM-CSCL car2
DIDM-CSCL car3
DIDM-CSCL car4
DIDM-CSCL car5
DIDM-CSCL car6
DIDM-CSCL car7
DIDM-CSCL car8
DIDM-CSCL car9
DIDM-CSCL car10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ac
ce

ler
at

io
n 

(m
/s2 )

100 150 200 250 300 350 40050
Time (0.1 s)

Figure 7: Vehicle acceleration distribution curve and its partial enlargement (solid line: IDM; dashed line: DIDM-CSCL).
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Figure 8: Vehicle speed distribution curve and its partial enlargement (solid line: IDM; dashed line: DIDM-CSCL).
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Figure 9: Vehicle position distribution curve and its partial enlargement (solid line: IDM; dashed line: DIDM-CSCL).
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Figure 12: Time-space variation of velocity for diferent values of c and μ. (a) c � 0, μ � 0. (b) c � 0, μ � 0.1. (c) c � 0.1, μ � 0.
(d) c � 0.31, μ � 0.28.
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6. Conclusion

In a connected environment, this paper proposed
a DIDM-CSCL model based on the IDM, which was im-
proved by introducing information such as a time delay for
reception and processing, collision risk quantifcation factor,
and mandatory speed limit. Te stability conditions of the
DIDM-CSCL model were obtained through a linear stability
analysis. Te results showed that considering information
such as the collision risk quantization factor and mandatory
speed limit further improved the stability of trafc fow and
efectively suppressed trafc congestion. Te model was also
calibrated using real vehicle data from urban roads, the
optimal parameters of the model were obtained through
error analysis, and the ftting accuracies of the two models
were compared and analyzed. Te results showed that the
improved DIDM-CSCL model outperformed the original
IDM in terms of the ftting accuracy.

Te numerical simulation showed that the DIDM-CSCL
model outperformed the IDM in terms of the acceleration,
velocity, and headway distribution of the vehicle, which is
more in line with the actual situation. However, owing to the
complexity of the trafc system, it is necessary to further
expand the calibration sample and calibrate the model pa-
rameters more accurately. Additionally, to meet the actual
situational requirements and needs of the current develop-
ment of autonomous driving and other technologies, it is
necessary to consider following behavior under the infuence
ofmultiple vehicles in front and behind. Future work is needed
to address the following areas: (1) vehicles in heterogeneous
trafc fows do not follow the samemodel and (2) nonuniform
initial conditions need to be simulated to investigate the ef-
fectiveness of DIDM-CSCL in complex environments.
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