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Accurate forecasting of subway passenger fows is considered essential for the development of efcient train schedules. However,
transport capacity constraints as well as station congestion can be caused by unexpected concerns with trains or power supply, which
endanger passenger safety. Predicting passenger fows at the time of a fault is particularly challenging due to the low probability of
failure and the complexity of the factors involved. In addition, deviation from the observed valuemay be resulted by the point-in-time
prediction of passenger fow, thus afecting the efciency of passenger fow control measures. To address this concern, a three-stage
A-LSTM prediction model utilizing an attention mechanism and a double-layer LSTM (Long Short-TermMemory) neural network
has been proposed.Te model is used to map the impact of fault events on subway transport capacity with respect to delays onto the
inbound passenger fow. By analyzing the data from the subway system in a metropolitan city of China, the range of passenger fow
fuctuations in 10-minute intervals will be precisely predicted and applied to diferent subway stations.

1. Introduction

Subway systems around the world are expanding, and they
mainly serve the densely populated areas of the central city.
Subway operators have developed fxed strategies and
mechanisms to predict passenger fow to manage large
number of passengers. However, sudden events can cause an
instantaneous change in inbound passenger fow at a single
station, which can have a ripple efect throughout the entire
network. If fow control measures are not applied properly, it
can lead to serious accidents. In 2021, the City S, a metro-
politan city in Eastern China, subway system, with the
longest operating mileage in the world, faced 2,384 in-
cidents, 78 of which caused direct subway delays, resulting in
a maximum delay of 106minutes. Terefore, it is necessary
to accurately predict the trend and magnitude of passenger
fow changes during failure events. Tis can help subway
operation managers select appropriate fow control

measures. Te forecast results should be detailed and show
the passenger fow’s vibration in intervals as short as
10minutes. In recent years, the development of artifcial
intelligence algorithms has made subway passenger fow
prediction more accurate and faster.

When it comes to predicting passenger fow in subways,
most research has focused on normal scenarios, resulting in
high accuracy. However, predicting passenger fow during
failure conditions—such as bad weather, holidays, or large-
scale events—can prove more challenging. Te combina-
tion of these factors results in lower passenger fow pre-
diction accuracy. Moreover, sudden failures that
signifcantly impact the subway system are rare and occur
randomly, making it difcult to accumulate sufcient data
to train and make accurate predictions for specifc stations
or sections.Tis is one of the primary reasons why there are
few studies on predicting passenger fow under failure
conditions.
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Te subway system’s failures have a signifcant impact on
train transport capacity, leading to delays. Despite passenger
fow forecasting research, the failures’ impacts on train
transport capacity are not fully analyzed, and accurate
prediction of inbound passenger fow fuctuation patterns
during diferent types of failure events is not possible.
Current research methods primarily focus on predicting the
exact number of passengers in the future without consid-
ering the possible range of fuctuation in passenger fow.
However, predicting the fuctuation range is more useful
than a single number as it accounts for extreme situations.
Unfortunately, inbound passenger fow prediction accuracy
under failure conditions is currently low, with little emphasis
on predicting the fuctuation range. Tis paper aims to
explore a passenger fow forecasting method for failure
events, assisting station managers in taking passenger fow
control and evacuation measures in advance.

Te research focuses on accurately predicting short-term
passenger fow fuctuations during unexpected failures in
urban rail transit stations. Key innovations include the
following:

(1) Introducing features of train transport capacities and
delays during failure events into the prediction
model, improving accuracy.

(2) Developing a three-stage LSTM prediction model
with an attention mechanism, enhancing short-term
passenger fow forecasting during failure events.

(3) Developing an A-LSTMmodel that has been verifed
with high accuracy and can be applied to real-world
passenger fow control in subway stations.

Tis paper is divided into several sections. Firstly, we
summarize the previous research related to this feld. Next,
we analyze the practical problems of this research and
provide a detailed description.Ten, we propose an A-LSTM
model that utilizes 30 day rolling update data to predict
inbound passenger fow. We verify the efectiveness of this
method using real events and passenger fow data from the
City S subway. In the sixth part, we apply the A-LSTMmodel
to predict short-term inbound passenger fow in normal and
sudden failure scenarios. Finally, we conclude with our
fndings and recommendations.

2. Related Works

Currently, most research on short-term passenger fow
prediction for subway stations focuses on normal scenarios.
Te methods used are predominantly based on neural
network algorithms and signal mode decomposition, with
few studies conducted on failure events. Tis paper provides
an overview of research methods for short-term passenger
fow prediction at subway stations under normal conditions
and highlights research on passenger fow prediction under
failure conditions.

2.1. Passenger Flow Prediction under Normal Conditions.
Te short-term prediction of passenger fow at subway stations
is heavily infuenced by the station’s location, surroundings,
and passenger fow in the previous period, making it suitable
for the time series method. In recent years, diferent neural
network algorithms have been used to predict short-term
passenger fow in subway stations for normal operation. For
example, Liu et al. [1] presented an end-to-end deep learning
architecture, termed Deep Passenger Flow (DeepPF), to
forecast the subway inbound/outbound passenger fow. Tey
have combined recurrent neural networks and long short-term
memory to deal with modeling external environmental factors,
temporal dependencies, spatial characteristics, and subway
operational properties. And the neural network architecture
could be layer-specifc which means the diferent layers can
take diferent neural network models. Fu et al. [2] brought the
external information forward. Tey came up with a new
methodology that presents a neural network model for
20minutes ahead prediction of subway passenger fow based
on multiple sources of data including smart card data, mobile
phone data, and subway network data. Te proposed neural
network structure includes fully connected layers and long
short-term memory layers. Ma et al. [3] proposed a prediction
model of parallel architecture of convolutional neural network
and bidirectional LSTM network. Te spatial characteristics of
passenger fow are extracted by the convolutional neural
network, and the temporal features of passenger fow are
extracted by the bidirectional LSTM network. It is able to
predict the passenger fow in the next 10minutes based on the
historical passenger fow data of the past 40minutes. Hao et al.
[4] embedded a sequence-to-sequence model with the atten-
tion mechanism to predict 15–60minutes of patronage. Te
attentionmechanism is applied to take external features such as
time of day and day of week into consideration. Tis approach
has improved the prediction accuracy. In addition, various
neural networks have been widely used in the feld of passenger
fow forecasting. Moreover, a variety of neural network ar-
chitectures have been extensively employed in the realm of
passenger fow prediction. For instance, Liu et al. [5] utilized
a recurrent neural network, Gong et al. [6] implemented an
online latent space strategy, Yang et al. [7] devised an attention-
based neural network, Lin and Tian [8] introduced a model
combining random forest and long short-term memory net-
works, Wang et al. [9] and Yang et al. [10] proposed a dynamic
spatial-temporal hypergraph neural network, Huang et al. [11]
employed a backpropagation neural network, Xiu et al. [12]
developed a multidisturbance spatial-temporal causal convo-
lution network, and Wang et al. [13] introduced the Multitask
Hypergraph Convolutional Neural Network.

Simulating passenger fow distribution using signal
waves is a valuable technique for managing fuctuations in
short-term passenger activity. Signal mode decomposition,
in conjunction with neural network algorithms, is another
efective approach for forecasting short-term passenger fow
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and overcoming the difculties associated with accurately
predicting passenger fow volatility. Wei and Chen [14]
developed a hybrid EMD-BPN forecasting approach for 15-
minute intervals which combines empirical mode de-
composition (EMD) and backpropagation neural networks
(BPN) to forecast the short-term patronage in subway
systems under normal operating conditions. Xiu et al. [15]
designed a three-stage framework to eliminate noise and
enhance 15-minute interval patronage prediction. Firstly, in
the preprocessing stage, the Ensemble Empirical Mode
Decomposition (EEMD) algorithm adaptively decomposes
the nonlinear and nonsteady passenger fow signal into
several subsignals. Secondly, in the feature recognition and
extraction stage, knowledge of the transportation feld and
statistical theories are applied to analyze and extract the
critical decomposed components. Tirdly, in the prediction
stage, the stacked Bidirectional Gate Recurrent Unit
(BiGRU) is proposed to learn and extract information from
the input features in both directions and use a multistep
prediction to output the fnal prediction result. Wei et al.,
[16]; Zhao et al., [17]; Wei and Chen [14]; and Xiu et al. [12]
have all applied this approach to short-term patronage
prediction.

Besides these methodologies related to the neural net-
work and signal mode decompensation, there are other
algorithms such as the fuzzy logic method [18], Physical-
Virtual Collaboration Modeling [19], time series analysis
[20], automatic detection algorithm [21], improved gravity
model [22], support vector machine model [23], and self-
organizing data mining [24].

2.2. Passenger Flow Prediction under Abnormal Conditions.
When it comes to forecasting subway passenger fow,
neural networks are highly versatile and efective, while
signal mode decomposition is particularly precise in spe-
cifc scenarios. Recent studies have presented multilayer
deep learning frameworks that consider both internal and
external factors to elevate prediction accuracy and mini-
mize time intervals. Based on current research, most ap-
proaches can anticipate passenger fow at 15-minute
intervals under regular subway operations, with select
models capable of predicting 10minutes ahead. However,
there is limited research on short-term forecasts of pas-
senger fow during subway failures. Existing methods in
this feld typically involve inputting social media data
[25, 26] into their models to predict passenger fow during
special events, such as sports games and concerts. Xue et al.
[25] applied social media data with smart card data to
a multivariate disturbance-based hybrid deep neural net-
work. Trough the event information extraction and
oversampling technology, Zhao [27] used the SMOTE
(Synthetic Minority Oversampling Technique) algorithm
to increase the passenger fow simple data of the sudden
failure scene and then predicted the passenger fow through
the time series model. Tis method can predict the pas-
senger fow of subway stations under normal conditions

and emergencies at 15-minute intervals. However, the
impact of emergencies on train transport capacity is not
considered, and the structure of the time series model is
relatively simple, which fails to further improve the pre-
diction accuracy and shorten the prediction time.

Past research has been inadequate in assessing the im-
pact of failure events on train transport capacity and delays,
as well as short-term variations in inbound passenger fow.
Terefore, it is crucial for subway operators to develop an
accurate forecast model for station inbound passenger fow
during various failure events, taking into consideration the
dynamic nature of the factors that contribute to these
occurrences.

3. Description of the Problem

When a sudden subway failure occurs, it goes through four
stages: the fault event, passenger congestion, emergency
response, and recovery. Diferent types of failures afect
transport capacity, delay times, and inbound passenger fow
diferently. Te complexity of the cause leads to a rapid
fuctuation in passenger fow. To predict the inbound pas-
senger fow during a failure event, we need to quantify the
impact on transport capacity and resulting delays and
consider temporal and location parameters. An algorithm
can be proposed to map these features to predict future
inbound passenger fow.

Te aim of this study is to estimate the range of incoming
passenger trafc for future time points using past data on
incoming passengers and related factors. Te prediction is

made using the formula, Pax pred �
Pmax1 . . . P maxn

P min1 . . . P minn

 ,

with a prediction time interval of 10minutes. Te historical
data on incoming passengers are obtained from the subway
station’s inbound gate and are represented as
Pax hist � P1 . . . Pm( . Te input parameters are date
d(1–31), time t(5–24, excluding nonoperating hours), peak
hours (1 for yes, 0 for no), weekends or statutory holidays (1
for yes, 0 for no), number of connecting lines at the station n,
and maximum and minimum values of transport capacities
and delays for certain failure events, cmax j, cmin j and
dmax j, dmin j.

Tis study assumes that all subway stations can handle
any amount of passenger fow, regardless of their capacity.
Te study takes into consideration various input parameters
such as temporal features (time, week, peak hours, and
weekends), as well as fxed features of each station like
transfer stations. Additionally, the study analyzes historical
data to determine the transport capacities and delays under
failure conditions. When a failure occurs, the corresponding
failure type is manually selected and used as input pa-
rameters. Te output of the study is a 2 × n matrix, denoted
as Pax pred which indicates the upper and lower bounds of
passenger fow fuctuations in the next n 10-minute intervals.
Te study aims to provide subway operation managers with
a reference to implement passenger fow control strategies.
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4. A-LSTM Prediction Model

4.1. Model Description. Passenger fow data in a subway
system are sequential, evolving over time. LSTMs, designed
for efective sequence pattern learning, overcome the van-
ishing gradient problem of traditional RNNs. Teir memory
cell architecture enables selective information retention,
crucial for modeling subway systems where historical data
impact future passenger fow. LSTMs adapt to time lags and
irregularities during delays, making them robust for dy-
namic subway system modeling. Tey automatically learn
features, reducing the need for manual engineering in
complex datasets. LSTMs’ fexibility handles various input
types, like historical data, train capacities, and delays, en-
abling a comprehensive modeling approach. Teir good
generalization capabilities make them valuable for pre-
dicting passenger fow under failure conditions. To address
this problem, LSTMs ofer a powerful solution.

In this paper, we only take temporary failures (break-
down for serval hours) into consideration. When forecasting
passenger fow in a subway system during unexpected
failures, traditional LSTM models tend to overlook the in-
fuence of long-term factors, such as the impact of failures
that took place weeks or months ago on passenger fow.
Tese factors are challenging to incorporate into future
predictions. In subway systems, serious failure events occur
infrequently, have multiple causes, and lead to various
outcomes. Terefore, the LSTM time series model is unable
to forecast the inbound passenger fow during such events.
Tis research proposes a solution by merging the attention
mechanism with the LSTM model. Te attention mecha-
nism, which fnds widespread use in mechanical fault di-
agnosis, saliency detection, crowd counting, and facial
expression recognition, elevates the relevance of signifcant
features in passenger fow prediction.Tis renders themodel
more responsive to changes in critical elements. Tis paper
introduces an LSTM model with a combined attention
mechanism, known as the A-LSTM model, which raises the
efciency and precision of incoming passenger fow
prediction.

To construct the A-LSTM model, we follow a three-step
process. Firstly, we carefully select the optimal depth of the
LSTM network to ensure high accuracy and short prediction
intervals for short-term inbound passenger fow prediction
under normal conditions.

Secondly, we implement the attention mechanism with
a control window to adjust the internal structure of the
LSTM and reweight the training parameters. Tis enables us
to accurately predict short-term inbound passenger fow in
sudden failure events.

Lastly, to apply this model to inbound passenger fow
prediction at diferent stations, we use the N-day rolling
update of inbound passenger fow data of the target station
as the training parameter. Tis involves training the
A-LSTM model with data from the previous N days and
using it to predict short-term passenger fow in both normal
and failure scenarios.

4.2. Stage 1: Double-Layer LSTM Network. For short-term
passenger fow prediction, we conduct the performance
analysis on the database of the City S subway system to
decide the structure and hyperparameters of the double-
layer LSTM network, which will be explained in Section 5.3.
In this study, a double-layer LSTM network was selected,
with the state activation function being tanh and the acti-
vation function of the control gate being sigmoid. Each
LSTM layer is followed by a dropout layer, and fnally, the
fully connected layer and the regression output layer are
connected.

Tis study uses type of the failure events, inbound
passenger fow, time, date, peak hours, weekends, and the
number of transfer lines in the previous N days as input
variables x(t), where t is the time point. Te neuron unit in
the LSTM layer, as shown in Figure 1, will be used to train
the input variables x(t).

h
(t−1)
k and s

(t−1)
k are the values of the output unit and the

status unit at t − 1, respectively, at the kth LSTM unit; c
(t)
k is

the memory cell; f
(t)
k , u

(t)
k , and o

(t)
k denote the forget gate,

update gate, and output gate, respectively. Te memory cell
has the self-loop function in the LSTM network, so as to
realize the iteration within the network. Te forget gate f

(t)
k

determines the self-loop weight of the status unit through
the sigmoid function σ(z).
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where Uf, Wf, and bf are input weights, recurrent weights,
and the biases for the forget gate unit. And the sigmoid
function σ(z) is defned by

σ(z) �
1

1 + exp (−z)
. (2)

Te memory cell c
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Ten the internal state of the LSTM memory cell s
(t)
k is

updated as follows:

s
(t)
k � f

(t)
k s

(t−1)
k + u

(t)
k c

(t)
k . (4)

After calculating the internal state s
(t)
k , the output h

(t)
k

can be computed by
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h
(t)
k � o

(t)
k tanh s

(t)
k , (5)

where tanh function is defned as

tanh s
(t)
k  �

exp s
(t)
k  − exp −s

(t)
k 

exp s
(t)
k  + exp −s

(t)
k 

. (6)

4.3. Stage 2: Attention Mechanism. In order to enhance the
precision of predicting inbound passenger fow during
unexpected disruptions, this research incorporates an at-
tention mechanism in a double-layer LSTM model. Given
that the number of samples for inbound passenger fow
during disruption events is limited compared to regular
scenarios, the attention mechanism reinforces the model’s
retention of these events. Te attention mechanism is po-
sitioned in the center of the double-layer LSTM model,
accompanied by a control gate integrated into the module.
Upon the occurrence of a disruption event, the control gate
is triggered until the efects have completely subsided. Te
attention mechanism fne-tunes the LSTM network pa-
rameters’ weights to ensure accurate forecasting of inbound
passenger fow during the disruption phase.

In machine learning, the attention mechanism assigns
diferent weights to input parameters to highlight their ef-
fectiveness. Tis study involves incorporating the attention
mechanism into a double-layer LSTM model. Once acti-
vated, the attention module revises the weights of the
double-layer LSTM network.Te new weight assigned to the
ith parameter at time t, taking into account the infuence
features of the sudden failure event, can be expressed as ati:

ati �
exp eti( 


n
i�1 exp eti( 

, (7)

where eti is the intermediate energy term between the pa-
rameter to be encoded and other parameters in the output
vector of the training network at time t, which is calculated
by function (8); n is the total length of the time series of the
input variables.

eti � Vi tanh Uix
(t)
i , + Wih

(t−1)
i , (8)

where h
(t−1)
i is the hidden layer output value of the LSTM

model at time t − 1 and Vi, Ui, and Wi are learnable
parameters.

h
(T)
k is the output value of the double-layer LSTM model

based on the attention mechanism at time T from the kth
LSTM memory unit, which is the output of the reweighted
LSTM network, and also the input value at time T + 1.

h
(T)
k � 

n

i�1 atih
(t)
k , (9)

where h
(t)
k is the default output of the LSTM network unit.

Te attention mechanism is trained separately with the
dataset under failure events including reduced transport
capacity, delay time, date, time, number of lines in the
station, and inbound passenger fow. Combining with the
train attention mechanism, the parameters of double-layer
LSTM model can be reweighted under failure events.
Terefore, the A-LSTM saves training time and enables
accurate short-term inbound passenger fow prediction
during such events.

4.4. Stage 3: N-Day Rolling Update. For precise predictions
across all subway stations, we can train the A-LSTM model
for each station individually.Tis involves feeding the model
with parameters specifc to the station from the previous N-
day, allowing a double-layer LSTM network to create
a short-term inbound passenger fow prediction system.
Regular training of the attention mechanism module with
standardized failure events from the subway network is
necessary to enhance its ability to adjust parameter weights
during failure situations. As the normal inbound passenger
fow for diferent subway stations is relatively stable and
periodic, it is crucial to determine the appropriate number of
days for a training data collection cycle and use updated
rolling data for short-term inbound passenger fow
prediction.

Te overall A-LSTM model structure is shown in
Figure 2.

Forget
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h(t-1)

x(t)

fk(t)
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Update Output

Figure 1: LSTM unit.
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5. Experiment and Simulation

5.1. Data. Tis research paper analyzes data from the
world’s largest subway system, the City S subway system.Te
study specifcally focuses on the inbound passenger fow and
failure events data of the system and assesses the efec-
tiveness of the A-LSTMmodel. Te data were collected over
a span of two years (2019–2021), with the inbound passenger
fow data gathered every 10minutes through the Automatic
Fare Collection (AFC) system. Meanwhile, the delays caused
by failure events were obtained from the ofcial statistical
reports of the subway. Ultimately, the research is able to
predict inbound passenger fow at a 10-minute interval,
a method in line with recent studies that aim to predict
short-term passenger fow.

5.2. Te Infuencing Features of Failure Events on Transport
Capacity and Delay Duration. During the period of 2019 to
2021, City S’s subway system experienced a total of 378
incidents that impacted its transport capacity. Statistical
features of these incidents and their efects on transport
capacity and delays are displayed in Table 1. Tese features
serve a dual purpose. Firstly, they are utilized as parameters
to train the attention mechanism module. Te historical
dataset of these incidents is used to train the module, which
then adjusts the parameter weights of the LSTM network.
Secondly, when estimating the inbound passenger fow
range during failure events, the corresponding maximum
and minimum values that impact transport capacity and
delays are selected as input parameters based on the failure
event types.

5.3. Performance Analysis of the LSTM Structure. Te per-
formance analysis is conducted on the database of the City S
subway system to decide the structure of the LSTM network.
Te results show (in Table 2) that the single-layer LSTM
model lacks the ability to fully comprehend the features of
the time series, which results in prediction errors. Using an
LSTM model with more than three layers can lead to errors
and longer calculation time due to overftting. Terefore,
a double-layer LSTM model is applied in this study.

Te parameter settings for the LSTM network in this
paper were determined based on the best performance
achieved through a grid search. Te learning rate ranges

from 0.001 to 0.01, epochs range from 100 to 300, hidden
neurons include 128, 256, and 512, batch sizes consist of 32,
64, and 128, and the dropout rate varies from 0 to 1. Te
optimal parameter confguration determined through this
search consists of a learning rate of 0.001, 250 epochs, 128
hidden neurons, 32 batch size, and a dropout rate of 0.2.

5.4. Rationality Analysis of 30-Day Rolling Update Data.
Tis paper examines the periodicity and stability of inbound
passenger fow in a subway station. It suggests that data
collected within a 30-day period can provide an accurate
representation of recent inbound passenger fow charac-
teristics. Te research aims to predict the inbound passenger
fow of a single subway station at a 10-minute interval. To
achieve this, the study focuses on the subway stations in City
S. Specifcally, it selects three diferent stations, namely,
Century Avenue Station, Huaqiao Station, and People
Square Station. Century Avenue Station is a signifcant
transportation hub located to the east of Huangpu River and
has four subway lines. Huaqiao Station, located in the
suburbs, is mainly used for commuting and is not a transfer
station. People Square Station, located in the city center, has
three subway lines and is surrounded by famous tourist
attractions. Te study analyzes inbound passenger fow data
at a 10-minute interval from July to November 2021 to
determine the rationality of the data. Te results are shown
in Figure 3.

Based on a rationality analysis, the median passenger
fow levels at Century Avenue Station, Huaqiao Station,
and People’s Square Station have been found to be stable,
with fuctuations occurring in the upper limit. At Century
Avenue Station and Huaqiao Station, outliers are distrib-
uted relatively evenly, whereas at People’s Square Station,
they fuctuate signifcantly, particularly in July and Octo-
ber. Tis is due to People’s Square Station being a critical
transportation hub for tourism, resulting in a high number
of passengers during the summer season and National Day.
As a result, using the 30 day rolling update data is sufcient
for training the network for predicting inbound
passenger fow.

5.5. Model Training. To ensure the proposed A-LSTM
model’s reliability, we utilized MATLAB software for
modeling. Our model incorporated various independent

N-day rolling update data
(previous passenger fow, time,

date, weekends or not, and
number of lines in the station)

+

input

LSTM
layer

attention
mechanism

layer
LSTM
layer

fully
connected

layer

regression
layer

A-LSTM structure

Output
Normal Conditions:

Failure Conditions:

type of the failure event
(including reduced transport

capacity and delay time)

Figure 2: A-LSTM model structure.
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variables, such as date, time, peak hours, weekends or
statutory holidays (represented as 1 for yes and 0 for no),
number of connecting lines, maximum andminimum values
of transport capacity, and delay under failure events. Te
dependent variable included the inbound passenger fow
data at 10-minute intervals. Prior to being combined with

the double-layer LSTM network, the attention mechanism
module was trained separately. We standardized the data
before entering it into the module, using a dataset of 378
failure events (from 2019 to 2021) to train the attention
mechanism module. Tree failure events that lasted over
30minutes were selected as testing samples and removed

Table 1: Te infuencing features of transport capacity and delay under failure events.

Failure event
Number of trains being impacted Delay (min)
Minimum Maximum Minimum Maximum

Rolling stock failure 4 22 12 45
Station electromechanical failure 0 5 2 14
Infrastructure failure 4 24 10 270
Power supply failure 4 36 11 150
Other failure 0 17 0 28
Signal and telecommunication failure 0 32 2 150

Table 2: Performance analysis results of the layers.

RMSE Training time (sec)
1-layer LSTM 53.2147 166
2-layer LSTM 51. 274 3 8
3-layer LSTM 54.4137 610
Tese indices lead to the decision of using a double layer LSTM in the model.
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Figure 3: Rationality analysis of the passenger fow of 3 typical subway stations. (a) Century Avenue Station. (b) Huaqiao Station. (c) People
Square Station.
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from the training dataset. Teir specifc information is
displayed in Table 3.

In order to predict inbound passenger fow, the A-LSTM
model needs to be trained using 10-minute data from in-
bound passenger fow from the 30 days leading up to the
target station’s predicted day. When a sudden failure event
occurs, the event type is manually identifed, and the relevant
extreme values that impact transport capacity and delays are
matched. Tese maximum and minimum values are then
used as independent variables in the A-LSTM model, which
activates the attention mechanism to predict inbound
passenger fow every 10minutes during the failure event.

6. Results and Analysis

6.1. Normal Conditions. Under normal circumstances, the
transport capacity and delay have a maximum and minimum
infuence of 0, which means that the attention mechanism’s
control gate remains inactive. Te calculation is conducted
independently by the double-layer LSTM network. To verify
the results, this study selected two stations as examples.

Te frst station is Lianhua Road Station in City S,
a nontransfer station. Te study predicts the inbound pas-
senger fow for November 2021. Te network was trained on
88% of the data, and the remaining 12% were used for
prediction. Te result, shown in Figure 4, was an RMSE
(Root Mean Square Error) of 44.2112.

Ten, the inbound passenger fow of Guilin Park Station
(double-line transfer station) of City S in May 2021 is
predicted. 88% of the data are selected to train the network,
and the remaining 12% of the data are applied for prediction.
As shown in Figure 5, the RMSE� 13.2782.

Tis study proposes a more accurate prediction of in-
bound passenger fow under normal conditions compared to
previous studies. Te RMSE for a 15-minute interval in Hao
et al. [4] was 21.91 and that for a 10-minute interval in Liu
et al. [1] was 65.38, both of which are higher than the ac-
curacy achieved in this study.

6.2. Failure Events. Te attention mechanism will be activated
during prediction under failure conditions. We designate the
failure occurrence on November 12, 2021, at Lianhua Road
Station in City S as the initial validation dataset. Tis station is
a nontransfer station during nonpeak periods. At 10:13, there
were multiple trip-outs of the multisection catenary, resulting
in a power loss and incomplete operation of the subway line in
that section.Te starting point for fuctuation predictions is the
time when the failure impacts the train operation.

In order to anticipate the number of incoming passengers
during failures, data from eight previous instances of similar
failures are inputted into the attention mechanism module.
Meanwhile, data from the thirty days prior to the failure event
are utilized as training data for the A-LSTM model. When
a failure occurs, the maximum and minimum values for
transport capacity and delay must be manually selected based
on the type of failure event. For example, on November 12,
a power supply failure occurred during nonpeak hours on
weekdays, and the maximum and minimum values for

transport capacity and delay were determined as (cmax, dmax)

and (cmin, dmin). After inputting these values and other rel-
evant factors into the A-LSTM model, a prediction, shown in
Figure 6, for the range of incoming passengers can be made
under the given failure condition.

OnMay 20, 2021, at 9:44 am, a water pipe near the tunnel
in Guilin Park Station burst and caused fooding. After
45minutes, it disrupted train operations. Tis event tested
the A-LSTM model’s ability to predict inbound passenger
fow in diferent types of stations during such disruptive
events. Although the fooding initially had no impact, it
eventually caused signifcant disruptions, leading to the
modifcation of train routing for the entire line. In this case,
the starting point for fuctuation predictions is 10:30. Te
prediction results are shown in Figure 7.

During peak hours on June 26, 2019, at 6:10 am,
a turnout positioning fault occurred at City S Railway
Station. Tis led to a 50% failure in the operation of the
entire line, resulting in the use of buses to transport pas-
sengers for a period of time. Te issue was caused by a signal
and telecommunication malfunction. To assess the transport
capacity and delays caused by this issue, the A-LSTM model
was utilized with input of maximum and minimum values.
Te prediction results are shown in Figure 8.

In this study, the RMSE (Root Mean Square Error) and
the MAPE (Mean Absolute Percentage Error) are used to
measure the results of the prediction. Te calculation for-
mulas are as follows:

RMSE �
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where h
(T)
k and ĥ

(T)

k are denoted as the observed value and
the predicted value of inbound subway passenger fow at
interval T, respectively, and n is the total number of eval-
uation samples.

Table 4 shows that the A-LSTM model can predict
changes in inbound passenger trafc at various stations
during diferent failure events. Te model can also estimate
upper and lower bounds for passenger fow fuctuations.
Despite diferent levels of passenger fow at each station, the
variance between the upper and lower bounds and actual
passenger fow is minimal, with a diference of less than 23
people. Compared with the benchmarks in Table 5, this
indicates high accuracy in forecasting short-term passenger
fow within a 10-minute timeframe.

However, the MAPE cannot be calculated for Lianhua
Road Station due to the absence of passenger fow. Te
station experiences minimal trafc, and the system failure
occurred during of-peak hours. In Figure 7, some actual
passenger fow values exceed the maximum predicted values,
leading to a high MAPE. Tere are two reasons to explain.
Firstly, the infrastructure failure is small probability event
for subway, and as a result, the model may not have learned
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enough to account for them. Secondly, this particular failure
took place during of-peak hours and at a station with a low
volume of passenger fow. Tis has led to the MAPE value
being amplifed due to the percentage. Nonetheless, minor
deviations in passenger fow predictions with only a few
results outside the expected range are unlikely to signif-
cantly impact subway operations. Furthermore, the pre-
diction results for City S Railway Station demonstrate
excellent accuracy for both RMSE and MAPE, making them
useful for efective subway station management.

6.3. Comparison Experiment. To further validate the accu-
racy of the A-LSTM model, a comparative experiment was
conducted among widely utilized prediction models, in-
cluding Multilayer Perceptron (MLP), Random Forest (RF),
and Convolutional Neural Network (CNN). Te data from
City S Railway Station during failure events on June 26, 2019,
were employed for testing and comparison. All three models
were integrated into the A-LSTM framework, replacing the
LSTM network, to predict passenger fow under failure
conditions. Figure 9 illustrates the performance of each

model and reveals that the A-LSTM achieves higher accu-
racy compared to the others. Tis evidence emphasizes the
efcacy and reliability of the A-LSTM model in improving
the precision of short-term passenger fow predictions,
particularly in challenging scenarios such as failure events.

7. Conclusions

Combining an attentional mechanism and a dual LSTM
network, the A-LSTM model is used to learn the charac-
teristics of fault conditions and to predict the incoming
passenger fow at 10-minute intervals at subway stations. A
30-day rolling dataset of target stations is used as training
parameters, and each station can be customised for learning
and prediction. Input variables include failure event type,
inbound passenger fow, time of day, date, peak hour,
weekend, and number of interchanges. Temporal and spatial
characteristics of fault events as well as impact characteristics
are considered in the model. In addition, the A-LSTMmodel
accurately predicts the trend and fuctuation range of the
short-term inbound passenger fow by constructing the

Table 4: Prediction result analysis.

RMSE_MAX RMSE_MIN MAPE_MAX MAPE_MIN
Lianhua Rd. 17.05 12.67 N/A N/A
Guilin Park 4.66 6.64 0.47 0.51
S Railway Station 21.04 22.82 0.0761 0.0849

Table 5: Benchmarking prediction results.

Reference Time interval RMSE MAPE Prediction scenario
Xue et al. [25] 15minutes 28.70 0.089 Special events

Chen et al. [28] 10minutes 40.91
24.18

0.09
0.17

Special events:
Larger passenger fow base
Small passenger fow base

Ni et al. [26] 2 hours 2258 0.22 Stadium activity infuence
Note. Special events refer to vocal concerts and sports games.
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mapping relationship between short-term inbound pas-
senger fow and the change of subway transport capacity,
delay, and other factors.

Te accuracy of the whole A-LSTM model is verifed by
the observed data of City S. When predicting the passenger
fow within 10minutes under diferent fault events in dif-
ferent subway stations, the predicted values of the passenger
fow trend are consistent with the observed values. Te
RMSE of the upper and lower bounds compared with the
observed value was less than 25 people, which is highly
accurate. Nevertheless, a few actual passenger fow values
exceed the maximum predicted values, leading to a high
MAPE, which is caused by the small passenger fow scale and
small probability failure event. Te accuracy of the proposed
model is verifed on large passenger fow scale stations.

Future research will be focused on the following areas.
Initially, the change in passenger fow on the subway line
network under a fault event will be investigated. Next, the
infuence of complex factors on the regulation of inbound
passenger fow changes under fault events will be explored
and the correction equations will be established to improve
the prediction accuracy.Tirdly, the propagating regulations
of each failure on the subway network will be concluded and
the passenger fow prediction of the network under failures
can be predicted. In addition, the A-LSTM model has
achieved high-precision short-term prediction under most
fault scenarios. However, its ability to cope with extreme
situations has not been verifed due to the lack of data
samples. Trough intensive training of the attention
mechanism, extreme patterns will be generated and the
fuctuation range of inbound passenger fow in extreme cases
will be predicted.

Nomenclature

_Pax pred: Te matrix of maximum and minimum
predicted inbound passenger fow

Pax hist: Te inbound passenger fow of previous
time steps

Pi: Te inbound passenger fow at time i

d: Date of a month
t: Time of a day
ci: Te transport capacity reduced due to the

failures at time i

di: Te delay during failures at time i

x(t): Input variable of the proposed model at time t

f
(t)
k : Te forget gate at the kth LSTM unit

u
(t)
k : Te update gate at the kth LSTM unit

o
(t)
k : Te output gate at the kth LSTM unit

c
(t)
k : Te memory cell in LSTM

Uf: Te input weight for the forget gate unit
Wf: Te recurrent weight for the forget gate unit
bf: Te bias for the forget gate unit
σ(z): Te sigmoid function
s

(t)
k : Te internal state of the LSTM memory cell

ati: Te new weight assigned to the ith parameter at
time t by the attention mechanism

eti: Te intermediate energy term in the attention
mechanism

h
(t−1)
i : Te hidden layer output value of the LSTM

model at time t − 1
h

(T)
k : Te output value of the double-layer LSTM

model based on the attention mechanism at time
T from the kth LSTM memory unit.

Data Availability

Te dataset is privately owned by a metro company. Te
dataset is available from the corresponding author upon
reasonable request.
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