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Tis paper introduces a bilevel programming model for optimizing transit network departure frequency. In the upper-level model,
user satisfaction is refected by considering congestion efects in the cost function. Te lower-level assignment model simulates
passenger travel behaviormore realistically by incorporating congestion efects.Tis problem is solved by a heuristic gradient descent
algorithm, where an approximation of the gradient is obtained at each iteration by using sensitivity analysis for transit equilibrium
problems. Te efectiveness of the proposed model and algorithm is demonstrated through two test examples, one of which involves
a real-world scenario comprising over 130 transit lines. Numerical results conclusively indicate that the incorporation of congestion
efects in the proposed model leads to improved transit system performance and enhanced user satisfaction.

1. Introduction

As a crucial part of urban transportation planning, transit
system planning directly impacts the operational efciency
of urban transportation. Te literature [1] identifes fve
stages in transit system planning: route network design,
frequency setting, timetable design, feet assignment, and
crew assignment. Among these elements, transit frequency
design plays a vital role in urban transit systems as diferent
frequencies may lead to distinct vehicle schedules and driver
assignments [2], which pose a signifcant obstacle for public
transit agencies.Tis study will primarily focus on the transit
frequency setting problem, which aims to determine the
optimal line frequency for an existing transit network based
on given passenger demand.

Some research is devoted to constructing single-layer
analytical models for frequency optimization. Schéele [3]
introduced a nonlinear programming model that considers
the distribution of trips across diferent zones, aiming to
minimize passenger travel times while implicitly in-
corporating user behavior. Furth and Wilson [4] proposed

a frequency-setting problem that aims tomaximize the social
benefts of the transit system under constraints such as total
subsidies, feet size, and vehicle loading levels. Han and
Wilson [5] developed an optimization model for heavily
utilized lines, seeking to minimize passenger waiting times
and bus congestion while operating under limitations in feet
size and bus capacity. Te assignment submodel is expressed
by an implicit constraint. Ceder [6] delineated several
suitable data collection methods and proposed four ap-
proaches based on maximum load data and load profle data
for adjusting bus route frequencies. Capali and Ceylan [7]
utilized the intelligent water drops algorithm to solve the bus
network design and frequency setting (BNDFS) problem.
Ahern et al. [8] proposed a multiobjective optimization
model for BNDFS in public transit systems. Tis model
integrates service frequency and passenger assignment to
refect the available options for passengers in the network.
Durán-Micco and Vansteenwegen [9] conducted a com-
prehensive review of the literature related to the BNDFS
problem, focusing on papers from the past decade. Tey
highlighted diferent problem defnitions and assumptions.
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Yoo et al. [10] introduced a novel approach to address the
BNDFS problem. Even though this research has produced
valuable models and solution algorithms, their single-layer
nature often fails to adequately consider passenger choice
behavior and the interactions between transit operators and
passengers. Terefore, the development of more practical
models and algorithms is imperative in this regard.

In a typical transit system, transit operators usually seek
to optimize some particular criteria, such as the total pas-
senger travel time, to determine the frequencies of transit
lines. Accordingly, the passengers make their route choices
in response to the decisions of the operators as followers
with the goal of minimizing their travel costs. Evidently, the
frequency setting problem exhibits the leader-follower
model structure, and it is often treated as a bilevel opti-
mization problem. Frequency optimization was frst rep-
resented as a nonlinear bilevel problem by Constantin and
Florian [11] where the upper- and lower-level objective
functions both aim to reduce the total travel time. Gao et al.
[12] proposed a multiobjective bilevel model that seeks to
minimize total passenger travel time and operating costs. A
notable characteristic of this work is the consideration of
passenger travel behavior under congestion. Yu et al. [13]
designed a bilevel optimization problem that aimed to
minimize boarding and waiting times under feet size
constraints. It utilized an optimal strategies assignment
model [14] to account for the route choice behavior of the
users. Dell’Olio et al. [15] presented a constrained bilevel
optimization model that allows for the allocation of buses of
varying sizes to transit routes. Te upper-level model con-
sidered the minimization of social and operating costs of the
transit system, while the lower-level model represented the
assignment model, imposing constraints on vehicle capac-
ities. Mart́ınez et al. [16] extended the work of Constantin
and Florian [11] to determine the time intervals between
subsequent buses on a set of transit lines and introduced
mixed integer linear programming formulations. A novel
metaheuristic approach was employed to solve the problem.
Overall, while various frequency optimization models have
been proposed in the literature, they share very similar
objective functions and constraints. Typically, these func-
tions aim to minimize user travel cost and/or operating cost
under constraints such as feet size and other infrastructure
considerations. Since optimization models require measures
of transit system performance from the user’s perspective,
they frequently incorporate a submodel of the route selec-
tion behavior of the users based on frequency, also known as
the assignment submodel.

Although the frequency setting problem and its variants
have been extensively studied in the literature, it is worth
noting that there is a noticeable paucity of studies that take
into account user satisfaction within these models [17]. Mo
et al. [18] addressed the frequency optimization problem
considering user satisfaction, aiming to schedule buses
within a given waiting time threshold to serve more pas-
sengers, rather thanminimizing the travel cost of passengers.
To our knowledge, they were the frst to emphasize user
satisfaction in the frequency optimization problem. Existing
research has demonstrated that passenger user satisfaction is

typically infuenced by riding comfort [19, 20], which is
further impacted by vehicle congestion [21]. Transit vehicles
also sufer signifcantly from the consequences of congestion
efects in some large urban areas [22]. Terefore, it is
necessary to consider congestion efects in the assignment
submodel to refect their infuence on passenger route choice
behavior. However, existing research often inadequately
accounts for congestion efects when describing passenger
route choice. Notable models in this regard include the
optimal strategies assignment model [14], which neglects
vehicle congestion, and the assignment model proposed by
de Cea and Fernández [23], which only considers delay-
waiting time due to capacity constraints. Wu et al. [22] and
Xu et al. [21] extended the previous studies to model waiting
and in-vehicle cost as functions of transit fows, thus ef-
fectively accounting for the impact of congestion efects
including queuing and crowding efects on route choice
behavior. In this study, we incorporate these congestion
efects into the assignment submodel, aiming to create
a more precise prediction of passenger travel behavior.
Specifcally, the main contributions of this paper are as
follows.

First, instead of focusing solely on passenger travel time,
we emphasize user satisfaction by incorporating cost
functions that consider more realistic congestion efects in
the context of transit frequency optimization. Te objective
of the model is to minimize a weighted sum of passenger
travel cost (including congestion cost) and operational cost.

Second, we consider the infuence of congestion efects
(including queuing and crowding efects) on passenger
travel behavior within the assignment submodel. Tis allows
for a more realistic representation of changes in passenger
travel patterns under diferent frequencies. Furthermore,
congestion efects arise from the crowding efect, queuing
efect, capacity efect, and bunching efect according to the
literature [21]. In this paper, wemainly focus on queuing and
crowding efects. While considering these efects correctly
characterizes the route choice behavior, it also results in
asymmetric cost functions, thereby posing computational
challenges [21]. Furthermore, due to the nature of bilevel
problems, the complexity of the assignment submodel is
a critical component infuencing the overall complexity of
the frequency optimization. Tus, there is a need to seek
efcient solution algorithms for the assignment submodel.
In this work, we employ the gradient projection-adaptive
inner looping (GP-AIL) algorithm proposed by Xu et al. [21]
to solve it, and it demonstrates the capability to converge to
solutions within a relatively short timeframe, even in large-
scale networks.

Tird, we introduce a heuristic gradient descent algo-
rithm to efectively address the frequency optimization.
Since frequency optimization is typically an NP-hard
problem, traditional optimization techniques often exhibit
lower computational efciency when solving the model
mentioned above, especially in the case of large-scale net-
works [13]. Furthermore, there is a lack of methods in the
existing literature that are capable of fnding globally optimal
solutions [16]. Tus, in recent years, many studies have
applied heuristic descent algorithms to frequency
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optimization [11, 12]. Tese successful results have moti-
vated us to employ this type of algorithm in this work.
Numerical experiments indicate that the algorithm can
converge to sufciently close local solutions within a rela-
tively short timeframe.

Te structure of the paper is as follows. Section 2 in-
troduces the network representation and assignment model
based on hyperpaths, and a bilevel programming model for
frequency optimization and its solution algorithm is pre-
sented in Section 3. Section 4 provides numerical results and
analytical conclusions for various test cases. Finally, Section
5 ofers remarks on the conclusions and outlines directions
for future work.

2. Network Representation and
Assignment Model

2.1. Transit Network Representation and Hyperpaths.
Consider a transit network composed of a series of distinct
transit lines, transit stops, and centroid nodes generating
and attracting travel demand. Tis network is abstracted, as
depicted in Figure 1, where O and D represent the origin and
destination, respectively, and a typical transit stop n1 is
served by multiple transit lines. While Figure 1 can illustrate
the layout of transit lines by describing their alignments, it
may not efectively refect the travel behavior of passengers.
Scholars [14, 23] often expand the transit network to provide
a more comprehensive representation of passenger travel
behavior, including transfer, waiting, boarding, and
alighting behavior.

We defne G � (N, A) as an expanded network, where
N represents the set of nodes, and A represents the set of
arcs. Figure 2 illustrates the details of a transit stop in the
expanded network. For each line that stops at a transit
stop, corresponding transfer and dummy transit nodes are
established to model passenger boarding and alighting
behavior. Passengers can also transfer between stops using
the walking arcs connecting the transfer nodes. For
simplicity, we assume that demand is generated (both
originated and attracted) at the stops. In this paper, Ntf

and Ntt represent the sets of transfer and dummy transit
nodes, and the network node set is denoted as
N � Ntf ∪Ntt. Four diferent types of arcs, denoted as Ab,
Aa, At, and Aw, constitute the expanded network, cor-
responding to the boarding arcs, alighting arcs, transit
arcs, and walking arcs, respectively. Terefore, the set of
all arcs is represented as A � Ab ∪Aa ∪At ∪Aw. Figure 3
presents a schematic diagram of the expanded network
depicted in Figure 1.

A hyperpath k is defned as a subgraphGk � (Nk, Ak, ek)

of an expanded network G, where the hyperpath node set
Nk ⊆N, the hyperpath arc set Ak ⊆A, and ek is the arc
approaching probability vector. Te hyperpath depicted in
Figure 4 comprises two simple paths, denoted as k1 and k2,
each associated with an approaching probability, denoted as
ek1 and ek2 . Assuming that the passengers and the arrival of
vehicles on each line are randomly at stops, the hyperpath
can provide passengers with multiple route options to reach
their destinations while minimizing the expected travel cost

using the available set of lines. For a subgraph Gk to qualify
as a hyperpath k, it must satisfy the following four condi-
tions: (1) Gk is a directed acyclic network with at least one
arc; (2) for any hyperpath k, the starting node r has no
predecessor, and the destination node s has no successor; (3)
for any node n ∈ Nk − r, s{ }, there exists at least one path
between the starting node r and the destination node s, and if
n ∉ Ntf, it has at most one connected successor; and (4) the
vector ek satisfes the following expression:

e
k
ij > 0, ∀(i, j) ∈ A

k
, (1a)

􏽘
j∈O(i)

e
k
ij � 1, ∀i ∈ N

k
, (1b)

where ek
ij denotes the probability that passengers use arc

(i, j) at transfer node i, and O(i) denotes the set of arcs
starting from node i.

2.2. Transit Assignment Model

2.2.1. Arc Cost Functions considering Congestion Efects.
Figure 2 illustrates four types of arcs as follows: (1) a walking
arc (i1, i2), which connects two transfer nodes within an
acceptable walking distance, depicting the walking process
of the passenger between adjacent transfer nodes; (2)
a transit arc (j1, j2), which connects two adjacent dummy
transit nodes on a line, depicting the in-vehicle travel process
of the passenger; (3) an alighting arc (j1, i1), which connects
a dummy transit node to a corresponding transfer node,
depicting the alighting process of the passenger; and (4)
a boarding arc (i1, j1), which connects a transfer node to
a corresponding transit node, representing the boarding
process of the passenger.

O Dn1 n2 n3

L1

L2 L2

L3

Figure 1: Illustration of the transit network.
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Dummy Transit node
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Figure 2: Illustration of a transit station in an expanded network.
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Tis paper considers two types of crowding efects:
boarding crowdedness and in-vehicle crowdedness, with
specifc defnitions as outlined in Wu et al. [22], to ap-
propriately account for the impact of crowding efects, which
constitute congestion efects, on route choice. Tomanage the

efect of congestion, travel time is generalized into travel cost
on each arc, with arc cost expressed as functions of passenger
fow. Corresponding to the four types of arcs illustrated in
Figure 1, we defne the following arc cost functions based on
Wu et al. [22]:

Awalking arc i1, i2( 􏼁: ci1i2
� α1ti1i2

, ∀ i1, i2( 􏼁 ∈ Aw, (2)

A transit arc j1, j2( 􏼁: cj1j2
� α2tj1j2

+ β1
vj1j2

− vi1j1
􏼐 􏼑 + c1vi1j1

κfi1j1

⎛⎝ ⎞⎠

m

, ∀ j1, j2( 􏼁 ∈ At, (3)

An alighting arc j1, i1( 􏼁: cj1i1
� α3tj1i1

, ∀ j1, i1( 􏼁 ∈ Aa, (4)

A boarding arc i1, j1( 􏼁: ci1j1
� β2

vi1j1
+ c2 vj1j2

− vi1j1
􏼐 􏼑

κfi1j1

⎛⎝ ⎞⎠

m

, ∀ i1, j1( 􏼁 ∈ Ab, (5)

where ti1i2
represents the average walking time on the

walking arc; tj1j2
represents the average in-vehicle travel time

on the transit arc; tj1i1
represents the average time loss of the

alighting arc; α1, α2, and α3 represent the value of the time

for walking, in-vehicle, and alighting, respectively; β1, β2,
and m are all positive parameters that are typically calibrated
using historical data; vi1j1

represents the boarding fow;
vj1j2

− vi1j1
represents the in-vehicle fow; c1 (> 0) represents
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Figure 3: Illustration of an expanded network.
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Figure 4: Illustration of a hyperpath in an expanded network.
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the asymmetric crowding efect induced by the boarding
fow on the in-vehicle fow; c2 (> 0) represents the asym-
metric crowding efect induced by the in-vehicle fow on the
boarding fow; κ represents the vehicle capacity; and fi1j1
represents the corresponding departure frequency on the
boarding arc.

Note that the cost of waiting arcs and transit arcs
depends not only on their fow but also on the fow of
adjacent arcs. Specifcally, the cost of the travel arc is
infuenced by the average in-vehicle travel time and
discomfort induced by in-vehicle crowdedness. Tis
discomfort is associated with passengers waiting to board
(boarding fow) and those already on board (in-vehicle
fow) on the same line. In addition, the crowding cost on
the boarding arc is determined by the boarding fow and
the in-vehicle fow.

In addition to the crowding efects, passengers also
experience waiting cost at each transfer node, known as the
queuing efect. It is important to note that this cost is not
directly associated with the arcs. Instead, a set of boarding
arcs can share this cost by addressing the common line
problem. As illustrated in Figure 5, multiple transit lines pass
through transfer node i, denoted as Li � (i, j1), (i, j2), · · ·􏼈 􏼉,
which represents the set of boarding arcs originating from
the node i, where each boarding arc (i, j) corresponds to
a specifc line with a departure frequency of fij, measured in
vehicles per hour in this paper. Te route choice of the
passenger at the transfer node follows a set of defned rules
known as “strategies” [14]. When employing this strategy,
passengers utilize the attraction set Ri ∈ Li to board the frst
arriving bus in the set and proceed towards their destina-
tions. Assuming that (1) passengers lack real-time vehicle
information, (2) they arrive at random stops without regard
for established schedules, (3) they can accurately estimate
the remaining travel time after boarding, and (4) the dis-
tribution of line headway is exponential [24, 25], the ex-
pected waiting time ϖRi

for passengers utilizing the
attraction set Ri at the transfer node i is as follows, as stated
by Li et al. [26]:

ϖRi
�

1
􏽐(i,j)∈Ri

fij

. (6)

Te probability of passengers choosing to use arc (i, j),
denoted as eij, can be expressed as follows:

eij �
fij

􏽐 i,j′( )∈Ri
fij′

. (7)

Te attraction set R can be obtained using a greedy
algorithm under the assumptions of the common line
problem [25, 26], with given cost cij for each boarding arc,
expected travel cost ujd from node j to destination d, and the
expected waiting time.

2.2.2. Hyperpath Cost Functions. We defne the elementary
path set on hyperpath k as ψk, and the probability of
selecting an elementary path p ∈ ψk is defned as πk

p. Tus,

we obtain the following equation, according to Nguyen and
Pallottino [27]:

πk
p � 􏽙

(i,j)∈p
e

k
ij􏼐 􏼑

λp

ij
, ∀p ∈ ψk, (8a)

􏽘
p∈ψk

πk
p � 1, (8b)

where λp
ij is a binary variable, with a value of 1 if arc (i, j) is

on elementary path p, and 0 otherwise.
By enumerating the elementary paths p within ψk, the

elementary path cost Cp is obtained by summing up the arc
cost and the expected waiting time. Subsequently, it is
weighted by the approaching probabilities to obtain the
hyperpath cost Ck. We defne ϖp

i as the waiting time at
transfer node i on the elementary path p and calculate Ck

using the following formula:

Cp � 􏽘
(i,j)∈p

cij + 􏽘
i∈p
ϖp

i , ∀p ∈ ψk,
(9a)

Ck � 􏽘
p∈ψk

πk
pCp. (9b)

However, it is challenging to enumerate all elementary
paths for large-scale transit networks. Nevertheless, it is
possible to avoid enumeration by exploiting the acyclic
property of hyperpaths [27]. Te probability of using arc
(i, j) on hyperpath k is defned as πk

ij, and based on the
network topology order, we have the following formula:

θk
r � θk

s � 1, (10a)

θk
j � 􏽘

(i,j)∈I(j)

θk
i e

k
ij, ∀j ∈ N

k
\r, (10b)

πk
ij � θk

i e
k
ij, ∀(i, j) ∈ A

k
, (10c)

where r and s represent the starting and ending points of
hyperpath k, θk

i denotes the probability of hyperpath k

passing through node i, and I(j) represents the set of arcs
entering the node j.

Terefore, the formula for calculating the hyperpath cost
Ck is as follows:

i d

j1

j2

jn

…
…

Figure 5: Illustration of the common line problem.
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Ck � 􏽘

(i,j)∈Ak

πk
ijcij(v) + 􏽘

i∈Nk ∩Ntf

θk
i

􏽐 i,j′( )∈Rk
i
fij′

, ∀ω ∈W, k ∈ Kw,

(11)

where Rk
i represents the attraction set at transfer node i on

hyperpath k, and Kw represents the set of hyperpaths for O-
D pair w. Te left half of formula (11) represents the sum of
expected travel cost on all arcs, while the right half represents
the sum of expected waiting times at all transfer nodes.

2.2.3. Transit Equilibrium Assignment Model. Te equilib-
rium conditions of the transit assignment model can be
expressed as follows:

Ck

� uw, if hk ≥ 0,

≥ uw, if hk � 0,
􏼨 ∀w ∈W, k ∈ Kw, (12)

where hk represents the fow on hyperpath k, and uw rep-
resents the minimum hyperpath cost for O-D pair w.

Te hyperpath fow vector h∗ satisfes equation (12) if and
only if h∗ is a solution to the following variational inequality
problem (VIP) based on hyperpaths, i.e., fnding h such that:

C h∗( 􏼁
T h − h∗( 􏼁≥ 0, ∀h ∈ Ω, (13a)

s.t.Ω≜ h | q � ∧h, v � πh, h≥ 0􏼈 􏼉, (13b)

where h∗ represents the vector of hyperpath fow at equi-
librium, h represents the vector of hyperpath fow, C(h∗)
represents the cost vector of hyperpath fow at equilibrium,
Ω represents the set of feasible hyperpaths, q represents the
vector of O-D demand, ∧ represents the O-D-hyperpath
incidence matrix, v represents the vector of arc fow, and π
represents the arc-hyperpath probability incidence matrix.

It is worth noting that the Jacobian matrix of the arc cost
function vector c(v) exhibits asymmetry. Terefore, the
assignment submodel constitutes an asymmetric transit
equilibrium problem, making it challenging to express its
objective function (13a) directly. However, if c(v) is strictly
monotonic and continuous, i.e., the Jacobian matrix of c(v)

is positive defnite, then the arc fow v at equilibrium is also
unique [21]. Further discussion of the mathematical prop-
erties of the model can be found in the literature [21, 22].

3. Frequency Optimization Model and
Solution Algorithm

3.1. Bilevel ProgrammingModel Formulation. In general, the
defnition of a bilevel programming problem is as follows:

(U) min
x

F(x, y(x)), (14a)

s.t. G(x, y(x))≤ 0, (14b)

where y � y(x) is obtained by solving the lower-level op-
timization model:

(L)min
y

f(x, y), (14c)

s.t. g(x, y)≤ 0. (14d)

In the above bilevel programming model, U represents
the upper-level model, where F(x, y(x)) is the objective
function of the upper-level decision-makers, x is the decision
variables of the upper-level decision-makers, and G(x, y(x))

represents the constraint set for the upper-level decision
variables. L represents the lower-level model, where f(x, y)

is the objective function of the lower-level decision-makers,
y is the decision variables of the lower-level decision-makers,
and g(x, y) represents the constraint set for the lower-level
decision variables. It is worth noting that the lower-level
decision variables y can be expressed as a function of the
upper-level decision variables x, i.e., y � y(x), and are often
referred to as the response functions. In the upper-level
model, its objective function depends not only on its own
decision variables but also on the optimal solution of the
lower-level model. Conversely, the optimal solution of the
lower-level model is infuenced by the decision variables of
the upper-level model. Tis implies that the solution of the
bilevel programming model is achieved when the entire
decision system reaches an equilibrium state, where the
upper-level decision-makers achieve the optimal objective,
and the lower-level decision-makers achieve the optimal
state within the constraints.

Bilevel programming models are widely utilized in the
transportation feld, especially for establishing toll standards
and designing transportation networks. In general, trans-
portation network design problems involve two main stake-
holders: transportation operators and passengers. Passengers
aim to achieve the best travel experience, which may lead to
increased operational cost. Transportation operators, on the
other hand, seek to minimize the overall travel cost of the
transit system while controlling operational expenses. Te
interests of transportation operators and passengers are
interconnected yet conficting. To reconcile these competing
interests, bilevel programming models are a viable solution.

In this paper, we present a bilevel programming model
for frequency optimization based on the characteristics of
the transit network.Te upper-level model seeks to optimize
the travel cost of the transit system while controlling the
operational cost. Te lower-level model is to accurately
estimate the impact of frequency changes on passenger
travel behavior.

U1( 􏼁 min
v

Z(f , v(f)) � ρ1 􏽘
s∈As

cs vs(f)􏼂 􏼃vs(f)⎛⎝ ⎞⎠

+ ρ2 θ􏽘
l∈L

Flfl
⎛⎝ ⎞⎠,

(15a)

s.t. fl ≥ 1, ∀l ∈ L, (15b)
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where vs(f) represents the arc fow determined by the lower-
level model L1:

L1( 􏼁C h∗( 􏼁
T h − h∗( 􏼁≥ 0, ∀h ∈ Ω, (15c)

s.t.Ω≜ h | q � ∧h, v � πh, h≥ 0􏼈 􏼉, (15d)

where ρ1 denotes the weight coefcient for the travel cost
of the transit system, cs denotes the cost of arc s, vs denotes
the fow on arc s, ρ2 denotes the weight coefcient for the
operational cost of the transit system, θ denotes the co-
efcient for converting the operational cost at the current
frequency into the travel cost, Fl denotes the operational
cost per unit frequency of the transit line, fl denotes the
frequency of the transit line, L denotes the set of transit
lines within the transit network, and the defnition of Ω
can be referenced in the defnitions of formulas (13a) and
(13b).

Te upper-level model, denoted as U1, is a continuous
network design model with the objective function aimed at
minimizing the weighted sum of the transit system’s travel cost
and operating cost. Constraints (15b) represent the constraints
of the upper-level model, ensuring that at least one bus departs
from each transit route per unit time. Te lower-level model,
referred to as L1, is a hyperpath-based transit equilibrium
assignment model. Equation (15d) constitutes the constraints
of the lower-level model, encompassing fow conservation and
non-negativity constraints. As depicted in Figure 6, given a set
of decision variables f , the upper-level decision-makers adjust
their decisions based on the equilibrium fow distribution
derived from the lower-level model, resetting frequencies to
minimize the upper-level objective function. Tis process is
iterated until the bilevel programming model reaches an
equilibrium state.

3.2. Solution Algorithm. Based on formulations (15a) and
(15b), the upper-level model U1 is a constrained nonlinear
optimization problem concerning departure frequency,
which can be solved using established methods such as the
outer approximation method and the penalty function
method. However, these approaches involve dealing with
penalty functions or multipliers, making the computation
relatively difcult.Terefore, we propose a heuristic gradient
descent algorithm to solve this problem, which computes the
gradient of the objective function at the current point,
searches for the stepsize within the feasible region, and it-
eratively updates until a convergence criterion is met. Te
algorithm framework is described in Algorithm 1.

Since we use a local search strategy, the solution will depend
on the initial point during the iteration process. Terefore, the
historical departure frequencies for transit lines are naturally
chosen as the initial solution in step 1 of the algorithm.

Step 3 will be discussed in Section 3.3 since the calcu-
lation of the descent direction involves determining the rate
of change of the arc fow v under perturbations of the de-
parture frequencies f .

Tere are several approaches for choosing the conver-
gence criteria for the algorithm in Step 4. Te norm of the
search direction, the (relative) improvement of the objective
function value in the last iterations, the maximum number
of iterations, the maximum runtime, or any combination of
these factors are all viable options. Since the bilevel pro-
gramming model represents a nonconvex optimization
problem, fnding an optimal solution for the model remains
an NP-hard problem [28]. Terefore, the chosen conver-
gence criteria should guarantee that the algorithm converges
to a reasonably good local optimum. In this paper, an it-
eration with a relatively small improvement in the objective
function value is defned as bad iter, and the successive
occurrence of bad iter is counted as bad iter num. If
bad iter num is relatively large, the algorithm is considered
to have converged to a local optimum. However, if
bad iter num exceeds a certain threshold, it can be con-
cluded that the algorithm cannot converge to a better local
optimum within a reasonable amount of time. Terefore,
a combination of the relative improvement in the objective
function value, the maximum number of bad iter, and the
maximum number of iterations is chosen as the convergence
criteria for the algorithm.

Because v is a nonlinear implicit function of f , an ac-
curate linear search in Step 5 requires a high computational
cost. Terefore, the nonexact step search method called the
Armijo strategy [29] is employed in this study. For each trial
stepsize, we performed a transit equilibrium assignment to
obtain the objective function value. Te search was termi-
nated if the improvement of the objective function value
exceeded a certain threshold; otherwise, it was reset and the
preceding steps were repeated. In practice, this search
method may involve a large number of transit equilibrium
assignments, imposing a signifcant computational burden.
Nonetheless, the advanced GP-AIL algorithm employed in
this paper can solve the transit equilibrium assignment
problem accurately in a short time, making it suitable for
large-scale networks [21]. Figure 7 depicts the fowchart of
Algorithm 1.

Upper-level
model

Lower-level
modelForward transit

assignment

Flow distribution
Reverse optimization

Frequencies OD

Figure 6: Illustration of the bilevel programming mode.
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Step 1: Initialization: Determine the initial departure frequencies f0, the maximum number of iterations nmax, the maximum number
of bad iterations max bad iter, the convergence accuracy ε1, and the absolute improvement in the objective function value ε2; set the
number of iterations n � 0 and bad iter num � 0.
Step 2: Solve the lower-level problem: Use the GP-AIL algorithm [21] to solve the transit equilibrium assignment problem to obtain
the equilibrium fow solution v∗n and calculate the upper-level objective function value Zn.
Step 3: Compute the descent direction: Calculate an approximate gradient ∇Z(fn) of the objective function, and then the descent
direction is determined as rn � − ∇Z(fn).
Step 4: Check the convergence condition:
Step 4.1 Determine whether the convergence condition |(Zn − Zn− 1)/Zn− 1|< ε1 is satisfed; if yes, bad iter num+ � 1; if no,
bad iter num � 0.
Step 4.2 Determine whether the convergence condition |(Zn − Zn− 1)/Zn− 1|< ε1 and bad iter num> max bad iter or n> nmax is
satisfed; if so, the algorithm terminates; if not, go to Step 5.
Step 5: Determine the stepsize:
Step 5.1 Determine the maximum step αn

max, so that the updated frequencies satisfy the constraint (15b).
αn
max � min +∞, − (fn

l − 1)/rn
l : rn

l < 0,∀l ∈ L􏼈 􏼉.

Step 5.2 Search for the optimal step αn:
Step 5.2.1 Set α0 � αn

max, the search iteration number j � 0, the maximum search iteration number jmax, and Z(n,0) � Z(fn).
Step 5.2.2 Obtain the updated equilibrium fow solution v∗j pertaining to the updated frequencies by employing transit equilibrium
assignment, and calculate the corresponding value of the upper-level objective function: Z(n,j) � Z(fn + αjrn).

Step 5.2.3 If the convergence condition Z(n,0) − Z(n,j) > ε2 is satisfed, set αn � αj and stop the algorithm; otherwise, proceed to
Step 5.2.4.
Step 5.2.4 If j is equal to jmax, set αn � argminαj (Z(n,j)); otherwise, set αj � αj/θ, j � j + 1, and go to Step 5.2.2.
Step 6: Update: Set fn � fn + αnrn, n � n + 1 and go to Step 2.

ALGORITHM 1: Te heuristic gradient algorithm framework for frequency optimization.

Step 1:Initial 
frequencies f 0

Step 2:Solve the lower-
level problem

Step 3:Compute the
descent direction

Step 4:Check
convergence

Step 5:Determine the
stepsize

Step 6:Update
frequencies f

N

Output

Y

GP-AIL

Step 5.1:Determine the
maximum step

Step 5.2:Search for the
optimal step

Figure 7: Flowchart of Algorithm 1.
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3.3.Approximation of theGradient. In order to construct the
descent direction for the upper-level model U1, we compute
the gradient of the objective function Z with respect to f
using the following formula:

F1 vs(f)( 􏼁 � cs vs(f)( 􏼁vs(f), F2(f) � θ􏽘
l∈L

Flfl, (16a)

Z(f) � ρ1 􏽘
s∈As

F1 vs(f)( 􏼁⎛⎝ ⎞⎠ + ρ2F2(f), (16b)

∇Z(f) � ρ1 􏽘
s∈As

∇fvs(f)∇vF1 vs(f)( 􏼁⎛⎝ ⎞⎠ + ρ2∇fF2(f), (16c)

∇fvs(f) �
zvs(f)

zfl

􏼨 􏼩, ∀l ∈ L, (16d)

∇vF1 vs(f)( 􏼁 �
zcs vs(f)􏼂 􏼃

zvs

vs(f) + cs vs(f)􏼂 􏼃􏼨 􏼩, ∀l ∈ L, (16e)

∇fF2(f) � θFl􏼈 􏼉, ∀l ∈ L. (16f)

It is noteworthy that both partial derivatives ∇vF1(vs(f))
and ∇fF2(f) have relatively straightforward analytical ex-
pressions for calculation. However, owing to the implicit
defnition of the relationship between arc fow v and de-
parture frequencies f , direct representation through ana-
lytical expressions is not feasible. Terefore, it is challenging
to calculate the gradient for the nonlinear implicit function
vs(f), which will be calculated in this paper using sensitivity
analysis for transit equilibrium problems.

Te restriction approach, frst introduced by Tobin and
Friesz [30] and later extended by Yang and Bell [31], is
employed to create a constrained equation system that meets
the requirements for applying the sensitivity analysis method in
nonlinear programming. Building upon this research, Du and
Chen [32] derived the expressions for sensitivity analysis based
on the variational inequality (VI) form of transit equilibrium
assignment models. By applying the Karush–Tucker (K-T)
conditions to the optimal solution h∗ with the perturbations
ϵ � 0, we obtain the following equations:

C h∗, 0( 􏼁 − λ − ∧ Tμ � 0, (17a)

λTh∗ � 0, (17b)

∧h∗ − q(0) � 0, (17c)

λ≥ 0, (17d)

h∗ ≥ 0, (17e)

where λ and μ represent the Lagrange multiplier vectors
corresponding to h∗ ≥ 0 and ∧ h∗ − q(0) � 0, respectively.

Under Assumptions 1 and 2, Du and Chen [32] pro-
posed that the equilibrium solution is diferentiable at the
current point.

Assumption 1. Te cost functions c(v) of boarding arcs and
transit arcs are increasing functions of arc fow v, and the
travel cost depends primarily on their own fow, meaning the
derivative of c(v) with respect to their own fow is greater
than the derivative with respect to the fow on related arcs.

Assumption 2. Te path fow solution h∗ at the equilibrium
point is nondegenerate.

Assumption 1 ensures that c(v) is once continuously
diferentiable concerning arc fow v and perturbation
vector ϵ. Assumption 2 excludes the existence of de-
generate equilibrium path solutions and ensures the
diferentiability of the equilibrium solution at the current
point. Note that preserving the linearly independent
fraction of all equilibrium hyperpaths is equivalent to
selecting a maximum set of linearly independent columns
of the incidence matrix ∧T πT􏼂 􏼃

T. Te linearly in-
dependent equilibrium hyperpaths to be retained,
denoted as h0, correspond to this set of column vectors.
Using this approach, we constrain the equilibrium net-
work while preserving its independent hyperpaths.
Formulas (17a)–(17e) can then be simplifed into the
following system of equations:
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C0 h∗, 0( 􏼁 − ∧0Tμ � 0, (18a)

∧0h0∗ − q(0) � 0, (18b)

where C0 represents the path cost vector corresponding to
h0, and ∧0 represents the incidence matrix corresponding
to h0.

As a result, by calculating the Jacobian matrices of the
system (18a) and (18b) with respect to (h, μ), and ϵ, we can
obtain the following formulas:

Jh,μ(0) �
∇hC

0 h∗, 0( 􏼁 − Λ0T

Λ0 0
⎡⎢⎣ ⎤⎥⎦, (19a)

Jϵ(0) �
∇ϵC

0 h∗, 0( 􏼁

− ∇ϵq(0)
􏼢 􏼣, (19b)

∇ϵh
0

∇ϵμ
0􏼢 􏼣 � Jh,μ(0)􏽨 􏽩

− 1
− Jϵ(0)􏼂 􏼃. (19c)

Du and Anthony also proved that the Jacobian matrix
Jh,μ(0) is invertible with the linear independence of the
equilibrium hyperpath set associated with the incidence
matrix ∧0T π0T􏼂 􏼃

T, and the result of ∇ϵv is independent of
the choice of the hyperpaths.

Te perturbation vector f in the frequency optimization
problem represents frequency variations. Te following is
the formula for determining the derivative of arc fow v with
respect tof :

Jf(0) �
∇fC

0 h∗, 0( 􏼁

0
⎡⎣ ⎤⎦, (20a)

∇fh
0

∇fμ
0􏼢 􏼣 � Jh,μ(0)􏽨 􏽩

− 1
− Jf(0)􏼂 􏼃, (20b)

∇fv � π′h0 + π∇fh
0
, (20c)

where π′ is composed of the derivatives of πk
s which

denotes the probability that hyperpath k uses arc s with
respect to f .

Terefore, by substituting equation (20c) into equation
(16c), the approximate gradient of the objective function Z

with respect to f can be obtained.

4. Numerical Results

Tis section is organized into three main parts. Te frst part
provides a detailed description of the algorithm’s compu-
tational environment, the test network, and specifc
implementation details. Te second part examines the
convergence characteristics of the test algorithm and
compares the application performance of the algorithm
before and after considering congestion efects on a me-
dium-sized network. Te last part further examines the
computational results of the algorithm in a large-scale
network.

4.1. Computing Environment and Algorithm Implementation
Details. Te algorithms tested in this section were compiled
using the Toolkit of Network Modeling, a C++ class library
specialized in modelling transportation networks [33]. All
numerical results reported in this section were obtained on
a Windows 10 64 bit PC with Intel® Core™ i7-11700 CPU
2.50GHz and 64G RAM. Te performance of the test al-
gorithms is evaluated by applying them to solving the Sioux-
Falls and Winnipeg networks. Te Sioux-Falls network,
a medium-scale network, was provided by Szeto and Jiang
[34], as shown in Figure 8, while the Winnipeg network is
a real large-scale network from the city of Winnipeg, with an
Emme3 demo project (See https://www.inrosoftware.com/
en/products/emme/), as shown in Figure 9. Te topology of
each network is described in Table 1.

Table 2 presents the parameter values used in the arc cost
functions, which are adopted from Wu et al. [22]. Table 3
presents the values of the basic parameters used in the al-
gorithm. Te coefcient θ, which represents the conversion
of operating cost under the current departure frequency into
travel cost, is set to 1/30 (hours per yuan). According to the
transit operational cost estimation index system introduced
by Huanghn [35], the operational cost mainly includes labor
cost, vehicle cost, station cost, fuel cost, etc. Te value of Fl

specifed in this paper amounts to 1,000 yuan per unit
departure frequency, which represents the operational cost
incurred for each unit increase in the frequency of the transit
line l. Te weight ratio ρ1: ρ2 between travel cost and op-
erational cost in the transportation system is set to be 60: 1.
Tis confguration aims to increase the attractiveness of the
transit system by increasing the operating cost to some
extent while reducing the travel cost of passengers. It is
worth noting that this weight ratio can be fexibly adjusted
according to specifc circumstances. Te values of jmax, nmax,
and max bad iter are set based on empirical knowledge
from numerical experiments and can be fexibly adjusted
according to actual circumstances. Te values of ε1 and ε2
depend on the input of specifc problems and can be adjusted
according to actual situations.

A few implementation details of the algorithm are given
below. (1) We employ the relative gap (RG) as the con-
vergence criterion for the transit assignment model. Te
formula for calculating RG is as follows:

RG � 1 −
􏽐w∈wuwqw

􏽐s∈Acsvs + τ
, (21)

where τ denotes the total waiting cost, 􏽐s∈Acsvs denotes the
total travel cost, and uw denotes the minimum travel cost for
OD pair w. Note that the precision of RG afects the accuracy
of the passenger distribution prediction. In this section, we
set the RG precision to 10− 7 for the medium-sized network
and 10− 4 for the large-scale network, because this level of
precision satisfes practical requirements. (2) Te method in
the lower-level transit equilibrium model that does not
consider congestion efects ignores both queuing and
crowding efects. Specifcally, the expected waiting time for
passengers at transfer nodes, denoted as ϖRi

, is set to 0, and
the boarding and in-vehicle crowding functions for boarding
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and transit arcs are both set to 0, resulting in the following
arc cost functions:

ci1j1
� 0, cj1j2

� α2tj1j2
. (22)

(3) Te upper limit for the frequency is set at 30 buses
per hour, i.e., fk � fk + αkrk < 30, with the fexibility to
modify it based on specifc circumstances. (4) We consider
two types of congestion efects: crowding efect and
queuing efect. In addition, there are two other types of
efects: capacity efect and bunching efect, which are not
considered in this paper.

4.2. Sioux-FallsNetworkAnalysis. Te computational results
of the optimization algorithm considering congestion efects
in the Sioux-Falls network (depicted in Figure 8) are shown
in Figure 10, with basic network information available in
Table 4. In this plot, the horizontal axis represents the
computational time of the algorithm in seconds, while the
vertical axis quantifes the objective function value, which
refects the weighted combination of travel cost and oper-
ational cost within the transit system, measured in hours. In
general, the algorithm demonstrates rapid convergence to an
optimal solution within a relatively short timeframe. Te
objective function value reaches convergence within the frst
20 seconds. In particular, within the frst ten iterations, the
objective function value experiences a rapid decrease and
approaches a local optimum, with a diference of no more
than 0.011%. Subsequently, the algorithm continues to
search for even more optimal local solutions until it reaches
the maximum convergence iterations. Tis observation
highlights the algorithm’s ability to signifcantly improve
system performance in a short timeframe, making it par-
ticularly valuable for real-world engineering applications.

We provide a frequency adjustment scheme that does
not consider congestion efects and simulate both schemes to
validate the rationality of the optimization scheme. Table 5
presents two departure frequency schemes and their re-
spective travel cost (including congestion cost). Overall, the
optimization scheme that considers congestion efects
demonstrates superior performance in optimizing the
transit system. Specifcally, this optimization scheme sig-
nifcantly reduces the travel cost of the transit system by
3.9% compared to the initial scheme. In contrast, the ad-
justment scheme that does not consider congestion efects
fails to reduce travel cost and actually increases them by
6.4%. Tis is because the lower-level transit assignment
model does not account for congestion efects, fails to ac-
curately refect passenger travel behavior, and cannot predict
the impact of changes in departure frequency on passenger
distribution accurately, resulting in the inferior performance
of the adjustment plan. Terefore, the optimization algo-
rithm that considers congestion efects is more suitable for
optimizing departure frequencies in transit networks.

We further examine the convergence characteristics
of the algorithm. Note that the algorithmmay converge to
a local optimum rather than a global optimum due to the
nonlinear nature of the optimization model and the
heuristic gradient descent algorithm used. We compare
the convergence solutions under diferent initial de-
parture frequencies to determine the degree of variation.
It is assumed that the algorithm can converge to
a nearby local optimum if the initial frequencies are
sufciently close.

Table 6 provides four initial departure frequencies, while
Figure 11 and Table 7 illustrate the corresponding optimized
solutions and their respective objective function values. In
general, the optimized solutions show slight fuctuations
near a certain solution despite variations in initial departure
frequencies. Specifcally, the variations in objective function
values among the optimal solutions do not exceed 0.05%.
Tis implies that the optimization algorithm can converge to
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nearby local optima under diferent initial frequencies,
further confrming the reliability of the algorithm in the
context of frequency optimization.

4.3. Winnipeg Network Analysis. Te computational results
of the optimization algorithm for the Winnipeg network
(Figure 9) are depicted in Figure 12. Overall, the algorithm
demonstrates the ability to converge to an optimized so-
lution within an acceptable amount of time, with the ob-
jective function value reaching convergence within
3.8 hours. In particular, the optimization algorithm signif-
icantly improves system performance in the frst four

iterations, with the objective function value in the fourth
iteration deviating from the local optimum by no more than
0.001%. Te consistency of these results with the previous
fndings indicates that the algorithm proposed in this paper
is capable of efciently optimizing departure frequencies in

Table 1: Basic test network information.

Networks Size Stops Lines Nodes Arcs O-D pairs Trips
Sioux-falls Medium 24 10 84 150 16 7,200
Winnipeg Large 690 132 5,186 13,276 5,332 15,729

Table 2: Basic parameters used in the arc cost functions.

Parameter Value
α1 1.0
α2 2.5
α3 1.0
β1 5.0
m 2
β2 4.0
κ 30
c1 1.2
c2 0.3

Table 3: Basic parameters used in the algorithm.

Parameter Value
θ 0.033
Fl 1.0
jmax 2.5
nmax 30
max bad iter 1,000
ρ1 60
ρ2 1
ε1 10− 5

ε2 1000
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Figure 10: Convergence curve of the Sioux-Falls network objective
function.

Table 4: Basic information of the Sioux-Falls network.

Line ID Initial frequency Stops
1 12 (4, 11, 23, 24)
2 13 (1, 3, 12, 13, 24)
3 10 (11, 14, 23, 24, 13)
4 12 (8, 20, 21, 22, 23)
5 10 (7, 8, 16, 18, 20)
6 14 (14, 15, 19, 20, 22, 23)
7 20 (2, 6, 8, 9, 10, 11, 12)
8 22 (4, 5, 9, 10, 17, 19, 20)
9 24 (10, 16, 17, 19, 20, 21, 24)
10 20 (1, 3, 4, 5, 9, 10, 15, 19, 20)

Table 5: Comparison of departure frequency schemes.

Congestion
considered Frequency adjustment scheme Travel

cost

Yes (18.5, 23.0, 2.5, 2.8, 22.4, 3.2, 24.2, 19.7,
24.8, 24.1) 2,09,148

No (8.2, 11.3, 6.9, 10.6, 6.9, 9.5, 18.0, 21.3,
16.1, 13.4) 2,31,592

Initial scheme (12, 13, 10, 12, 10, 14, 20, 22, 24, 20) 2,17,730

Table 6: Diferent initial departure frequencies.

Initial scheme ID Frequency scheme
Initial scheme 1 (12, 13, 10, 12, 10, 14, 20, 22, 24, 20)
Initial scheme 2 (13, 14, 10, 12, 10, 14, 20, 22, 24, 20)
Initial scheme 3 (12, 13, 10, 12, 10, 13, 19, 22, 24, 20)
Initial scheme 4 (12, 13, 12, 12, 10, 14, 21, 22, 23, 20)
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Figure 11: Schematic diagram of departure frequencies.
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both medium-scale and large-scale networks within an ac-
ceptable timeframe.

Te comparison of frequencies before and after opti-
mization is shown in Figure 13. Before optimization, the
average frequency across the entire network was 4.81 buses
per hour, which increased to 6.52 buses per hour after
optimization. It is worth noting that there was little
diference in departure frequencies between several transit
lines in the Winnipeg network before and after optimi-
zation. Table 8 provides details on three bus routes (with
line IDs 11, 48, 67, and 92) that experienced minimal
changes in frequency, with reductions of 0.92, 0.71, 0.69,
and 0.80, respectively, all of which are less than 1. Tis is
due to the fact that the Winnipeg network used in this
study is a real transit network with departure frequencies
determined through extensive surveys and research. In
addition, these few lines serve a limited number of stops,
have shorter travel times, and experience relatively low

travel demand between their corresponding origin-
destination pairs. Terefore, intuitively, there is little
need for signifcant adjustments to their departure fre-
quencies, resulting in minimal diferences in frequency
before and after optimization for certain lines.

Some lines show signifcant changes in departure fre-
quencies before and after optimization. Table 9 presents the
basic information for four transit lines that had signifcant
frequency increases after optimization, with line IDs 24, 74, 83,
and 100 exhibiting frequency increases of 3.55, 3.55, 3.55, and

Table 7: Comparison of optimal frequencies under diferent initial departure frequencies.

Initial scheme ID Frequency adjustment scheme Objective values
Initial scheme 1 (18.5, 23.0, 2.5, 2.8, 22.4, 3.2, 24.2, 19.7, 24.8, 24.1) 2,14,652
Initial scheme 2 (18.0, 23.0, 2.7, 3.0, 22.3, 3.4, 24.0, 20.7, 24.8, 24.1) 2,14,557
Initial scheme 3 (18.1, 23.0, 2.6, 2.9, 22.4, 3.1, 24.0, 19.8, 24.8, 24.1) 2,14,662
Initial scheme 4 (19.0, 23.0, 2.9, 2.9, 22.4, 3.3, 24.3, 19.8, 24.7, 24.1) 2,14,654
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Figure 12: Convergence curve of the Winnipeg network objective function.
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Table 8: Basic information of transit lines with minimal frequency
changes.

Line ID 11 48 67 92
Operational line Line 15 Line 32 Line 40 Line 52
Stops number 38 24 24 30
Running time (min) 72 82 66 89
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3.66, respectively. Te signifcant diferences in frequency
before and after optimization are primarily related to the design
and layout of these lines. Tese lines share common charac-
teristics, such as passing through a higher number of stops,
longer travel times, signifcant travel demand between their
respective origin-destination pairs, and a lack of alternative
transfer lines. In addition, these lines are strategically aligned
with the primary fow of passengers, facilitate transfers to
several other routes, and provide essential transportation op-
tions. As a result, increasing the departure frequencies of these
lines can alleviate the burden on the remaining transit lines,
resulting in more efcient passenger movement and ultimately
optimizing system performance.

In conclusion, the optimization algorithm that considers
congestion efects can efciently optimize bus departure
frequencies in a short timeframe and is applicable to large-
scale transit networks.

5. Conclusion

Traditional transit frequency setting usually deviates from
real-world situations due to unrealistic assumptions about
passenger travel behavior, resulting in practical limitations
and design constraints. Tis paper introduces a bilevel
programming model that accurately captures the in-
teractions between transit operators and passengers, pro-
viding reliable decision support for transit planning and
policymakers. Compared to existing bilevel models, it has
two advantages: frst, it explicitly considers passenger con-
gestion cost in the upper-level model, rather than solely
travel time. Second, it incorporates the infuence of two types
of congestion efects on passenger travel behavior in the
lower-level model, which realistically refects the changes in
passenger travel patterns under diferent frequencies.

Te optimization model can efectively improve the
transportation system and enhance user satisfaction by
incorporating congestion efects. Tis is achieved by in-
corporating congestion efects into the lower-level transit
assignment model, which better refects the travel charac-
teristics of transit users. Numerical results demonstrate that
congestion-aware optimization signifcantly improves sys-
tem performance, reducing travel cost (including congestion
cost) by 9.7% compared to adjustments without congestion
consideration.

Furthermore, the heuristic gradient descent algorithm
proves to be an efective solution for departure frequency
optimization. Numerical experiments show that the opti-
mization algorithm converges to solutions in a relatively
short timeframe. For the Sioux-Falls network, the algorithm
reaches convergence within 20 seconds, while for the
Winnipeg network, it converges within 3.8 hours.

Finally, although this paper has demonstrated the po-
tential of the proposed algorithm to address the optimization
of bus departure frequencies, it still has the following lim-
itations: (1) the upper-level model does not consider the
impact of factors such as feet size and vehicle acquisition
cost on the overall system cost; (2) the lower-level model
does not consider the infuence of capacity and bunching
efects on user travel behavior; and (3) the lack of com-
parative analysis between diferent classical algorithms, such
as comparing the application efects of genetic algorithms
and heuristic gradient descent methods. Tese limitations
warrant further investigation, and future research can im-
prove the bilevel programming model and develop various
corresponding efcient algorithms.
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