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Te goods collection and delivery process often relates to distribution logistics problems. Te task is to deliver goods from
warehouses to customers under specifc circumstances. Eforts to optimize the process are largely aimed at reducing overall costs
of goods transportation. Among the prominent algorithms for solving the basic type of the delivery (or collection) problem, which
includes a single depot and a homogeneous vehicle feet, is the algorithm developed by Clarke andWright in 1964.Tis algorithm
minimizes transportation costs by maximizing the savings achieved through merging multiple routes into one. Tis paper
primarily aims to solve the pickup and delivery problem where the goods must be delivered and empty packaging collected in
a single process. Te request of a customer can be routed from the depot or from another customer. Similarly, the destination of
the request may be the depot or another customer. Unlike the original version of the Clarke and Wright algorithm, the initial
routes are created to satisfy delivery orders, and therefore, the same customer can occur in multiple routes. Consequently,
a situation may arise in which two routes containing one or more common vertices must be combined during the calculation.
Furthermore, these vertices need not be the outermost vertices of the routes. Tis situation cannot be addressed by using the
original version of the Clarke and Wright algorithm, and that is why we propose its modifcation. Merging routes through inner
vertices means that the cost savings depend on the confgurations of the routes, and therefore, they cannot be calculated a priori.
Instead, the dynamic savings matrix must be used.

1. Introduction

Te transportation of goods and people is an integral part of the
everyday world, involving signifcant expenditures on vehicle
fuels and maintenance each day. Clearly, this sector provides
ample opportunities for cost optimization through advance-
ments in technology, transportation network infrastructure,
and sophisticated planning. In practical terms, the challenges to
be addressed include the efcient transport of goods under
specifc conditions, aiming for minimal costs, the shortest
possible time, or maximizing profts. Te utilization of
mathematical methods and optimization approaches proves
convenient for addressing these complex problems.

Two types of problems are frequently encountered in
goods logistics and distribution. Te frst one is the vehicle

routing problem (VRP), where goods are transported from/
to a depot, such as goods from warehouses to customers and
packaging material from customers back to the warehouses.
Te other problem is the pickup and delivery problem
(PDP), where goods are transported between customers. In
distribution, multiple vehicle types are typically involved.
Te problems usually involve many other parameters, in-
cluding time constraints (e.g., limited duration of a route,
time windows for goods delivery to customers, mandatory
driving breaks for rest, and maximum driving time for
a vehicle), maximum route length, maximum number of
customers serviced within a route, or maximum load
dimensions.

Te distribution problems are too complex to be trac-
table using a single method for their solution. Instead,
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a suitable combination of methods and procedures must be
applied. A heuristic approach is usually adopted when
addressing complex problems. Many real-world problems
have been successfully solved by operations research
methods, allowing costs to be reduced by 5% to 20% [1], with
the additional advantage of reducing greenhouse gas pro-
duction, mainly CO2.

Tis paper addresses a problem where the distribution
processes encountered in both problems mentioned
above occur; i.e., the goods are transported from/to
a depot as well as among customers. Both good unloading
and loading can occur at the customer’s site. Te goods
loading/unloading costs and time demands are known as
well. Te objective is to identify vehicle routes that
minimize the total goods delivery costs. A specifc food
distribution problem was chosen to validate the algo-
rithm within a case study. Te goods fow consists largely
(∼80%) of transports from the depot to various cus-
tomers, mostly food sellers. Te remaining fraction of the
fow consists of goods transport between customers and
collection from the customers. Figure 1 illustrates the
fow of goods.

2. Literature Review

We commence with the formal description of the classical
VRP involving a single depot and a homogeneous vehicle
feet. Te problem can be efectively represented using graph
theory. Te classical VRP is defned on a directed graph
G � (V, A), where V � 0, 1, . . . , n{ } is the vertex set and A �

(i, j): i, j ∈ V, i≠ j􏼈 􏼉 is the arc set. Vertex 0 represents
a depot where a set of identical vehicles, each with a capacity
Q, is available. Each customer situated at vertex i ∈ V\ 0{ } is
associated with a nonnegative demand qi ≤Q. A cost matrix
cij is defned on A. When the cost matrix is symmetric, i.e.,
cij � cji for all i, j ∈V, it is common practice to defne the
problem on an undirected graph G � (V, E) where
E � [i, j]: i, j ∈ V, i< j􏼈 􏼉 is the edge set. Te travel cost cij
may represent the length or travel time along the edge [i, j].
Te objective is to determine a set of vehicle routes starting
and ending at the depot, ensuring that each customer is
visited by precisely one vehicle, the total demand of any
route does not exceed Q, and the total routing cost is
minimized [2].

Te simplest VRP variant involves one depot and one
vehicle type with a known capacity. Te aim is to identify
vehicle routes meeting these constraints while minimizing
the goods delivery. In the simplest case, the cost is directly
proportional to the distance travelled (sometimes it is im-
mediately this distance). However, real-world situations
often necessitate the application of more complex VRP
variants involving multiple vehicle types and/or multiple
depots. An overview of the various problem modifcations
and methods to address them can be found in the
monograph [3].

Numerous heuristic approaches exist to tackle general
VRPs, aiming to fnd a suboptimal problem solution. Te
methods not only difer in their selected approaches but also
in the specifc class of problems for which they were devised.

Pioneering work was conducted by Dantzig and Ramser
in 1959, focusing on the identifcation of fuel tank truck
routes between a large-volume terminal and service stations.
Tey achieved a near-optimal solution using a method based
on a linear programming formulation [4]. A well-known and
frequently used heuristic algorithm for solving vehicle
routing problems was developed by Clarke and Wright in
1964 [5]. Tis algorithm is designed to solve the classical
VRP as defned previously. It is a constructive heuristic that
gradually merges simple tours into more complex ones by
applying a savings criterion, referring to the distance savings
achieved by combining two routes into one. Te advantages
of the algorithm include its simplicity, short computing
time, and easy implementation.

Since its development in 1964, the Clarke and Wright
algorithm has undergone many improvements and modi-
fcations for specifc problems, such as the multidepot
problem [6] or scenarios where vehicles do not return to the
depot [7]. Various modifcations to the original saving
criterion have been proposed in the literature [8]. Gaskell [9]
and Yellow [10] parameterized the formula to enhance the
algorithm’s exploration ability. Paessens [11] introduced
another term to allow merging customers with very diferent
distances from the depot, while Altınel and Öncan [12]
enhanced the criterion by incorporating customers’ de-
mands in addition to distance. Other modifcations involve
combining the algorithm with Monte Carlo simulation
[13, 14]. Plenty of practical applications of the Clarke and
Wright algorithm have been reported in the literature.
Sarmah et al. [15] successfully applied the algorithm to the
solid municipal waste collection problem for 15municipality
districts of Bilaspur (India). Jiang et al. [16] focused on
optimizing the vehicle routing for baggage pickup in airport
terminals. Noteworthy results were obtained when com-
paring the Clarke andWright algorithmwith other methods.
Destyanto et al. [17], for instance, compared nearest
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Figure 1: Example of goods fow.
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neighbour heuristics with the Clarke and Wright algorithm
in the medicinal drug distribution area, demonstrating that
the Clarke andWright algorithm is themost efective tool for
tackling this distribution problem.

Metaheuristics represent a distinct approach to solving
VRPs, functioning as heuristic methods that form a super-
structure above other heuristics types. Well-known meta-
heuristics include genetic algorithms, tabu search, simulated
annealing, and ant colony optimization. Tese methods
emulate natural phenomena, such as animal behaviour or
genetic processes.

Metaheuristics, either independently or in conjunction
with the Clarke and Wright algorithm, have been applied to
solve problems across various application areas. For in-
stance, Escobar et al. [18] utilized a hybrid approach to the
VRP; here, they initially found the problem solution using
the Clarke and Wright algorithm and then optimized it
using tabu search metaheuristics. Addressing the mail de-
livery problem, Huang et al. [19] developed two integer
models for the delivery service. Teir heuristic algorithm is
a combination of the Clarke and Wright algorithm with
a tabu search metaheuristic. Zhai et al. [20] focused on
combining the Clarke andWright algorithm with ant colony
optimization. Berghida and Boukra [21] and Pan et al. [22]
also employed a combination of metaheuristics to address
the VRP.

Heuristics and metaheuristics prove to be practical
approaches for addressing real-world pickup and delivery
problems [23]. A common technique involves creating an
initial set of routes using an insertion heuristic. Cus-
tomers are gradually inserted into the routes based on
a time-spatial proximity criterion. Subsequently, either
local search or a metaheuristic is applied to improve the
solution. A simpler variant of the problem, featuring one
depot but simultaneous chilled food pickup and delivery,
was addressed by Ji et al. [24] using their own heuristics
based on a genetic algorithm. Chun-Hua et al. [25] also
developed a genetic algorithm to handle simultaneous
pickups and deliveries, considering time windows and
setting penalties for delayed delivery. Chen and Fang [26]
approached the simultaneous pickup and delivery
problem using a two-layer discrete particle swarm op-
timization, with the frst phase dedicated to vehicle as-
signment and the second phase focused on identifying
optimal routes. Yu and Lin [27] took a diferent approach,
successfully employing simulated annealing meta-
heuristics for the PDP. Sathyanarayanan et al. [28] used
a modifed genetic algorithm to solve the combined
problem with multiple depots and stochastic vehicle
routing.

While the literature overview illustrates the frequent
use of the Clarke and Wright algorithm and its combi-
nation with metaheuristics for routing problems with
various parameters and constraints, to our knowledge, the
Clarke andWright algorithm has not been applied to solve
the PDP. In this paper, we aim to fll this gap by proposing
a new heuristic method based on the Clarke and Wright
algorithm. Tis choice is motivated by several factors. Te
most important is the algorithm’s computation speed.

Metaheuristics may provide a better solution, but the
computation takes a long time. When faced with
a problem that occurs in operational management, we
need to fnd a solution quickly even at the expense of its
lower quality. Another advantage of the Clarke and
Wright algorithm is that it makes easy to add additional
constraints to the problems, such as time windows for
handling goods, a maximum route travel time, a maxi-
mum number of stops on the route, mandatory breaks for
the driver’s rest, and load temperature regime combina-
tions. Tis algorithm can be relatively easily implemented
and modifed.

3. Materials and Methods

Te problem to be solved is a single depot PDP with
a heterogeneous vehicle feet. Customers’ requests are
specifed through delivery orders. Te delivery order data
include the dispatch and destination locations of the goods,
along with the quantity of goods to be delivered. A customer,
as well as a depot, may serve as the pickup point for one
request and, simultaneously, as the delivery point for an-
other request. Multiple orders can have the same pickup
points and/or destinations. Both unloading and loading
operations are conceivable at a customer’s site. Moreover,
the cost of loading and unloading operations at each pickup
and delivery location is also given, afecting the total cost to
be minimized. We propose a solution method for the basic
version of the problem where time windows are not
specifed.

Although we will solve the problem heuristically,
a mathematical programming formulation can be useful for
a better understanding of the problem and its features. Te
formulation stems from the graph model of the problem
[23]. Let us defne a network in which nodes correspond to
the depot, pickup points, and delivery points. Diferent
nodes may represent the same geographical location. If the
request is dispatched from the depot, an artifcial node
corresponding to the pickup operation is added to the
network. Delivery to the depot is modelled in a similar way.
Let r be the number of requests. We denote the set of pickup
nodes by P � 1, . . . , r{ } and the set of delivery nodes by
D � r + 1, . . . , 2r{ }. Furthermore, we defne N � P∪D. Let
V � N∪ 0{ } be the set of all nodes inclusive the depot and
A � V × V be the set of all feasible arcs. Request i consists of
transporting qi units from node i to r+ i. Consequently, let
li � qi and lr+i � −qi. Let K be a set of vehicles, Qk be the
capacity of vehicle k, and cijk be the travel cost between
nodes i and j related to vehicle k.

Te mathematical model involves two types of decision
variables: binary variables xijk that equal to 1 if vehicle k
travels through the arc (i, j) ∈A and 0 otherwise and vari-
ables yik giving the load of vehicle k after the service at node i
have been completed. Te linear programming formulation
is as follows:

min 􏽘
k∈K

􏽘
(i,j)∈A

cijkxijk,
(1)

subject to
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􏽘
j∈N

xijk � 􏽘
j∈N

xj,r+i,k, for k ∈ K, i ∈ P, (2)

􏽘
j∈N

xijk � 􏽘
j∈N

xj,r+i,k, for k ∈ K, i ∈ P, (3)

􏽘
i∈V

xijk � 􏽘
i∈V

xjik, for k ∈ K, j ∈ N, (4)

yik + li ≤yjk + M 1 − xijk􏼐 􏼑, foryik + li ≤yjk + M 1 − xijk􏼐 􏼑,

(5)

yik + li + M 1 − xijk􏼐 􏼑≥yjk, for k ∈ K, i ∈ V, j ∈ V, i≠ j,

(6)

li ≤yik ≤Qk, for k ∈ K, i ∈ P, (7)

0≤yik ≤Qk − li, for k ∈ K, i ∈ D, (8)

y0k � 0, for k ∈ K, (9)

xijk ∈ 0, 1{ }, for k ∈ K, i ∈ V, j ∈ V, i≠ j.

(10)

Te objective function (1) minimizes the total travel cost.
Constraints (2) ensure that each pickup location is visited.
Constraints (3) impose that the delivery location is visited if
the pickup location is visited and that the visit is performed
by the same vehicle. Constraints (4) are the fow conser-
vation constraints. Constraints (5) and (6) adjust the vehicle
load during a route and, simultaneously, prevent a route
from being separated into subtours that do not contain
a depot. Constraints (7) and (8) are the capacity intervals at
pickup and delivery nodes. Te initial vehicle load is im-
posed by (9). Finally, constraints (10) defne binary variables.

3.1. Te Clarke and Wright Algorithm. Te Clarke and
Wright algorithm operates on a graph where vertices cor-
respond to individual customers, not the requests. Te
formal description of the graph was provided at the be-
ginning of the Literature Review Section.

Te algorithm starts with the initial solution, consisting
of elementary routes. An elementary route, in the form of
depot⟶ serviced vertex⟶ depot, is created for each
serviced vertex. Tis initial solution is then modifed, and
routes are merged to achieve the maximum savings in the
total cost. Te savings, denoted as λij, indicate howmuch the
cost is reduced by combining two routes into one (Figure 2),
as expressed by the equation:

λij � ci0 + c0j − cij. (11)

Since the savings remain constant throughout the al-
gorithm, they can be computed a priori. Te savings are
recorded in a matrix of dimension (n+ 1)× (n+ 1). In each

iteration, the maximum element in the savings matrix must
be; it determines the routes that can be joined, provided that
the problem constraints are respected. Te basic constraint
relates to vehicle capacity: two routes can bemerged into one
only if the vehicle used can carry all the goods delivered via
the two routes. After each step of the algorithm, more
complex routes visiting two or more vertices may emerge.
Te routes can only be joined through their outermost
vertices, the frst after the depot or the last one before the
depot. Connecting additional routes to vertices within the
existing routes is not possible.

3.2. Modifcations of the Clarke and Wright Algorithm.
We modify the Clarke and Wright algorithm in the fol-
lowing ways:

(1) Te orders can be directed to/from any vertex
(2) A customer may be visited by multiple vehicles,

meaning one vertex may occur in multiple routes
(3) Routes can be merged at any common vertex
(4) Te savings resulting from joining routes depend on

the confguration of the routes, necessitating changes
during the algorithm run and repeated calculation,
leading to a dynamic savings matrix

Te algorithm is adapted to situations where the
routes obtained by the initial solution can lead to the
same vertices. In contrast to the basic Clarke and Wright
algorithm variant, the initial solution is based on the
delivery orders rather than the customers. Each route in
the initial solution satisfes one order. Te goods for one
order can be managed by one vehicle (this need not be
tested). However, multiple orders can be directed to the
same network vertex. Tus, a situation can occur where
two routes containing one or more identical vertices must
be joined during the computation. Tis is a problem that
cannot be solved using the original Clarke and Wright
algorithm and its numerous modifcations encountered
in literature [8–12].

Te calculation of savings is a next modifcation of the
algorithm. In the original version of the Clarke and Wright
algorithm, the savings are calculated in the initialization phase
based on graph edge weighting and are independent of the
confguration of the routes being combined. In the problem
addressed here, savings are afected by multiple factors. Tey
are calculated from the costs of the routes being combined,
including a fxed cost component and a variable cost

V0 V0

C0i C0j

Cij

Cj0

Cj0Ci0 Ci0

Vi ViVj Vj

Figure 2: Basic principle of the Clarke and Wright algorithm.
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component. Tese savings depend not only on the distance
but also on the number of units of goods to be loaded/
unloaded and other factors, such as the cost of having the
vehicle driven to the ramp or the cost of the vehicle idle time
during the loading/unloading operations. Furthermore, the
savings accruing from route joining depend on the order of
the vertices on the resulting route. Hence, the savings ac-
cruing from the potential combination of the newly created
route with the existing routes must be calculated after each
route combination performed. Tis afects the savings matrix
in such a way that the savings for the newly created route are
calculated and stored in a new row and column, while the
rows and columns for the routes from which the new route
was formed are eliminated from the matrix. In this way, the
saving matrix becomes a dynamic matrix.

3.3. Initial Solution. Each order specifes the pickup vertex
(dispatch site) and the delivery vertex (destination). Te
dispatch site can be the depot (typically) or any other vertex,
and the same applies to the destination. In addition, the
amount of goods to be delivered is defned. Te orders are
categorized into three groups. Te initial solution is con-
structed with respect to these groups:

(1) Group 1 includes delivery orders with the depot as
the dispatch site. Te initial route for the order is
depot⟶ delivery vertex⟶ depot.

(2) Group 2 encompasses pickup orders where the depot
is the destination point. Te initial route is depot-
⟶ pickup vertex⟶ depot.

(3) Group 3 involves orders where the depot is neither
the dispatch site nor the destination site. Instead, the
goods are transported between two nondepot ver-
tices. Te initial route is depot⟶ pickup ver-
tex⟶ delivery vertex⟶ depot.

3.4. Saving Matrix. As in the Clarke and Wright algorithm,
the saving matrix must be set up frst. Te saving matrix has
dimensions of the number of orders×number of orders, and
it is not symmetric. Each matrix row and column represents
one route, with every route originating and terminating at
the depot. Te matrix elements include 2 items: the savings
and the potentially newly created route. Te initial saving
matrix is shown in Table 1.

Te following symbols will be used to describe a route:

(i) m is the number of vertices within a route
(ii) vtk is the k-th vertex on the route t
(iii) vt1 is the frst vertex on the route t representing the

depot, which is the vehicle’s starting point
(iv) vtm is the last vertex on the route t representing the

depot, which is the vehicle’s fnish point

3.5. Saving Calculation. Te value of the savings λij is ob-
tained from the costs of the joined routes i and j, as shown in
the equation:

λij(savings) � cost of routei + cost of routej

− cost of routenew.
(12)

3.6.Cost of aRoute. Te cost of a route comprises four items:
the cost of vehicle travel along the route, the cost of servicing
the vertices on the route, the waiting cost, and the vehicle
deployment cost. Te total time of the route must also be
determined for the total cost calculation. Terefore, the
servicing times in the vertices and the time of travel between
the vertices must also be determined.

Cost factors are the same for each route:

(i) cost_v is the vehicle deployment cost (price)
(ii) cost_t is the travel cost (price/km)
(iii) cost_w is the waiting cost (hourly price)

3.7. Distance Matrix. Tis matrix includes the distances dij

(lengths of the shortest paths) between the vertices
i, j ∈ V. Te frst distance matrix row and column represent
the depot.

3.8. Travel Time Matrix. Tis matrix includes the travel
times tij between the vertices i, j ∈ V. Te frst travel time
matrix row and column represent the depot.

3.9.VertexParameters. Te loading/unloading cost in vertex
k on route t is as follows:

(i) cost_fx (vtk) is the fxed cost (e.g., transport doc-
ument inspection fee)

(ii) cost_var (vtk) is the variable cost per transported
goods unit

Te loading/unloading time in vertex k on route t is as
follows:

(i) t_fx (vtk) is the fxed time (e.g., driving the vehicle in
for handling)

(ii) t_var (vtk) is the variable time per transported
goods unit

Te requirements in vertex k on route t are as follows:

(i) C_n (vtk) is the number of units of goods loaded in
vertex vtk (the sum of loaded units of goods from all
orders on route t for which the vertex is the dispatch
point)

(ii) C_v (vtk) is the number of units of goods unloaded in
vertex vtk (the sum of unloaded units of goods from
all orders on route t, for which the vertex is the
destination)

3.10. Service times in the Vertices on the Route and Servicing
Cost. Te service time in vtk consists of the fxed and var-
iable parts, where the latter is dependent on the number of
loaded and unloaded units of goods equation:
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service time vtk( 􏼁 � t fix vtk( 􏼁 + t var vtk( 􏼁

× C n vtk( 􏼁 + C v vtk( 􏼁( 􏼁.
(13)

Te service cost in the route vertex vtk also consists of
a fxed component, independent of the number of loaded/
unloaded units (e.g., the cost of having the vehicle driven to

the ramp), and a variable component that depends on the
number loaded/unloaded units, such as the cost of the ve-
hicle idle time during the loading/unloading operations.
Tese costs are directly proportional to the vertex servicing
time equation:

service cos t vtk( 􏼁 � service time vtk( 􏼁 × cos t w + cos t fix vtk( 􏼁 + C n vtk( 􏼁 + C v vtk( 􏼁 × cos t var vtk( 􏼁( 􏼁. (14)

3.11. Cost of Travel between Two Vertices. Te cost of travel
between vertices vt,k−1 and vtk depends on the distance
travelled equation:

cos t vt,k−1, vtk􏼐 􏼑 � d vt,k−1, vtk􏼐 􏼑 × cos t t. (15)

3.12. Route Implementation Cost. Te route implementation
cost is expressed by the equation:

implementation cost � cos t vt1( 􏼁 + cos t vt1, vt2( 􏼁 + cos t vt2( 􏼁 + cos t vt2, vt3( 􏼁 + . . . + cos t vt,m−1􏼐 􏼑 + cos t vt,m−1, vtm􏼐 􏼑 + cos t vtm( 􏼁.

(16)

3.13.Route ImplementationTime. Te route implementation
time includes only the net vehicle travel time and all vertex
servicing times. Te latter includes the vehicle idle time
during the loading or unloading operation. Te route
implementation time does not include other components,

such as waiting time for a free ramp, mandatory drivers’
breaks for rest, and waiting time for a relevant time window,
in situations where time windows are included in the
problem being solved and the vehicle arrived at the vertex
earlier. Tis is expressed by the equation:

implementation time � service time vt1( 􏼁 + t vt1, vt2( 􏼁 + service time vt2( 􏼁 + . . . + service time vt,m−1􏼐 􏼑 + t vt,m−1, vtm􏼐 􏼑 + service time vtm( 􏼁.

(17)

3.14. Total Route Time. Te total route time is the complete
route duration, including waiting for the free ramp, man-
datory drivers’ rest breaks, and time of waiting for a free time
window where this is relevant. Each of those constitutes
a subproblem that has to be solved and used to determine the
real route start and end times, which are input data in the
computation equation:

total route time � route end time − route start time.
(18)

3.15. Cost of Waiting for the Vehicle. Te previous items are
used to determine the total vehicle waiting time, from which
the total cost of waiting for the vehicle is derived.Te vehicle
waiting time is the following diference equation:

waiting time � total route time − implementation time.
(19)

Te waiting cost is expressed by the equation:

waiting cost � waiting time × cost w. (20)

Table 1: Initial savings matrix—frst iteration of savings calculation.

Route 1 Route 2 . . . Route number of orders

Route 1 — λ12 (savings) λ1number of orders (savings)
λ12 (route) λ1number of orders (route)

Route 2 λ21 (savings) — λ2number of orders (savings)
λ21 (route) λ2number of orders (route)

. . . —

Route N (N=number of orders) λnumber of orders1 (savings) —λnumber of orders1 (route)
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3.16. Route Cost Calculation. Te total route cost is calcu-
lated as the sum of the travel cost, customer servicing cost,
waiting cost, and vehicle deployment cost, as expressed by
equation (21). Te last-mentioned item can include vehicle
renting cost.

Te total cost of a vehicle is

route cost � implementation cost

+ waiting cost + cost v.
(21)

3.17. Route Joining. Te following situations are examined
when joining two routes into one

Variant 0: Te routes are joined through the outermost
vertices, have no common vertex except the depot, and
do not overlap. For example, routes D-1-2-D and D-3-
4-D create route D-1-2-3-4-D (Figure 3).
Variant 1: Te last vertex (before the depot) of one
route coincides with the frst vertex (after the depot) of
the other route, and this common vertex serves to join
the routes together. For example, routes D-1-2-3-D and
D-3-4-D create route D-1-2-3-4-D (Figure 4).
Te diference between variants 0 and 1 is that in
variant 0, the routes have no common vertex (except
the depot), while in variant 1, they share one vertex
(except the depot).
Variant 2:Te last two vertices (before the depot) of the
one route coincide with the two frst vertices (after the
depot) of the other route. For example, routes D-1-2-3-
D and D-2-3-4-D create route D-1-2-3-4-D (Figure 5).
Variant 3: Te last three vertices of route 1 coincide
with the frst three vertices of route 2 (in the same
order). For example, routes D-1-2-3-4-D and D-2-3-4-
5-D create route D-1-2-3-4-5-D (Figure 6).
Variant 4: Route j contains only such vertices as also
present on route i in the same direction. For example,
routesD-1-2-3-4-5D andD-2-3-4-D create routeD-1-2-
3-4-5-D (Figure 7).

Te procedure in variants 1, 2, and 3 can be further
generalized to multiple common vertices. In the future, we
could consider modifying the algorithm in such a way that
the number of common vertices to be examined for both
routes will be the algorithm’s parameter. One can expect
that such exploration would improve the solution quality
but increase the computing time. In our experiments, we
did not investigate the sensitivity of the algorithm to this
parameter.

Te procedure of selecting the routes to be joined follows
the principle of the Clarke and Wright algorithm. Te
maximum positive element is identifed in the saving matrix.
Tis element determines the routes that can (while meeting
the constraints of the problem) be combined into one (in the
following description of the algorithm, we consider the only
constraint regarding the vehicle capacity). If the routes
cannot be joined, the saving matrix element is not flled out
and will not be considered for the selection of the maximum
savings.

Te modifed Clark and Wright algorithm operates with
a dynamic saving matrix. In contrast to the classical Clark
and Wright algorithm, which calculates savings solely from
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Figure 4: Example of variant 1.
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distances and considers savings only between outermost
vertices of the routes, the modifed algorithm computes
savings from costs that depend on various factors, including
the confguration of the resulting route and the quantity of
goods loaded and unloaded along the route. Tis distinction
leads to variable savings throughout the calculation. When
two routes are combined, the quantity of goods must be
recalculated, resulting in changes to the costs of other routes
that could potentially be combined in subsequent iterations.
A new route is created and included in the matrix to replace
the merged routes. Tus, after each of these operations, the
saving matrix must be updated. Te two rows and columns
pertaining to the joined routes must be removed from the
matrix, and simultaneously, a row and a column corre-
sponding to the new route are added. Tis dynamic ad-
justment in matrix dimension occurs during the execution
of the algorithm.Te algorithm terminates when no positive
savings are present in the saving matrix.

3.18. Algorithm Implementation. In this section we describe
the implementation of the algorithm. Te notation used is
given in Table 2 and the functions are summarized in Table 3.

Te basic concept of the modifed approach is described
by Algorithm 1.

Algorithm 2 creates the initial routes R from the set of all
orders O by using the functions test vehicle capacity on route
and create route.

Algorithm 3 calculates the saving matrix. Te input
parameters include the vehicle tx and the set of all routes
R. Te algorithm uses the function update save matrix,
which is described in detail by using a pseudocode in
Algorithm 4.

Algorithm 5 uses a loop (which runs until no positive
savings are present in savings matrix A) in which the next
route with the currently highest savings scost is selected and
the route sroute is added to the set of all routes R. Te initial
routes rsindex i

and rsindex j
(now joined into the new one) are

removed from the set of routes and from matrix A by the
function remove row and column(↓↑A, ↓i, ↓j).

Algorithm 4 handles the process of joining the routes ri

and rj into a new potential route rnew. Te procedure ex-
amines the specifc variants where the end vertices of ri may
coincide with the starting vertices of rj. Te following
variants are tested:

(1) is Last And First Vertex Same Only
(2) are 2 Last And 2 First Vertex Same
(3) are 3 Last And 3 First Vertex Same

Furthermore, the function is R2 Sub Set R1 In Direction
is used to examine whether the vertices of route rj make up
a subset of route ri in the same direction. If coinciding
vertices in the right position according to the above con-
ditions are identifed, those vertices on the new route rnew
are joined together by using the function joined vertex. If
the new route rnew meets the vehicle capacity constraint
(test vehicle capacity on route), the new savings (new cost)
are calculated by the function get route cost and saved in
the saving matrix A.

4. Use of the Modified Clarke and Wright
Algorithm in a Case Study

4.1. Case Study. Te case study aimed to assess the efec-
tiveness of the modifed Clarke and Wright algorithm in the
context of distribution logistics, particularly in the intelligent
management of goods transport fows. Te successful
implementation of this algorithm has the potential to en-
hance efciency, improve planning dynamics, optimize
routing, and consequently lead to better utilization of ve-
hicles transport capacity. Tis, in turn, could result in re-
duced CO2 emissions, improved overall operating economy,
and increased competitiveness.

For the case study, collaboration was stablished with MD
Logistika a.s., a company specializing in the pickup and
delivery of foods in the Czech Republic and transboundary
trade. Te company handles schedules for numerous ve-
hicles daily, managing 500–700 delivery orders from various
clients. Operational planning at MD Logistika involves
addressing multiple constraints, including vehicle loading
capacities, time windows for loading/unloading, drivers’ rest
breaks, ramp assignment, and the limitations on travel
duration and distances for both route components and
entire routes. Challenges such as a shortage of qualifed staf
for expert planning and the absence of comprehensive
planning software that considers all constraints are
prominent.

Currently, MD Logistika planners do not use any de-
cision support tool and manually construct distribution
plans. Te primary aim of the study was to contribute to the
innovation of the planning process. Te goal was to develop
a rapid algorithm capable of solving a relaxed version of the
problem in amatter of seconds. Upon validation of its results
by decision-makers, the algorithm could be refned, adapted
to more complex problems with practical constraints, and
potentially implemented in planning software. In the initial
phase, the case study focused on transport capacity-related
constraints, with time windows not being specifed.

4.2. Input Data. Input data analysis is a crucial step in
preparing for computational experiments. In the case of MD
Logistika, the analysis focused on various aspects of their
business data, including feet information and customer
details.

4.3. Fleet Information. Te feet used for the computation
experiments was taken from the real operation at MD
Logistika, consisting of approximately 200 trucks. Te
majority (85%) of vehicles in the feet have a capacity of 33
transport units (pallets), while the remaining vehicles (15%)
have capacities between 10 and 21 transport units. Te
primary parameters considered for each vehicle included the
transport capacity and price per travelled kilometre.

4.4. Customer Information. Customer information was also
derived from real data. Customers are primarily food
product sellers. Key information includes their fxed costs
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Table 2: Explanatory notes.

Symbol Meaning

V � vi

􏼌􏼌􏼌􏼌i � 1, . . . ,􏽮 􏽯 Set of all vertices

O � oi

􏼌􏼌􏼌􏼌i � 1, . . . ,􏽮 􏽯 Set of all delivery orders
ri � vi1, vi2, . . . , vim0􏼈 􏼉, Ordered sequence of i-th route vertices
R � ri

􏼌􏼌􏼌􏼌i � 1, . . . ,􏽮 􏽯 Set of all routes
T � ti |i � 1, . . . ,􏼈 􏼉 Set of all vehicles

s � (scost, sroute,sindex i, sindex j)

Savings are defned by means of four parameters: scost, which is the cost savings of
route sroute;sroute, which is the route consisting of vertices, and sindex i, sindex j, which

are the coordinates in matrix A
A Saving matrix

Table 3: Functions.

Subprogram/function Meaning

elementary route (↓tx, ↓O)
Tis function creates the initial routes R from the set of all orders O. It uses the
functions test vehicle capacity on route and create route

save matrixte (↓tx,↓R) Tis function creates the saving matrix. It uses the function update save matrix

reducete (↓↑A, ↓tx)

In the loop (until no positive savings are present in matrix A), the function selects
the next route with the largest savings scost and adds route sroute to the set of all routes
R. Te initial routes rsindex i

and rsindex j
(now joined into one) are removed from the

set of routes and from savings matrix A by using the function
remove row and column(↓↑A, ↓i, ↓j)

create routete (↓v1, ↓v2, ↓v3)
create routete (↓v1, ↓v2, ↓v3, ↓v4)

Tis function creates the initial route ri. Te input parameters are the vertices of the
new route. A variant of this function is selected based on information whether the
operation is delivery, pickup, or goods transport between customers

create savete (↓scost, ↓sroute,↓si, ↓sj)
Tis function creates savings s.Te input parameters are the route savings, the route
consisting of vertices and coordinates si, sj in matrix A

test vehicle capacity on routete (↓ri, ↓tx)
If the capacity of vehicle tx on route ri was not exceeded in any of the vertices (where
goods are loaded/unloaded), this function returns true; otherwise, it returns false

update save matrixte (↓↑A, ↓i, ↓j, ↓tx)

Tis function joins routes ri and rj into a new potential route rnew and consecutively
evaluates the specifc variants where the end vertices of ri and starting vertices of rj

may coincide:
(1) is Last And First Vertex Same Only
(2) are 2 Last And 2 First Vertex Same
(3) are 3 Last And 3 First Vertex Same
Furthermore, the procedure examines if the vertices of route rj constitute a subset of
route ri in the same direction:
(4). is R2 SubSet R1 In Direction
If identical vertices are identifed in the right position according to the above
conditions, then those vertices are combined together for the new route rnew by
means of the function joined vertex. If the vehicle capacity is met on the new route r
(test vehicle capacity on route), the function get route cost is used to calculate the
new savings new cost, which are then saved in the savings matrix A

find max save (↓A, ↓|A|) Tis function returns the highest savings s from matrix A
joined vertext ↓(v1, ↓v2) Tis function returns the new vertex obtained by joining vertices v1 and v2

is Last And First Vertex Same Only (↓ri, ↓rj)

Tis function returns true if vi,|ri |−1 � vj,2
i.e., if the last serviced vertex of route ri (before returning to the depot) coincides
with the frst serviced vertex on route rj (after the depot)

are 2 Last And 2 First Vertex Same (↓ri, ↓rj) Tis function returns true if vi,|ri |−2 � vj,2∧vi,|ri |−1 � vj,3

are 3 Last And 3 First Vertex Same (↓ri, ↓rj) Tis function returns true if vi,|ri |−3 � vj,2∧vi,|ri |−2 � vj,3∧vi,|ri |−1 � vj,4

is R2 Sub Set R1 In Direction (↓ri, ↓rj))
Tis function returns true if the vertices of route rj are subsets of route ri in the same
direction

get route cost (↓ri) Tis function returns the cost of route ri

remove row and column (↓↑A, ↓i, ↓j)
Tis function removes the i-th row and j-th column and the j-th row and i-th
column from matrix A

add row and column (↓↑A) Tis function adds a new row and a new column to matrix A
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(1) for each tx ∈ T: x ∈ 1, . . . , |T|{ } do
(2) R � elementary route (↓tx, ↓O)

(3) A � save matrix (↓tx,↓R)

(4) reduce (↓↑A, ↓tx)

(5) end

ALGORITHM 1: Basic concept of the algorithm.

(1) function elementary route(↓tx, ↓O) do
(2) R � ∅
(3) for each oi ∈ O: i ∈ 1, . . . , |O|{ } do
(4) switch(oi)

(5) case: delivery type
(6) ri � create_route (↓vdepot, ↓vunload order, ↓vdepot)
(7) case: colection type
(8) ri � create_route (↓vdepot, ↓vload order, ↓vdepot)
(9) case: inter type
(10) ri � create_route (↓vdepot, ↓vload order, ↓vunload order, ↓vdepot)
(11) end
(12) if(test vehicle capacity on route(↓ri, ↓tx))

(13) R � R∪ ri

(14) end
(15) end
(16) return R
(17) end

ALGORITHM 2: Calculation of the elementary routes.

(1) function save matrix(↓tx, ↓R) do
(2) A� |R| × |R|

(3) for each i ∈ 1, . . . , |R|{ } do
(4) for each j ∈ 1, . . . , |R|{ } do
(5) if(i≠ j)

(6) update save matrix (↓↑A, ↓i, ↓j, ↓tx)

(7) end
(8) end
(9) end
(10) return A
(11) end

ALGORITHM 3: Calculation of the saving matrix.

(1) function update save matrix (↓↑A, ↓i, ↓j, ↓tx) do
(2) rnew � create_route()
(3) if(is Last And First Vertex Same Only (↓ri, ↓rj))

(4) for each k ∈ 1, . . . , |ri| − 2􏼈 􏼉 do
(5) rnew � rnew ∪ vi,k

(6) end
(7) rnew � rnew ∪ joined_vertex (↓vi,|ri |−1, ↓vj,2)
(8) for each k∈ 3, . . . , |rj|􏽮 􏽯 do
(9) rnew � rnew ∪ vj,k

(10) end

ALGORITHM 4: Continued.
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and variable costs related to goods loading/unloading.
Additional details encompass customer identifcation and
position information (GPS). Te distance matrix and matrix
of travel times between customers were obtained along with
the input data.

4.5.DeliveryOrders. Delivery orders represent requirements
for goods transportation between nodes. Te majority (80%)
of the requests are from the depot to customers, while the
remaining fraction (20%) includes goods transport between
customers and the collection of items from customers to the

(11) else
(12) if(are 2 Last And 2 First Vertex Same (↓ri, ↓rj))

(13) for each k ∈ 1, . . . , |ri| − 3􏼈 􏼉 do
(14) rnew � rnew ∪ vi,k

(15) end
(16) rnew � rnew ∪ joined vertex (↓vi,|ri |−2, ↓vj,2)

(17) rnew � rnew ∪ joined vertex (↓vi,|ri |−1, ↓vj,3)

(18) for each k ∈ 4, . . . , |rj|􏽮 􏽯 do
(19) rnew � rnew ∪ vj,k

(20) end
(21) else
(22) if(are 3 Last And 3 First Vertex Same (↓ri, ↓rj))

(23) for each k ∈ 1, . . . , |ri| − 4􏼈 􏼉 do
(24) rnew � rnew ∪ vi,k

(25) end
(26) rnew � rnew ∪ joined vertex (↓vi,|ri |−3, ↓vj,2)

(27) rnew � rnew ∪ joined vertex (↓vi,|ri |−2, ↓vj,3)

(28) rnew � rnew ∪ joined vertex (↓vi,|ri |−1, ↓vj,4)

(29) for each k∈ 5, . . . , |rj|􏽮 􏽯 do
(30) rnew � rnew ∪ vj,k

(31) end
(32) else
(33) if(is R2 SubSet R1 In Direction (↓ri, ↓rj))

(34) for each k ∈ 1, . . . , |ri|􏼈 􏼉 do
(35) for each l ∈ 1, . . . , |rj|􏽮 􏽯 do
(36) if (vi,k � vj,l)
(37) rnew � rnew ∪ joined vertex (↓vj,k, ↓vj,l)

(38) else
(39) rnew � rnew ∪ vi,k

(40) end
(41) end
(42) end
(43) else
(44) for each k ∈ 1, . . . , |ri| − 1􏼈 􏼉 do
(45) rnew � rnew ∪ vi,k

(46) end
(47) for each k ∈ 2, . . . , |rj|􏽮 􏽯 do
(48) rnew � rnew ∪ vj,k

(49) end
(50) end
(51) end
(52) end
(53) end
(54) if(test vehicle capacity on route (↓rnew, ↓tx))

(55) cost � get route cost (↓rnew)

(56) new cost � get route cost(↓ri) + get route cost(↓rj) − cost
(57) A[i, j] � create save(↓new cost, ↓rnew, ↓i, ↓j)

(58) else
(59) A[i, j] � null
(60) end
(61) end

ALGORITHM 4: Updating the saving matrix.
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depot. Te goods are transported on pallets, with each pallet
representing one transport unit. Te data includes the number
of transported pallets and the loading/unloading site.

5. Results and Discussion

In the case study collaboration with MD Logistika, ten
scenarios were devised, each corresponding to a specifc day
of operation. Tese scenarios captured real-world daily
requirements consisting of 600 to 700 delivery orders.

Te algorithm processed each day consecutively with the
goal to optimize the initial routes that were set up based on
the delivery orders. Te scenarios are presented in Table 4 as
follows:

(1) Number of initial routes: Tis indicates the initial set
of routes established based on the delivery orders for
each day.

(2) Final number of routes: After the optimization
process using the modifed Clarke and Wright al-
gorithm, the fnal number of routes is determined.

(3) Percentage of routes reduced: Tis metric refects the
percentage reduction in the number of routes achieved
through the optimization process. It provides insights
into the algorithm’s efectiveness in consolidating routes.

(4) Total computing time: It is the time taken for the
algorithm to complete the optimization process for
each scenario.

Tese scenarios and their associated metrics help eval-
uate the algorithm’s performance in real-world scenarios,
providing valuable insights into route optimization, re-
duction efciency, and computational speed.

Te evaluation of the experiments in the case study
focused on various optimization results, as outlined in
Table 5. Te key optimization metrics are as follows:

(1) function reduce(↓↑A, ↓tx) do
(2) if (|A| � 0)
(3) return
(4) s � find max save(↓A, ↓|A|)

(5) while(scost > 0) do
(6) R � R∪ sroute
(7) R � R∖rsinde x i

(8) R � R∖rsindex j

(9) remove row and column(A, sindex i, sindex j)

(10) add RowAndColumn(A)

(11) for each i ∈ 1, . . . , |A|{ } do
(12) for each j ∈ 1, . . . , |A|{ } do
(13) if(i≠ j)

(14) update save matrix(↓↑A, ↓i, ↓j, ↓tx)

(15) end
(16) end
(17) end
(18) s � find max save(↓A, ↓|A|)

(19) end
(20) end

ALGORITHM 5: Route reduction.

Table 4: Efectiveness of the optimization procedure.

Scenario Number
of initial routes

Number of routes
after optimization % routes reduced Computing time (s)

1 633 69 89.1 9.3
2 677 72 89.4 10.2
3 659 76 88.6 9.1
4 652 62 90.6 9.6
5 659 73 89.0 9.9
6 634 71 88.8 9.8
7 631 62 90.2 9.6
8 622 67 89.3 10.2
9 622 60 90.5 10.1
10 651 62 90.6 9.9
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(1) Total cost is the overall cost incurred in the trans-
portation process, considering factors such as travel
costs, servicing costs, waiting costs, and vehicle
deployment costs

(2) Cost per pallet is the cost associated with trans-
porting each pallet, providing insights into the ef-
fciency of cost allocation

(3) Total length is the length of optimized routes, rep-
resenting the total distance travelled by the vehicles

(4) Te number of processed orders is the count of
delivery orders that were successfully processed and
incorporated into the optimized routes

(5) Te number of delivered pallets is the count of pallets
that were successfully transported on the optimized
routes

(6) Te number of remaining orders is the count of
orders that were not included in the optimized routes
due to capacity constraints.

(7) Te number of remaining pallets is the count of
pallets that were not included in the optimized
routes, indicating any unprocessed or pending items.

Tese metrics collectively provide a comprehensive
overview of the algorithm’s performance, including cost
efciency, order processing capability, and the overall im-
pact on the goods transportation process. Te ability to
handle various aspects of the real-world logistics challenges
is crucial for the algorithm’s practical utility.

Te above table demonstrates that in each of the
scenarios, the algorithm was unable to plan all delivery
orders, mainly due to the inadequate capacity of the feet
available for the relevant day. Goods dispatch planners
confrmed that this situation is not uncommon in ev-
eryday practice. Since the proportion of orders that could
not be processed is at the level of 1%, the company solves
each problem individually by outsourcing the delivery.
For the algorithm, this shortcoming can be eliminated by
extending the input feet. Furthermore, the mean cost of
satisfying the orders is about CZK 1,341 thousand, (STD
CZK 81 thousand), the mean summary length of all routes
is 54.4 thousand km (STD about 3.5 thousand km), and

the mean number of orders processed daily is 637
(STD 16).

As a result of a more detailed analysis of the scenarios,
Table 6 includes the average number of stops on a route and
the average length and duration of a route for each scenario.

In the case study, the Clarke and Wright algorithm
modifcation was tested on a selected subproblem, primarily
focusing on the constraints posed by the limited transport
capacity. Since our algorithm was not designed to account
for all practical constraints, such as limitations associated
with the use of the loading ramps, driver’s breaks for rest,
and time windows allocated to goods loading/unloading
operations, it was not possible to directly compare the
numerical results with real schedules.

Te main conclusion resulting from empirical testing is
that despite utilizing the dynamic savingmatrix concept, one
of the algorithm’s favourable key properties is retained: the
relatively short computing time. If it becomes evident that
the new algorithm maintains low computing complexity
even after the inclusion of all constraints compelled by real-
world circumstances, it will be feasible to use it in everyday
dispatch planning practice, and moreover, in real time,
owing to its potential high speed. Furthermore, if the al-
gorithm is to be integrated into the daily work of dispatchers,
a comprehensive software tool must be set up to include not
only the algorithm itself but also basic input/output control,
preferably transformed into a textual and graphic format.

Table 5: Optimization results.

Scenario Total
cost (CZK thsd)

Cost
per pallet (CZK) Total length (km) Orders processed Pallets delivered Orders not

processed
Pallets not
delivered

1 1,254 370.4 50,681 627 3,386 6 83
2 1,417 454.5 58,647 662 3,122 15 246
3 1,337 414.2 53,892 654 3,228 5 152
4 1,451 433.6 59,011 647 3,346 5 136
5 1,450 424.2 58,610 650 3,419 9 143
6 1,374 406.5 55,707 630 3,383 4 75
7 1,337 450.9 53,272 622 2,964 9 203
8 1,189 380.8 47,638 618 3,123 4 88
9 1,319 445.2 53,344 616 2,963 6 174
10 1,281 396.1 53,591 647 3,236 4 68
Average 1,341 417.6 54 439 637 3,217 6.7 137
Std. deviation 81 28 3 487 16 161 3.3 56

Table 6: Statistics per route.

Scenario Average
number of stops

Average length
of a route (km)

Average duration
of a route
(minutes)

1 3.54 286.33 383.68
2 3.36 297.7 385.28
3 3.50 288.19 381.77
4 3.37 307.35 397.19
5 3.42 308.47 397.67
6 3.48 307.77 390.49
7 3.38 289.52 380.12
8 3.70 285.26 387.82
9 3.67 317.52 413.29
10 3.77 318.99 414.25
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6. Conclusions

Te objective of this paper was to outline a modifcation of
the Clarke and Wright algorithm tailored for application in
delivery order-oriented distribution logistics. Te proposed
modifcation was then put to the test within a case study
utilizing real internal data fromMD Logistika company.Te
algorithm was tested on a selected subproblem, with a spe-
cifc focus on constraints related to transport capacity.

Te expert assessment of the results by MD Logistika’s
operative planning professionals provided evidence that the
outcomes are reasonable, especially concerning the total cost
per route—a crucial parameter for efcient and competitive
goods delivery. In essence, the accuracy of the modifcations
made to the Clarke andWright algorithm has been afrmed.
Consequently, additional real-world constraints can be
gradually incorporated into the algorithm during the sub-
sequent stages of research. As a result, the operational
planning dispatchers may soon have access to an efcient
software tool, aiding them in planning large-scale goods
delivery with signifcantly reduced costs and stafng re-
quirements compared to common industry practices.
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