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Recently, smart intersections have emerged as a novel intelligent transportation system (ITS) solution that integrates trafc
monitoring, optimal signal control, and even trafc safety. Although smart intersections have been prevalent in many cities, there
are a few drawbacks in their practical operations. First, there are inevitable delays in transmitting and processing the video data.
Second, there is still a need to develop a real-time signal control method leveraging the acquired data from smart intersections.
Tus, this study aims to construct edge AI-based smart intersections and to provide their application for trafc signal co-
ordination. To this end, we install smart intersections on three consecutive intersections of Route 45 in Pyeongtaek city, South
Korea. Te real-time trafc data are collected by an edge AI video analysis model which is compressed and optimized for its
operation in on-site edge devices. Te optimized model maintains a similar level of accuracy (93.64%), even if the size is reduced
by 97.8% compared to the original. Next, we utilize the LT2 model to treat the coordination failure problem in nonpeak hours
occurring unnecessary delays of the side-streets with relatively high demands. We complement some constraint conditions in
order to consider the compatibility with the current legacy system.Te experiment is conducted on a virtual environment of which
geometry and trafc demand are confgured based on the features of the study site.Te numerical results conclude that the optimal
ofsets calculated by the LT2 model efectively manage bandwidths for multidirectional fows based on the real-time trafc
demands collected from the edge AI-based smart intersections. Tis study contributes to serve high-resolution real-time trafc
data using edge AI on smart intersections and to provide a case study for signal coordination.

1. Introduction

As the social costs of trafc congestion steadily increase,
there has been a growing interest in optimizing the trafc
signal controls in urban areas. Te adaptive control [1–3]
is the one of the most well-known methods for optimizing
the signal controls on road networks; however, it has the
limitations in practical use regarding the stability of data
collection and the feasibility of real-time computation [4].
For this reason, many cities still operate pretimed control
of which signal timings are calculated based on the annual

average daily trafc (AADT) statistics. Accordingly, an
alternative called “Smart Intersections” has been in-
troduced recently [5, 6], which is a new intelligent
transportation system (ITS) solution integrating the trafc
monitoring, optimal signal control, and even trafc safety.
Smart intersections apply the artifcial intelligence
(AI) technique to analyze video data collected from the
trafc monitoring closed-circuit televisions (CCTVs) and
extract the useful trafc data and utilize the processed data
for trafc signal optimizations and pedestrian safety
controls, etc.
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Tere are several advantages of smart intersections, as they
make use of CCTV video data. First of all, smart intersections
are cost-efective since they do not require the road works for
the construction or maintenance, unlike the ground-embedded
loop detectors. Moreover, unlike other conventional trafc
sensors, smart intersections can provide both point- and
section-based information. In addition, smart intersections are
expected to have a great potential for the signal control opti-
mization because they can provide the contextual information,
such as vehicle type classifcation, queue length, or turning ratio.

Ideally, smart intersection is an all-in-one solution for real-
time intersection management that integrates multiple func-
tions for trafc monitoring and control. However, there is
a critical drawback regarding the data transmission and pro-
cessing. In the current ITS system, the collected CCTV video
data are practically transmitted to the ITS center and processed
in a high-performance computer.Tis is because it is too heavy
to operate the AI video analysis model on the on-site equip-
ment, such as roadside unit (RSU). Accordingly, it inevitably
causes at least a few seconds or minutes delays. Another issue
regards their application for signal controls. Even if smart
intersections have enabled to acquire more abundant trafc
data, there are few cases leveraging smart intersection data.
Recently, several data-driven signal control methods based on
AI have been proposed [7–9]; however, these techniques are
not matured to be practically implemented yet. Moreover,
many of these initiatives require the establishment of extra
equipment for collecting additional data, or some are not
compatible with existing legacy signal control systems.

Tus, our goal is to construct edge AI-based smart in-
tersections utilizing AI optimization techniques and to pro-
vide their application for trafc signal coordination. To this
end, we frst install smart intersections (see Figure 1) on three
consecutive intersections of Route 45 in Pyeongtaek city.
Ten, the video images collected fromCCTVs are analyzed on
the edge devices by applying the edge AI video analysis model
to extract the meaningful trafc data in real time. For the edge
AI model, we compress the AI video analysis model into
a small-sized one and optimize it to be well operated in the
on-site edge device. Next, we provide a case study of trafc
signal coordination as an application of the installed smart
intersections. Te purpose of this case study is to verify the
efectiveness of smart intersections on signal controls before
their implementation on real roads. Tus, the experiment is
conducted on a simulated environment confgured identically
to the study site. Moreover, we complement some constraint
conditions on signal timing variables in order to consider the
compatibility with the current legacy signal control system.
Te rest of the paper is constructed as follows. In the following
section, the backgrounds of this research are provided. Ten,
the details for constructing smart intersections and the
methodology are shown. Finally, the conclusion is proposed
with the experimental results.

2. Related Works

2.1. Smart Intersections. Smart intersections are newly
proposed ITS solutions in recent years which aim to opti-
mize trafc monitoring and control by applying AI

techniques. At frst, smart intersections collect real-time
trafc information by analyzing videos from trafc moni-
toring CCTVs with the computer vision (CV)methods.Tey
detect specifc objects in the image (detection), classify the
detected objects into several classes (classifcation), and track
the movements of the objects (tracking). Starting with the
frst application of applying deep learning to the image
processing in 2012 [10], the video analysis has been greatly
matured with the improvement of deep learning techniques.

Te initial algorithms for the video analysis are basically
based on the convolutional neural networks (CNNs). CNNs
are specialized for detecting specifc features of the image,
and they are still frequently used in the feld of image
processing. Starting with Regions with CNN features (R-
CNN) [11], which search only specifc areas of an image,
algorithms such as Fast R-CNN [12] and Faster R-CNN [13]
were proposed to improve the efciency for the computa-
tional; however, these methods still have limitation in real-
time video processing. In 2016, a new algorithm called you
only look once (YOLO) [14] can achieve high accuracy with
minimal computation, enabling object detection and clas-
sifcation simultaneously. Furthermore, recently developed
YOLO v8 (by Ultralytics in Jan. 2023) and single shot
multibox detector (SSD) [15] have highly improved the
video analysis techniques for smart intersections.

When it comes to the trafc data, smart intersections
have several advantages over traditional sensor-based trafc
data collection. Most of all, smart intersections can provide
both the point- and the section-based information. For the
point-based information, like the loop detector and laser
scanner, smart intersections can provide the fow in-
formation for vehicles and pedestrians by setting up a virtual
line in the feld of view (FoV) and counting the number of
objects that cross the line. For the section-based in-
formation, for example, they can measure the queue length
by recognizing the stopping vehicles in FoV, like radar and
lidar. However, smart intersections, in particular, can esti-
mate the space-mean speed by measuring travel times of the
traversing vehicles since smart intersections can recognize
the contextualized information. For example, they can
classify the types of objects into normal vehicle, bus, truck,
motorcycle, pedestrian, and even emergency vehicle and
personal mobility (PM), unlike radar or lidar. Finally, smart
intersections can provide individual vehicle’s trajectories
within FoV, which is the most powerful feature. Accord-
ingly, for example, they can measure the turning ratios
without installing additional road sensors.

However, there is a critical limitation on the current
smart intersection system. As heavy-sized AI video analysis
models cannot be operated in the on-site equipment, the
current system transmits the obtained video to a high-
performance server in ITS center, which causes at least a
few seconds/minutes delays (approximately 1,000∼7,000ms
at least in practice) (see Figure 2). Moreover, the existing
system cannot be operated when the communication net-
work is disconnected or where the network is not installed.
To overcome this limitation, the potential use of edge AI (or
called lightweight AI or on-device AI) techniques have
newly been considered. It is expected that edge AI-based
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smart intersections enable to operate the lightweighted AI
model within on-site equipment (edge device) and process
the collected video data in real time. Besides, as the edge
system only transmits processed message data (text data)
rather than full-size video, it can reduce the cost of network
communication and comply with the general data protection
regulation (GDPR). Moreover, it saves storing cost since it is
not necessary to store all the raw video data.

2.2. Trafc Signal Coordination. Te signal coordination
usually refers to the problem that controls the ofsets of the
intersection in a corridor to maximize the progression of the
trafc fow for the mainstream. In general, the coordination
methods aim to maximize the bandwidth which is the range
of time in which a vehicle entering an upstream intersection
can pass through a downstream intersection without
stopping.

MAXBAND [16] is the frst study which proposes the
bandwidth maximization as for the signal coordination. In
this study, the optimal ofset values are calculated by mixed
integer linear programming (MILP) to maximize the two-
way progression along the corridor. On the other hand,
MULTIBAND [17] complements the relaxation condition
on the feasible region of the solution to overcome the
limitation of MAXBAND in which the bandwidths for each
intersection are symmetrically constant. It contributes to
optimize the signal coordination by considering the capacity
and trafc volume of individual intersection. In addition,
AM-BAND [18] suggests the asymmetric bandwidth by
relaxing the existing constraints that the bandwidth is de-
termined symmetrically from the baseline.

Unlike the conventional methodologies that the band-
width has been determined centered at the mainstream of
the corridor, recent studies consider the turning fows from
the minor stream as well. In particular, the LT2 model [19]
maximizes the bandwidth for both the mainstream and the
side-street left-turning trafc fows to mitigate the conges-
tion of the side-street which is hardly considered in con-
ventional methodologies. In addition, LT2 provides
a detailed modeling for the queue clearance time at the
downstream intersection by considering the trafc volume
and signal control variables for the upstream intersection.
Nonetheless, similar to the previous methods, LT2 also
assumes the uniform distribution for the trafc generation
based on statistical trafc volume aggregated in a large range
of time window, which may not be appropriate to the actual
trafc.

3. Problem Statement

3.1. Study Site. For the case study, we target the problem of
trafc signal coordination in Route 45 of Pyeongtaek city,
South Korea. We construct smart intersections in this target
study area aiming to improve the signal coordination.
Specifcally, the spatial range includes three consecutive
intersections of Route 45 in Pyeongtaek city, South Korea, as
shown in Figure 1. Tis section is a major intercity arterial
that connects the central Pyeongtaek area (North) to Asan
city (South). Tis section also has a number of trafc de-
mands not only for the commuting vehicles but also for the
heavy vehicles, such as cargo trucks. As the majority of trafc
demands travels from north to south, the signal co-
ordination is set to accord with the same direction. However,
this coordination setting is not efective to the nonpeak hour
trafc demands since it yields unnecessary delays to the
opposite direction (South⟶North) or turning fows.Tus,
the temporal range of this study is confgured as 13:00∼16:00
when public petitions are frequently registered.

3.2. Current Status and Gaps. We frst collect 24-hour trafc
data on 18 May 2022 (Wednesday) after installing smart
intersections to identify the current status and to investigate
research gaps. Te analyzed results are shown in Figure 3.
Te top of Figure 3 shows the changes in trafc volumes,
while the bottom shows the turning fows during the time for
TOD PLAN #2 (08:30∼16:00) which includes the target
temporal range (13:00∼16:00). Te results show that the
study site has a high level of trafc demands during the peak
hours, and the demand of the mainstream (North ⟶
South) is especially high. In addition, the majority of trafc
demands at Pyeonggung-samgeori (3-way intersection in
the middle) travel along with the mainstream; however, 11%
merges to the opposite direction of the mainstream from the
minor roads (Anjeong-ro).

Te signal control for this study site is operated by
pretimed TOD calculated based on AADT, and the signal
information including phase design and minimum green
time is shown in (Table 1). Te overall TOD plans are
given in Table 2. It is seen that each intersection has
four TOD plans and shares the common schedule and
cycle time since all the intersections belong to one
subarea (SA). Te time-space diagram for TOD PLAN
#2 is plotted in ((a)), and it can be seen that the
signal coordination is set to accord with the direction for
the mainstream (North ⟶ South). Accordingly, the
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Figure 1: Layout of the study site.

Journal of Advanced Transportation 3



majority of the mainstream fows can pass through the
area without stopping.

However, this coordination setting is not efective to the
nonpeak hour trafc demands since the TOD plan is based
on the aggregated statistical historical trafc data. For ex-
ample, although the number of trafc fow for the opposite
direction (Path 2 in Figure 4) increases up to 70% of that of
the mainstream during the target time range 13:00∼16:00, it
fails to coordinate and the platoon is cut of at Pyeonggung-
samgeori. In addition, the left-turning fow at Pyeonggung-
samgeori merging into the opposite direction of the
mainstream (Path 4 in Figure 4) increases up to 35% of that
of the mainstream; however, the majority fails to coordinate,
and the platoon is cut of at Pyeonggung-sageori (4-way
intersection at north). In the meantime, even if the left-

turning fow from the eastern approach of the Pyeonggung-
sageori (Path 5 in Figure 4) decreases below 1% of that of the
mainstream, it unnecessarily coordinates the signal so that
the corresponding trafc fow can pass through the area
without stopping. In conclusion, the existing signal co-
ordination is only centered at the mainstream that results in
coordination failure for the opposite direction and left-
turning trafc demands in spite of their demand levels
are not low.

4. Methodology

4.1. Construction of EdgeAI-Based Smart Intersections. A key
clue for resolving the coordination failure of the study site is
to acquire real-time trafc fow information for each
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approaching link and recalculate ofsets according to these
data. Hence, we install CCTV cameras on the downstream of
each approaching link to capture the turning fows and
queue information. Additionally, we install edge devices on
each intersection to process the collected video images from
the CCTV cameras using the AI video analysis model in real
time. Te components are described as in (Figure 5).

Next, we have the optimized lightweight AI video
analysis model via NetsPresso (AI optimization solution
provided by Nota AI Inc. (https://netspresso.ai/)) (AI
optimization platform developed by Nota Inc.). Te
mechanism of NetsPresso is as follows: at frst, we have
a pretrained object detection model using labeled in-
tersection image data. In this study, we use YOLOX as
a backbone which is a high-performance one-stage model
employing a decoupled head [20], and the model is fne-
tuned for each camera’s FoV.Ten, the importance for each
flter of the CNN is measured using the structured pruning
technique [21]. Te importance is defned by the L2-norm
for the weight parameters of the CNN flter. Te less im-
portant flters are removed to compress the model size. Tis
process is repeated until the model size is smaller than the
target size. Besides, for object tracking, we use the dis-
criminative correlation flter (CDF)-based visual tracker
[22]. Finally, the compressed model is converted and
packaged to be mounted on the edge devices installed in the
study site [20, 22]. (Te specifcation of the edge device is
shown in Table 3).

Te region of interest (RoI) for the object detection is set
as in Figure 6. At frst, the range is set to be the maximum
distance in the camera’s FoV where the object’s type is
distinguishable, and the region is divided by each lane.Ten,
unlike the existing approaches for smart intersections, we
additionally include the part of the upstream of opposite
direction in the RoI to measure both infows and outfows.
Figure 6(b) shows the result of inference of the AI model,
and it can be seen that the objects in both downstream and
upstream are detected and classifed into each vehicle type.

From the video analysis, we collect the trafc data: trafc
volume and the number of queueing vehicles by lane and by
vehicle type, average speed of each lane (space-mean speed
in each RoI). At frst, the objects are classifed into three
categories: car, bus, and truck. Ten, the trafc volume is
measured by setting up a virtual line and counting the
number of vehicles crossing the line. Te queue information
is measured by counting the number of vehicles moving at
less than 5 km/h for a certain period. Furthermore, the travel
time of each vehicle passing through the RoI range is
measured, and the space-mean speed for the RoI is estimated
by harmonically averaging the travel time.

4.2. Trafc Signal Coordination Method. As this study aims
to treat the signal coordination failure problem in nonpeak
hours occurring unnecessary delays of the side-streets with
relatively high demands, we propose to utilize the LT2model

Table 2: TOD plans.

Intersection TOD Cycle Ofset ∅1 ∅2 ∅3 ∅4 ∅5

Chupalgongdan-sageori

#1 06:00–08:30 200 9 45 14 27 25 89
#2 08:30–16:00 150 12 51 20 27 25 27
#3 16:00–21:00 180 147 61 40 27 25 27
#4 21:00–06:00 150 135 51 20 27 25 27

Pyeonggung-samgeori

#1 06:00–08:30 200 45 150 35 15 — —
#2 08:30–16:00 150 62 100 35 15 — —
#3 16:00–21:00 180 6 130 35 15 — —
#4 21:00–06:00 150 44 106 29 15 — —

Pyeonggung-sageori

#1 06:00–08:30 200 26 129 18 26 27 —
#2 08:30–16:00 150 43 80 21 22 27 —
#3 16:00–21:00 180 10 104 18 31 27 —
#4 21:00–06:00 150 44 82 21 20 27 —
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to coordinate the multidirectional trafc fows.We adopt the
basic structure of the LT2 model as the backbone; however,
we partially adjust the model to use the real-time trafc data
collected from the smart intersection. Besides, we derive the
conditions for its application in the legacy signal control
system and add them into the constraints.

First, the trafc volumes of each lane collected from the
smart intersection are aggregated according to the turning
directions. Ten, the aggregated directional fows are used as
a major input variable for the model. Second, we adopt the

objective function which is the jointly maximization of the
bidirectional bandwidths and the side-street left-turning
bandwidths, as in equation (1):

Maximize 
n− 1

i�1
ati × bti + ati × bti + ali × bli + ali × bli , (1)

where ati � vmt
i /Si, ali � vsli /Si, ati � v

mt
i+1/Si, ali � v

sl
i+1/Si, i � 1,

2, . . . , n − 1. Te key constraint conditions of LT2 are as
follows (directly referred from [19]): for i � 1, 2, . . . , n − 1,

Edge device

Signal controllersTraffic lights ITS center

CCTVs

On-site system
(Smart Intersection)

Legacy system
Edge device CCTVs

On-site system
(Smart Intersection)

Legacy system

Signal action
3.

Traffic data
1.

2.
Signal info

Real-time scope

Figure 5: Components of smart intersection.

Table 3: Specifcation of edge device.

Product Item Detail

NVIDIA Jetson AGX Xavier

CPU ARMv8 processor rev 0(v8l)
GPU 512-core volta GPU with tensor cores
RAM 32GB
Storage 32GB
OS Ubuntu 18.04.5 LTS (kernel: 4.9.140)
NIC RJ45 1 port

S/W Python 3.6.9
CUDA 10.2.89

(a) (b)

Figure 6: Result of object detection of smart intersection. (a) Region of interest (RoI) setting. (b) AI model inference for object detection.
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(4)

Equation (2) is to utilize the constraints of MULTI-
BAND, which is fundamentally required to achieve an
equation coordinated bandwidth model. Equation (3) is to
relax the existing constraints on the bandwidth by modeling
the queue clearance time with observed upstream infows.
Equation (4) is to describe the relationship between the
bandwidth of side-street turning fow and the signal phases.

Tird, we additionally consider the following constraint
conditions regarding the legacy signal control system:
preservation of cycle time and preservation of green split in
each TOD. In the current legacy system of South Korea,
changing cycle time only for a few intersections in one SA
group is not allowed. Likewise, changes of green splits are
not easy to be allowed due to the stability issue so that we set
it as a hard constraint. Instead, simply changing the ofset
values is relatively easy to be applied in the legacy system, as
it only changes the starting time of the existing TOD plans.
Other crucial constraints, such as preservation of phase
design, phase sequence, ring design, are also considered.

Finally, we interpret the output of the LT2 model as the
ofset values of each intersection, as the bandwidth which is
the output of LT2 model can be simplifed to an equation by
the ofsets according to the above constraints. Te de-
scription for other variables is summarized in Table 4.

5. Experiments

5.1. Experimental Design. We set up a virtual environment
using AIMSUN, a microscopic trafc simulation tool to
evaluate the performance of the proposedmodel in the target
area. To replicate the installed smart intersections, the ar-
terial links are divided into upstream, midstream, and
downstream sections based on the RoI range of the camera.
Te upstream and downstream sections represent the areas

within the RoI where the trafc data can be extracted, and
the midstream is a blind section so that the trafc data in this
section are not collected.

Next, the collected real-time trafc data are aggregated at
intervals identical to the signal cycle length, constituting one
data unit. Trafc variables, such as in/outfow and turning
ratios, are derived within the unit. Ten, the outfow and
infow are embedded into the downstream and upstream
links, and the turning ratios are embedded into each node.
Tis approach allows to create a virtual trafc environment
that is similar to the actual study site. To relieve the data
fuctuation, these units are aggregated in 15 minutes and it
confgures the demand scenario. Te model performances
are evaluated in the scenarios with the same random seed,
and the fnal result is derived by averaging the results across
the scenarios of 10 diferent random seeds.

To measure the efects of the proposed model, we
compare the performance with other well-known signal
coordination methods, such as MULTIBAND, PASSER2,
and the existing TOD plan. For a fair comparison, we
maintain the same constraint conditions as the legacy sys-
tem, such as cycle length, phase order, and green splits, but it
only controls the ofsets. Additionally, this approach enables
to solely evaluate the impact of changes in the bandwidth to
the trafc fows, excluding other factors.

For the evaluation, we employ the average number of
stops as the primary measure of efectiveness (MoE) since
this study aims to maximize the bandwidth of bidirectional
and turning trafc fows through ofset control. In addition,
the average travel time and the average delay serve as sec-
ondary evaluation metrics to measure the network perfor-
mance. Te average number of stops is normalized by the
travel distance to obtain the average number of stops per
unit length (#/km) since each vehicle has a diferent route.
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Similarly, the other two time-related metrics are also nor-
malized as the average travel time per unit travel distance
(sec/km) and the average delay per unit travel distance (sec/
km), respectively.

Te explicit forms of these metrics are as follows: for all
vehicles entering the network, vehi (i � 1, 2, . . . , N), the
vehicles that traverse each route Pj are denoted by

Pj � vehj1
, vehj2

, . . . , vehjN(j)
 , and the travel distance of Pj

is denoted by L(j). Subsequently, the average number of
stops throughout the network and the average number of
stops for each Pj are denoted by s and sj, respectively, and
they can be calculated based on the stop time of each vehicle
i, denoted by s(i).

s �
is(i)

N · jL(j)
, sj �

ks jk( 

N(j) · L(j)
(5)

Similarly, if we denote the travel time of i by t(i) and the
delay time by d(i), then the overall average travel time in the
network t, average delay d, the average travel time tj, and the
average delay dj for each route Pj are calculated by

t �
it(i)

N · jL(j)
, d �

id(i)

N · jL(j)

tj �
kt jk( 

N(j) · L(j)
, dj �

kd jk( 

N(j) · L(j)
.

(6)

5.2. Experimental Result. Te optimized AI video analysis
model is applied on CCTV videos to extract the real-time
trafc data for the study site. Te performance of the AI
model optimization is summarized in Table 5. First, the
model is signifcantly compressed of which size is de-
creased by 97.8% compared to the original model. Tis
means that the compressed model takes only 2.2 Mb if the
original takes 100Mb because a number of weight pa-
rameters are eliminated. Second, the optimized model
can process incoming video data in near real time. In
general, inference speed measures the performance of AI
model lightweighting, and 30 FPS is considered as “real-
time.” On the installed edge device, the proposed model
shows 29.49 FPS which is near real time. Finally, the
model maintains a similar level of accuracy despite the
compression. In general, accuracy tends to decrease when
the parameters are eliminated through model compres-
sion. However, the size of the model can be reduced to
a level that maintains the accuracy by selectively elimi-
nating less-contributing parameters. To test accuracy, the
model is trained using 8,824 collected image frames in-
cluding cars, buses, trucks, motorcycles, and pedestrians.
Ten, the model is validated with 100 unseen image
frames of which ground truth is manually counted.

Next, we utilize the real-time trafc data extracted from
the smart intersections as input variables in equations
(1)–(4) to calculate the optimal ofset for each intersection.
We apply mixed-integer nonlinear programming (MINLP)

Table 4: Key model parameters and description.

Notation Description
ati(ati) Weight for out/in-bound arterial progression through band on section i

bti(bti) Out/in-bound arterial progression through bandwidth (cycles) on section i

ali(ali) Weight for out/in-bound progression cross band on section i

bli(bli) Out/in-bound side-street left turn green bandwidth (cycles) on section i

vmt
i (vmt

i ) Out/in-bound arterial through volume (veh/hr) at Si

vsli (vsli ) Out/in-bound side-street left-turn volume (veh/hr) at Si

Si(Si) Saturation fow on section i

ri(ri) Out/in-bound red time at Si (cycles)
wi(wi) Time from right side of red at Si to Si+1 outbound (Si+1 to Si inbound) (cycles)
ti(ti) Travel time from Si to Si+1 outbound (Si+1 to Si inbound) (cycles)

∅i(∅i)
Time from center of an out/in-bound red at Si to the center of a particular out/

in-bound red at Si+1
∆i Time from center of ri to nearest center of ri (cycles)
τi(τi) Outbound (inbound) queue clearance time at Si (cycles)
mi Loop integer
Lsi(Lsi) Out/in-bound left-turn green time on cross street at Si (cycles)

dlsi(dlsi)
Time from end of out/in-bound arterial through green phase to start of out/

in-bound side-street left turn green phase at Si (cycles)

qmt
i,i+1(qmt

i,i+1)
Uniform arrival rate (veh/sec) for vehicles departing during arterial through green

from Si to Si+1 outbound (Si+1 to Si inbound)

qsli,i+1(qsli,i+1)
Uniform arrival rate (veh/sec) for vehicles departing during side-street left-turn

green from Si to Si+1 outbound (Si+1 to Si inbound)

qsri,i+1(qsri,i+1)
Uniform arrival rate (veh/sec) for vehicles turning right from cross street during red

time of coordinated phase from Si to Si+1 outbound (Si+1 to Si inbound)

dci(dci)
Outin-bound time diference of red starts of coordinated phase between Si (Si+1) and

Si+1 (Si) (cycles)
qdi(qdi) Out/in-bound arterial saturation through fow headway (sec/veh) at Si
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to solve the optimization problem in equation (1) that in-
volves integer variables using CPLEX (version 12.3) API
provided by IBM. Te calculated optimal solutions are then
applied as the ofset value of each intersection into the
AIMSUN environment.

For a detailed evaluation, we analyze the MoEs not only
for the entire network but also for the selected 5 specifc
routes, as illustrated in Figure 4. Te frst route, named by
Path 1, corresponds to the major traveling direction on the
mainstream which has the highest level of trafc volume. On
the other hand, Path 2 is selected by the opposite direction
on the mainstream to evaluate the efect of maximizing
bidirectional bandwidth. Moreover, we also consider Path 3
and Path 4 which have relatively high trafc demands among
the minor streams to measure the coordination efects on the
side-street left-turning fows. In addition, Path 5 is also
included of which signal is coordinated to the mainstream
despite the trafc demand is signifcantly low.

Te numerical results are summarized in Figure 7.
Most of all, it is found that LT2 improves network ef-
ciencies in every MoE. Compared to the existing TOD, the
average number of stops is decreased from 1.04 to 0.96,
indicating approximately 7.69% improvement. Similarly,
the average delay and travel time are improved by ap-
proximately 6.2% and 2.92%, respectively. PASSER2 and
MULTIBAND also improve the network performances
compared to TOD.

However, upon examining the results for individual
paths, it becomes evident that LT2 shows better per-
formances. Specifcally, both MULTIBAND and LT2
similarly exhibit the improvement on the mainstream,
Path 1, while PASSER2 shows the worst performance. On
the other hand, for the two major side-street left-turning
fows, Path 3 and Path 4, it is remarkable that LT2 im-
proves the performance than MULTIBAND. It implies
that the LT2 reduces unnecessary delays of the side-
streets with relatively high demands. Additionally, it
can be seen that the existing TOD unnecessarily yields the
most efective signal coordination to Path 5 which has the
lowest demand.

Te changes of bandwidth can be observed in Figure 8,
and it corresponds with the numerical results analyzed in
Figure 7. In the outbound direction, the LT2 and MUL-
TIBAND models present an expanded bandwidthⓐ for the
major fow, surpassing the TOD and PASSER2 models.
Terefore, they allow a larger number of vehicles to pass
through the corridor (Path 1) without stopping. In addition,
the left-turning fows for Paths 3, 4, and 5 are allocated toⓑ,
ⓒ, andⓔ, respectively. It is observed that TOD inefciently
assigns wider bandwidth to ⓔ, yet relatively narrower

bandwidth to ⓑ. In contrast, the LT2 model efectively
distributes sufcient bandwidthsⓑ andⓒ to Paths 3 and 4,
which have relatively high demands, and manages to ef-
ciently accommodate Path 5 as well, unlike the MULTI-
BAND, which fails to secure bandwidth ⓔ.

6. Discussion

In this study, each of the four signal coordination models
requires distinct spatial and temporal resolution for trafc
data. Te existing TOD, based on AADT statistics with low
temporal resolution, shows signifcant limitations in
adapting to fuctuating trafc demands. To improve this,
real-time trafc fow data collected by loop detectors in-
stalled in straight lanes of the mainstream conventionally
facilitate the signal coordination algorithms, such as
PASSER2 and MULTIBAND. Tese conventional signal
coordination algorithms improve the network efciency
centered at the mainstream, as shown in Figure 7. However,
there still have been signal coordination failures on irregular
travel demands during nonpeak hours occurring un-
necessary delays of the side-streets with relatively
high demands (e.g., degradation of MULTIBAND for
Paths 3 and 4).

Te state-of-the-art signal coordination methods, in-
cluding LT2, propose novel methods to coordinate the
multidirectional trafc fows in order to mitigate the con-
gestion on the side-streets with relatively high demands.
Although these algorithms demonstrate signifcant im-
provement in their simulation-based experiments, they
would encounter some challenges with regard to the prac-
tical implementation. Tese methods require high-
resolution real-time trafc data for the turning trafc
fows of each intersection, such as turning ratios and
queueing vehicle numbers, in order to calculate the accurate
values for the signal timings.

In this aspect, the edge AI-based smart intersection
proposed in this study highlights the potential use of these
novel signal coordination methods by serving high-
resolution trafc data in real time. Taking the advantages
of using CCTVs and AI, the edge AI-based smart in-
tersection provides abundant trafc data of point/section-
based information, and even contextualized information,
unlike the other traditional VDS. Accordingly, this study
provides an application of improving signal coordination
using real-time trafc data collected from edge AI-based
smart intersections. By leveraging these data, the experi-
mental results indicate that LT2 alleviates the coordination
failure problem for nonpeak hour demands in the
study site.

Table 5: Performance of edge AI video analysis model.

Metrics Measurement Results
Efciency of model compression (1 − (compressedmodel size/previousmodel size)) × 100 97.8%
Inference speed Processible number of frames in a second (frame per second, FPS) 29.49 FPS
Accuracy in object detection (correctly classified number/total number of objects) × 100 93.64%
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Figure 8: Continued.
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7. Conclusion

Te goal of this study is to construct edge AI-based smart
intersections utilizing AI optimization techniques and to
provide their application for trafc signal coordination. To
this end, we install smart intersections on three consecutive
intersections of Route 45 in Pyeongtaek city, South Korea,
and collect the real-time trafc data by applying the edge AI
video analysis model. Te model compressed and optimized
via NetsPresso maintains a similar level of accuracy
(93.64%), even if the size is reduced by 97.8% compared to
the original. Next, we utilize a LT2 model to treat the co-
ordination failure problem in nonpeak hours occurring
unnecessary delays of the side-streets with relatively high
demands. We complement some constraint conditions in
order to consider the compatibility with the current legacy
signal control system. Te experiment is conducted on the
virtual environment of which geometry and trafc demand
are confgured based on the features of the installed smart
intersections. Te numerical results conclude that the cal-
culated optimal ofsets calculated by the LT2 model efec-
tively manage bandwidths for multidirectional fows based
on the real-time trafc demands collected from the edge AI-
based smart intersections.

Te main contribution of this research is that it in-
troduces an edge AI-based smart intersection. Although
smart intersections have been prevalent in many cities, there
are a few drawbacks in their operations. In this regard, this
study demonstrates the efectiveness of edge AI-based smart
intersections by extracting real-time trafc data from CCTV
video data, even on low-powered edge devices, with high
accuracy. Furthermore, this study explores the application of
edge AI-based smart intersections to a practical signal co-
ordination problem using a state-of-the-art algorithm that
requires high-resolution real-time trafc data for all turning
trafc fows of each intersection.

Tis research serves as a preliminary study to validate the
efectiveness of edge AI-based smart intersections in signal
coordination before conducting on-site tests. Te primary
future plan is to carry out experiments on actual roads rather
than in a simulated environment. Subsequently, the per-
formance of the proposed method will be assessed using real
trafc data. Furthermore, we plan to explore additional
signal control variables, including green splits or cycle time,
as part of our efort to revise the legacy system. Moreover,
future studies will involve the development of an enhanced
model, leveraging a broad spectrum of trafc data obtained
from edge AI-based smart intersections.
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