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Sustainable concepts for on-demand transportation, such as ridesharing or ridehailing, require advanced technologies and novel
dynamic planning and prediction methods. In this paper, we consider the prediction of taxi trip durations, focusing on the
problem of the estimated time of arrival (ETA). ETA can be used to compute and compare alternative taxi schedules and to
provide information to drivers and passengers. To solve the underlying hard computational problem with high precision, machine
learning (ML) models for ETA are the state of the art. However, these models are mostly black box neural networks. Hence, the
resulting predictions are difcult to explain to users. To address this problem, the contributions of this paper are threefold. First,
we propose a novel stacked two-level ensemble model combining multiple ETA models; we show that the stacked model out-
performs state-of-the-art ML models. However, the complex ensemble architecture makes the resulting predictions less
transparent. To alleviate this, we investigate explainable artifcial intelligence (XAI) methods for explaining the frst- and second-
level models of the ensemble. Tird, we consider and compare diferent ways of combining frst-level and second-level ex-
planations. Tis novel concept enables us to explain stacked ensembles for regression tasks.Te experimental evaluation indicates
that the considered ETA models correctly learn the importance of those input features driving the prediction.

1. Introduction

In intelligent transportation systems for feet coordination
and optimization (e.g., a ridesharing service), the compu-
tation and optimization of taxi schedules are often supported
by a component that estimates the duration or time of arrival
for a given trip. To illustrate the problem of ETA, in Figure 1,
we show two taxis Y and Z that aim to serve three passengers
A, B, and C. Even in this small example, diferent alternative
schedules are to be considered in order to fnd a close-to-
optimal one. Using an algorithm for ETA that is in-
dependent of a route, it is possible to avoid having to
compute all routes in advance, which leads to considerable
speedup for larger and dynamic problem instances.

ETA also helps provide models for predicting upcoming
taxi trips, e.g., when a taxi will pick up a passenger or how
long a trip will take for a driver/passenger. State-of-the-art

approaches have shown that high prediction precision can
be achieved using ML [1–4]. A promising option to further
increase prediction precision is ensemble models [5];
a special type of ensemble models is a stacked ensemble:
here, the output of multiple frst-level models is combined
via another (second-level) model [5], for example, to the
fnal estimation of the ETA for a taxi trip. Te higher variety
achieved via multiple models, potentially of diferent types,
can better represent and interpret the diversity of the data
and potentially increase prediction precision. One drawback
is that by combining several black-box models with a sec-
ond-level black box, the resulting model becomes even less
transparent. Tis means that it is very difcult to understand
why the model proposes a certain solution. One option to
remedy this drawback is to apply XAI methods [6, 7] like
Shapley additive explanations (SHAPs), which aim to ex-
plain the output of complex nonlinear ML models like
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neural networks. With such XAI methods, we are able to
learn the infuence of input features on an estimated trip
duration; e.g., “the hour (8:00 am) increases the estimated
trip duration by 25 seconds.”

Te main contributions of this paper are as follows:

(1) Inspired by the good result for stacked ensembles in
other problems [8–10], we propose and evaluate
a stacked ensemble model for route-free estimation
of trip durations.

(2) We enable explainability of stacked ensemble
structures by extending existing XAI methods based
on feature importance; in particular, we propose and
compare three novel joining methods.

Te paper is organized as follows: In Section 2, we derive
our research gap and aim based on a related work review on
route-free ETA and the explanation of stacked ensembles. In
Section 3, we describe preliminaries, the datasets used to
evaluate the prediction precision of the stacked ensemble,
the frst-level ETAmodels, the selection of the XAI methods,
and the evaluation procedure. Subsequently, the construc-
tion of the stacked ensemble model is described in Section
4.1. In Section 4.2, we select and apply state-of-the-art XAI
methods to explain the frst-level models. Ten, we propose
the joining methods to explain the ensemble and conduct
simulation experiments to evaluate our approach in Section
4.3. Section 4.4 discusses our fndings with respect to the
research aim and points out limitations as well as venues for
future work; we conclude the paper in Section 5. Te source
code used in this paper can be accessed online via [11].

2. Related Work

2.1. Route-Free Estimated Time of Arrival. We list all the
considered works about route-free ETA in Table 1. Te
authors of [12, 13] develop a route-free ETA approach as
part of a larger ridesharing service. First, Jindal et al. [12]
estimate a trip’s distance and then its ETA—both via fully
connected feedforward neural networks (FCNNs). Haliem
et al. [13] tackle ETA based on a single FCNN with two
hidden layers. While both use a relatively simple network
architecture, they achieve remarkable prediction precision.

Among the approaches that focus on ETA, Wang et al.
[14] propose a relatively simple neighbor-based method.
Similar to [1, 12, 13], we use a FCNN, but with a diferent
architecture. After searching for the best representation of

the pickup and dropof location that is passed into an ETA
model, Schleibaum, Müller, and Sester [4] propose another
FCNN architecture. Tag Elsir et al. [15] develop an advanced
deep learning-based system; they incorporate both spatial-
temporal and external features via convolutional, fully
connected, and attention layers.

Similar to [12], which use an ensemble of two networks
for two diferent tasks, Zou, Yang, and Zhu [16] propose
a stacked ensemble of a gradient boosting decision tree and
a fully connected feedforward neural network to estimate the
time of arrival; both frst-level models consume the same
feature set.

2.2. Explaining Ensembles. As shown in Table 2, except for
[17, 20, 21], all works focusing on explaining ensembles only
tackle a classifcation problem. Te majority of these works
[18, 19, 24, 26] explain the ensembles post hoc by extracting
rules. Given an ensemble of homogeneous models and
homogeneous feature sets, Bologna and Hayashi [18] pro-
pose to transform the models of the ensemble into dis-
cretized interpretable multilayer perceptrons—a neural
network derivative. From this new ensemble, rules are
extracted as an explanation. In a more recent work, Bologna
[19] proposes another method to extract rules from same-
level ensembles. Sendi, Abchiche-Mimouni, and Zehraoui
[26] learn a same-level ensemble of neural networks,
transform it into one of the decision trees, and use a mul-
tiagent dialog approach to extract relatively simple rules to
explain the learned classifcation pattern. Recently, Obregon
and Jung [24] also proposed to extract simple rules from an
ensemble by combining and simplifying their base trees.

Tose works that do not use rule extraction to explain
ensembles for classifcation are [22, 27]. Khalifa, Ali, and
Abdel-Kader [23] propose a method to transform a learned
ensemble of decision trees into a single decision tree; al-
though they limit the prediction precision of their ensemble
by ceiling the depth of their decision trees, their simplifed
tree remains the same prediction precision as the ensemble is
remarkable. To explain a stacked ensemble for classifcation,
Silva, Fernandes, and Cardoso [27] present the results of
several XAI methods—text-based rules extracted from
a decision tree, feature importance from scorecards, and an
example-based method—beside each other; the authors
apply their explanation approach to several ensembles used
in medicine and fnance.

Passenger B

Passenger C

Passenger A Obstacle,
e. g. a busy

district

Taxi Y Taxi Z

? ?
Schedule Schedule

Figure 1: Motivating scenario about ETA for the planning of taxi schedules.
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Similar [27], Ren, Zhao, and Zhang [25] predict the
survival rate of patients and apply the XAI method SHAP to
determine the contributions of the input features for
a stacked ensemble. Also in the feld of medicine, Ahmed
et al. [17] apply several XAI methods to an ensemble that
predicts the mortality rate of patients.

Both [20, 21] explain an ensemble independent from the
tackled problem. While While Deng [20] also extracts rules
from the same-level ensemble of decision trees, Juraev et al.
[21] apply SHAP to a stacked ensemble that does both
classifcation and regression.

2.3. Research Gap and Aim. In general, we observe that the
comparability of the aforementioned route-free ETA ap-
proaches is complicated due to the varying evaluation
metrics applied, the diferent datasets used, and the diverse
feature sets selected. Even though the feature sets selected
seem to depend on the architecture applied and the
promising results of [16], no previous approach tried
a stacked ensemble with heterogeneous feature sets at the
frst level.

Except for [14], all of the aforementioned approaches
proposed ML-based models for ETA. Even though such
complex models are known to learn intricate patterns in the
input data, none made the learned patterns transparent
through explanations. Furthermore, explaining a stacked
ensemble for regression is not straightforward. While most
related work focuses on same-level ensembles, only four
works explain a stacked ensemble [17, 21, 25, 27] and all
through existing XAI methods. While the authors of
[17, 25] approach the ensemble as one model, the authors of

[21, 27] explain each frst-level model of the ensemble
separately. Both approaches hide the contribution of single
models to the fnal decision.

Consequently, we conclude that the combination of
multiple models to a stacked ensemble to perform ETA and
explain both the classical single-level models and the stacked
ensemble is an open research gap. Our research aim is
twofold: First, we form a stacked ensemble model to tackle
ETA. Second, we aim for an explanation method to explain
such a stacked ensemble. As the explanation of ensembles
through the extraction of rules is common, we will focus on
feature importance methods. To limit the scope of this paper,
we focus on local post hoc explanations.

3. Materials and Methods

3.1. Preliminaries

3.1.1. Estimating the Time of Arrival. Given a potential trip
represented by a set of features X � x1, x2, . . . , xn such as the
latitude and longitude of its starting location, ETA aims to
predict its duration y ∈ R by a function f so that f(X) � y.
Te goal is to fnd an f that minimizes the diference be-
tween y and the real duration y. As y is continuous, the
problem described is a classical regression problem. As
shown above, most of the related work uses deep learning to
learn f based on a set of historical trips and their durations.
Because we consider route-free ETA, information about the
route, such as the number of turns on the route, and in-
formation not known before a trip starts, such as a trafc
accident on the route happening after the start of a trip, are
excluded from X.

Table 1: Related work on route-free ETA.

Reference Usage of ML model
(s) Usage of ensemble Ensemble type Explanation

[12] √ (√) Stacked ×

[13] √ × — ×

[14] × × — ×

[1] √ × — ×

[4] √ × — ×

[15] √ × — ×

[16] √ √ Same-level ×

Table 2: Related work that explains ensembles.

Reference Tackled problem Ensemble type Model types Feature sets Explanation type
[17] Regression Stacked Heterogeneous Homogeneous Global, post hoc
[18] Classifcation Same-level Homogeneous Homogeneous Global, post hoc
[19] Classifcation Same-level Homogeneous Homogeneous Global, post hoc
[20] Classifcation and regression Same-level Homogeneous Homogeneous Global, post hoc
[21] Classifcation and regression Stacked Heterogeneous Heterogeneous Local/global, post hoc
[22] Classifcation Same-level Homogeneous Homogeneous Local, post hoc
[23] Classifcation Same-level Homogeneous Homogeneous Global, post hoc
[24] Classifcation Same-level Homogeneous Homogeneous Local, post hoc
[25] Classifcation Stacked Heterogeneous Homogeneous Global, post hoc
[26] Classifcation Same-level Homogeneous Homogeneous Local, post hoc
[27] Classifcation Stacked Heterogeneous Homogeneous Local, post hoc
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3.1.2. Ensemble Learning. Te function f that tackles the
aforementioned ETA problem can be realized through
a stacked ensemble with two levels. On the frst level, such
an ensemble is a composition of multiple functions ψi ∈ Ψ.
Each ψi estimates f based on its feature subset Xi ⊆X so
that ψi(Xi) � yi,∀ψi ∈ Ψ. On the second level of the en-
semble, another function ζ estimates y based on the
outputs of the frst level so that ζ(y1, y2, . . . , y|Ψ|) � y. As
we focus on a heterogeneous ensemble, we require the
models that realize the functions ψi ∈ Ψ to be of diferent
types—like a tree—and a neural network-based model. An
illustration of the ensemble architecture is shown in
Figure 2.

3.1.3. Explanations. Troughout this paper, we consider an
explanation as a vector e of length |X| assigning a value to
each input feature x ∈ X for a given prediction y:
e � e1, e2, . . . , ex; so, e ∈ R|X|. As we consider the prediction
as given, we explain the post hoc model. To diferentiate the
explanations in an ensemble, we add a model superscript to
an explanation: eM.

3.2. Datasets

3.2.1. Selection and Features. We select two datasets: the
New York City Yellow taxi trip data from 2015 to 2016, see
[28], and one recorded in Washington DC in 2017, see [29].
We select the former because it was used several times to
demonstrate an ETA approach, and it is the dataset used
mainly in this paper. We additionally include the Wash-
ington DC dataset to increase the generalizability of our
experiment regarding the usage of ensembles to increase the
prediction precision. For both datasets, we rely on the
feature engineering described by Schleibaum, Müller, and
Sester [4], which makes use of or enhances the dataset by the
following features: the location-based ones with (1) the
pickup/dropof as degree-based coordinates and (2) the
indices of a 50-meter square grid as an alternative repre-
sentation. To represent the start time of a trip, (3) themonth,
(4) week, (5) weekday, and (6) the indices of a 5-minute time
bin, which represents the hour and minute, are used.
Moreover, we use (7) the temperature at the hour a trip starts
and calculate (8) the haversine distance between pickup and
dropof location.

3.2.2. Outlier Removal. For removing outliers, we also use
the criteria from Schleibaum, Müller, and Sester [4], and the
description of the following method partly reproduces their
wording. Overall, around 3% of the trips from the New York
City dataset and around 19% percent from the Washington
DC dataset are fltered out. A trip can be an outlier because
one of its locations is not in the area studied, which is shown
in Figure 3, or not in a district like erroneously being
recorded in the Hudson River. Moreover, a trip’s reported
duration could be unreasonably low or high or could not be
logically correlated with the distance between pickup and
dropof locations; we also remove trips with a distance of

zero. Compared to other papers, the criteria are relatively
moderate, and therefore, the comparison to approaches not
reproduced is fairer.

3.2.3. Characteristics. To better understand the data, in
Figure 4, we visualize the average duration of the trip per
weekday for both datasets. In both, the number of trips is
relatively low during the early morning; during the week, it
has one peak at around 8 am and another one at around 5
pm.As expected, during the weekend, the morning peak
does not exist; on average, the average duration of trips is
lower than during the week.

To show the area considered and to better understand
the distributions of pickup and dropof locations, we vi-
sualize both in Figure 3. As expected for the Yellow taxis in
New York City, the vast majority of trips start in Man-
hattan; most of the trips not starting in Manhattan begin at
John F. Kennedy Airport. As for the dropof locations, the
general behavior is similar, but more trips end outside of
Manhattan.

3.3. Estimated Time of Arrival Models. We take the three
ETAmodels proposed by Schleibaum, Müller, and Sester [4]
and their hyperparameters as our frst-level models. We
chose these because they are sophisticated ML methods
previously used for tackling the problem of static route-free
ETA. Furthermore, these models are based on bagging
(learning multiple models from diferent subsets of a data-
set), boosting (learning multiple models sequentially based
on the previous models), and neural networks (nodes
stacked in several layers enabling the capturing of complex
patterns especially when trained on large datasets). Tereby,
the three ML methods random forest (RF), XGBoost, and
a neural network based on three diverse concepts provide
a good basis for a heterogeneous ensemble.

As alternatives for the second-level model, we consider
the same ML methods and add a relatively simple multiple
linear regression (MLR). Regarding the main dataset or the
one from New York City, we use 1M trips for training and
validation from 2015 and another 250K from 2016 for
testing. For the dataset from Washington DC, we use less or
600K trips for training and validation and another 50K for
testing. As training data for the second-level models, we use
the predictions of the frst-level models on the validation
data and use the same test data as before. We do not use the
same training data twice or for the frst- and second-level

X1

X2

X|Ψ|

X

ψ|Ψ|

ŷ|Ψ|

...

ψ2

ψ1

ŷ2

ŷ1

ŷζ

Figure 2: Architecture of a stacked ensemble with two levels—the
models ψ1,ψ2, . . .ψ|Ψ| build the frst level and the model ζ the
second level.
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models to reduce overftting. We do not tune the hyper-
parameters of the second-level models and, therefore,
consider not using a validation dataset as fne. Except for the
MLR, which does not have any hyperparameters, for the
second-level models, we use the same hyperparameters as for
the frst-level models. Te only diference is that we decrease
the number of trees for RF and XGBoost from 300 to 100 and
the number of hidden layers for the neural network-based
model from four to two; we choose smaller models com-
pared to the frst-level models because the number of input
features or the variety of the model input is reduced
substantially.

3.3.1. Baselines. We select three of the approaches presented
in Table 1 reproducible from the corresponding paper as
baselines [1, 12, 13]. For all three, we perform hyper-
parameter tuning via a random grid search. In particular, we
tune the learning rate and batch size. We perform early
stopping with a patience of 30 epochs. While we use the
mean absolute error (MAE) for optimizing [12, 13], the
mean squared error is used for reproducing [1] as described
in their paper.

3.4. Selection ofXAIMethods. To demonstrate our approach,
we select two commonly used XAI methods—local in-
terpretable model-agnostic explanations (LIME) and
SHAP—which are described below. We chose these XAI
methods because both are model-agnostic and can, there-
fore, be applied to all models of the heterogeneous ensemble.
Moreover, both create local post hoc explanations that can
be used to explain to ETA users such as taxi drivers and
passengers. Although all frst-level models are explained via
the XAI methods, only the second-level model that performs
the best will be explained.

3.4.1. Local Interpretable Model-Agnostic Explanations.
Ribeiro, Singh, and Guestrin [30] present LIME, which
explains predictions based on a linear surrogate model by
minimizing two aspects: the goodness of the local approx-
imation of the interpreted model in the observations
neighborhood and the complexity of the surrogate model.
Tis post hoc XAI method outputs a vector- or graphics-
based explanation that is visualized diferently by software
libraries. Te main formula presented by Ribeiro, Singh, and
Guestrin [30] is

40.60

40.65

40.70

40.75

40.80

40.85

40.90
La

tit
ud

e

–74.00 –73.95 –73.90 –73.85 –73.80 –73.75 –73.70–74.05
Longitude

(a)

40.60

40.65

40.70

40.75

40.80

40.85

40.90

La
tit

ud
e

–74.00 –73.95 –73.90 –73.85 –73.80 –73.75 –73.70–74.05
Longitude

(b)

Figure 3: Distribution of the pickup (a) and dropof (b) locations for randomly selected trips from the training data of the New York City
dataset.
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ξ(x) � argmin
g∈G

L f, g, πx(  +Ω(g). (1)

Te importance of the feature x from a sample is
extracted from the surrogate model g from all possible
surrogate models G that describe the black-box model f and
the neighborhood of x—denoted as πx—best, while also
minimizing the complexity of the surrogate model Ω(g).

3.4.2. Shapley Additive Explanations. Another model-
agnostic XAI-method—SHAP—was proposed by Lund-
berg and Lee [7]. It is able to generate local explanations for
a given sample by making the features’ importance trans-
parent. Terefore, SHAP utilizes the famous Shapley values
from cooperative game theory. More concretely, Lundberg
and Lee [7] presented the following formula:

ϕi � 
S⊆F\ i{ }

|S|!(|F| − |S| − 1)!

|F|!
fS∪ i{ } xS∪ i{ }  − fS xS(  .

(2)

Here, the contribution of a feature ϕi is estimated by
iterating over all subsets of features S of the feature set F

without the feature i. Te fraction in the sum weights the
diference between the output of the model to be explain-
ed—represented by the function f—with and without i or
the contribution of i.

3.5. Evaluation

3.5.1. Prediction Precision of ETA Models. Similar to
Schleibaum, Müller, and Sester [4], we apply three evalua-
tion metrics common for regression tasks: (1) the mean
absolute error (MAE � 1/Ni|yi − yi|), which in our case
returns the average error per trip in seconds, (2) the mean
relative error (MRE � i|yi − yi|/iyi), and (3) the mean
absolute percentage error (MAPE � 1/Ni|(yi − yi)/yi|),
which is robust to outliers. Because the latter two produce
percentage values, they are also relatively easy to understand
and put the error in perspective to a trip’s duration.

3.5.2. Scenarios for Explanations. To demonstrate and
evaluate our explanation approach, we randomly select ten
trips from the New York City test data for four scenarios.
Each scenario has two opposing characteristics that are
described in the following together with the scenarios:

(1) SC1: of city center vs. city center: we compare trips
that start outside of the city-center—a rectangle with
the bottom left at coordinate (40.7975, − 73.9619) and
top right at (40.8186, − 73.9356)—with those that do
start in the city center—a rectangle with the bottom
left at (40.7361, − 73.9980) and top right at (40.7644,
− 73.9770).

(2) SC2: night time vs. rush hour: here, we choose some
trips that start early in the morning—3 am to 5
am—and some that start during the NYC rush
hour—4 pm to 6 pm.

(3) SC3: low vs. high temperature: in this scenario, we
compare trips with a relatively low temper-
ature—trips that are in the 0.25 quartile and not in
the 0.1 decile—with trips that took place at a high
temperature—trips that are in the 0.75 quartile and
not in the 0.9 decile.

(4) SC4: low vs. high distance: we select trips with
a relatively high/low distance between pickup and
dropof locations—we use the same boundaries as for
SC3 for the feature haversine distance to select
the trips.

4. Results and Discussion

4.1. Models for Estimating the Time of Arrival. We take the
three ETA models proposed by Schleibaum, Müller, and
Sester [4], as our frst-level models as well as their hyper-
parameters, which have been chosen via Bayesian optimi-
zation. Te frst model is based on RF (L1-RF) with 300 trees
and a maximum tree depth of 89; the number of maximal
features per node is chosen automatically, and the minimum
number of samples per leaf and split are set to four. Te
second model is based on XGBoost (L1-XGBoost) and also
consists of 300 trees but has a maximum tree depth of eleven;
the minimum number of instances required in a child is set
to seven, the subsample ratio of the training data per tree to
one, the minimum loss reduction required for making
a further partition on a child to zero, and the subsample ratio
of features for a tree to one. Te third model is based on
a FCNN (L1-FCNN) with four hidden layers and 300, 150,
50, and 25 corresponding neurons. Similarly to Schleibaum,
Müller, and Sester [4], we set the batch size to 128, the
learning rate to 0.001, train the network for 25 epochs, and
select the best model along the training to minimize
overftting.

Besides the frst-level models, we propose four second-
level models or ensembles. Because we use all three frst-level
models for each ensemble, all four ensembles are hetero-
geneous. Te frst second-level model is a relatively simple
one based on anMLR referred to as L2-MLR.Te second one
is based on RF (L2-RF) with 100 trees in the forest; for the
third, XGBoost-based model or L2-XGBoost, we chose the
same number of trees. For both L2-RF and L2-XGBoost, we
do not train the hyperparameters as these methods usually
achieve a high prediction precision without any hyper-
parameter tuning. Te fourth ensemble (L2-FCNN) com-
bines the output of the frst-level models via a FCNN with
two fully connected hidden layers—50 and 25 corresponding
neurons—and otherwise similar hyperparameters to the L1-
FCNN.

Table 3 shows that for the New York City dataset, the
MAE or average prediction error in seconds per trip is
around 178 seconds for the L1-FCNN and a couple of
seconds higher for L1-RF and L1-XGBoost. Te results for
the other evaluation metrics—MRE and MAPE—are similar
and put the prediction error in perspective to the trip du-
ration. Regarding the New York City dataset and the second-
level models, all models are able to outperform the frst-level
models with regard to MAE andMRE. Only the L2-FCNN is
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able to outperform all frst-level models in all evaluation
metrics with an MAE of 169 seconds or an MRE of around
20 percent. Interestingly, the L2-MLR achieves a remarkable
prediction precision that is better than that of L2-RF and
similar to that of L2-XGBoost. For the models trained and
tested on theWashington DC dataset, we observe that on the
frst level, the L1-FCNNwith anMAE of around 169 seconds
is able to outperform L1-RF by 10 seconds and L1-XGBoost
by 20 seconds. Regarding second-level models, we observe
that except for L2-RF, all models achieve a remarkable
prediction precision. In contrast to the models trained and
tested on the New York City dataset, none of the second-
level models is able to outperform the mean absolute per-
centage error (MAPE) achieved by the L1-FCNN.

As shown in the last three lines of Table 3, we outperform
the baseline approaches by at least 15 seconds on the New
York City dataset and by at least 6 seconds on the Wash-
ington DC dataset when considering the MAE. Te results
are similar for the other two evaluation metrics.

4.2. Explaining the First-Level Estimated Time of Arrival
Models. In Figure 5, we visualize the explanations generated
by LIME per scenario, its characteristics, feature, and ETA
model. Each triangle represents the importance of a feature
for one trip from a scenario—the lighter triangles are from
the frst or “lower” characteristic of the scenario. Te lines
connect the importance of the features for one sample or
trip. Concrete values can be interpreted as follows: for in-
stance, the left-most triangle in SC1—(a) of Figure 5—has
a value of around − 575. Tis refers to a relatively strong
negative infuence of the concrete distance value on the
corresponding estimated duration of the trip. Tis most
likely refers to a trip with a small distance between the
pickup and dropof locations.

In SC2—top right—and SC4—bottom right—the two
characteristics of each scenario are visually separated for the
features that constitute the scenario—the 5-minute time bin
for SC2 and the distance for SC4. As expected, the other
features are not separable because they are more or less
randomly distributed over the space of each feature—not
completely random, as some features might slightly correlate
with the feature of interest. Moreover, the separation is in the

correct order, which means that the “lower” characteristic
also has a lower importance of features than the “higher”
characteristic of the scenario. Terefore, the ETA models
appear to have properly learned the expected behavior in
these scenarios. Even though for the majority of trips in SC1,
the diference between the pickup of city center and in city
center is learned, and some trips of the “lower” and “higher”
characteristics interfere. For instance, for pickup X, the L1-
FCNN feature importance of both scenario characteristics
overlaps. As regards SC3, we observe that the reported
feature importance for the temperature is low or close to
zero.While this could indicate that the ETAmodels have not
learned the underlying pattern, similar to Schleibaum et al.
[4], we argue that the overall feature contribution of the
weather or temperature is low.

While the concrete values or feature contributions
generated via SHAP difer from the feature importance of
LIME, we observe similar results in Figure 6. For SC2 and
SC4, the two characteristics of the scenarios are visually
separated only by the feature of interest; the separation for
SC1 and SC3 is not clear.

4.3. Explaining the Ensemble Model for Estimated Time of
Arrival. In the following, we describe three relatively simple
but novel methods to join the explanations from the frst and
second levels. To be able to compare the outputs for all three
joining methods and samples in a better way, we frst
normalize the second-level explanation per sample so that
they sum up to one. Te joining methods (JMs) are as
follows:

(1) (JM1: adding a dimension) Here, we simply output
both the frst and second-level explanations—which
is meant by “additional dimension”—simulta-
neously. Terefore, we weigh the feature contribu-
tion or importance of a feature at the frst level with
the contribution or importance of the prediction at
the second level. Consequently, we join the frst and
second-level explanations without losing any
information.

(2) (JM2: basic join of the contributions) To determine
the contribution or importance of a feature, we

Table 3: Comparison of our ETA models of the frst and second level based on diferent evaluation metrics.

Data set New York city Washington DC
Evaluation metric MAE (seconds) MRE MAPE MAE (seconds) MRE MAPE

Level 1
L1-RF 180.694 0.2158 27.8689 179.5912 0.2373 30.1512

L1-XGBoost 183.4192 0.219 27.1137 190.2613 0.2514 30.4033
L1-FCNN 178.2321 0.2129 23.7561 169.8152 0.2244 24. 72

Level 2

L2-MLR 172.2439 0.2057 25.2758 171.178 0.2262 27.1985
L2-RF 183.2319 0.2188 26.9828 183.7377 0.2428 29.5762

L2-XGBoost 173.6526 0.2074 25.3077 172.7287 0.2283 27.5419
L2-FCNN∗ 169.4285 0.202 22.9121 167.9959 0.222 24.6133

Baselines
[12] 185.9265 0.2256 23.8429 181.1275 0.2374 27.4261
[1] 201.5998 0.2455 28.1508 203.8581 0.2673 35.4898
[13] 185.3999 0.2257 28.3598 174.3907 0.2286 25.7570

∗Tis prediction precision is better than the one presented by Schleibaum et al. [4].
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Figure 5: Local feature importance via LIME per feature of the samples in the scenarios for the frst-level models; each plot refers to one
scenario: (a) for SC1, (b) for SC2, (c) for SC3, and (d) for SC4; the ten trips with an expected lower infuence are marked with lighter
triangles—the ones with an expected higher infuence with less light triangles; each line connects the feature importance for one trip along
the various features used by the corresponding model.
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Figure 6: Continued.
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compute the dot product between the vector that
contains the contribution or importance of that
feature for each frst-level model and the vector that
contains the contribution or importance of each
frst-level model on the second level; the product is
then the joint contribution or importance of that
feature for a given sample.

(3) (JM3: diversifying the contributions) Here, we use the
result from JM2 as a basis and defne a threshold α,
which is the mean value of the distribution or in-
fuence of each frst-levelmodel on the second level or,
e.g., 1/3 with our three frst-level models. Next, every
value below that threshold is reduced by a value β to
be increased by the collected value in the next step. If
the values cannot be reduced by β, because they would
become negative, only the diference to zero is used
and redistributed to the values above α. Tus, the
second-level infuence is diversifed. In the following,
we set β to 0.5 or relatively high, as the number of frst-
level models is only three.

All three joining methods are compared to a baseline
(BL) method. Tis method generates explanations by
explaining a function that wraps the whole ensemble.Within
this function, features that are an alternative representation
of other features, like the X-index of a 50-meter square grid,
are also generated within that function from the corre-
sponding base feature, i.e., the latitude of the pickup loca-
tion. In Figure 7, we show an overview of our three joining
methods compared to the baseline.

In Figure 8, we show the feature importance for LIME
joined via all three proposed joining methods as well as for
the BL. Similar to previous fndings, in each graphic of
Figure 8, for each trip and method, a line—or three for
JM1—is shown, this time without triangles. As we only want
to demonstrate the joining methods, we omit all scenarios
except for SC2 here, but we show the corresponding graphics
for SC1, SC3, and SC4 in Figure S1 in Supplementary
Material.

In Figure 8, the diference between JM1 and BL/JM2/
JM3 is obvious: JM1 shows much more information, in-
cluding the proof that all three frst-level models are used by
the L2-FCNN. Even though the two scenario characteristics
have the expected diference at the 5-minute time bin,
verifying the diference among the frst-level models is hard
for JM1. Regarding JM2, we observe a relatively high dif-
ference in the BL joining method as is for instance visible in
the feature importance of the 5-minute time bin or the
distance of the night-time characteristic of the scenario. As
expected, the JM3 makes the smaller feature importance
values smaller and the larger ones larger, thereby di-
versifying the feature importance along all features slightly.

When applying the joiningmethods to the SHAP values for
the same scenario, as shown in Figure 9, we observe similar
results. While the diference between the night-time and rush-
hour characteristic of SC2 is visible for all joining methods, this
time JM2 and JM3 in general reduce the feature importance.
Tis is in contrast to the explanations generated by LIME.

In Figure 10, we visualize the Shapley values for the features
used to build the scenarios via the joiningmethods JM2 and JM3
per scenario and their two opposing characteristics—“lower”
and “higher”—to further investigate the diferences to the BL;
JM1 is omitted in the fgure as it is hard to compare in the
visualized regard. As expected, the Shapley values generated via
JM2 and JM3 do not varymuch compared to the BL; like for the
5-minute time bin and SC2H, JM2 and JM3 slightly change the
Shapley values in the positive direction. For the distance and
SC4L, the Shapley values are moved in the opposite direction. In
general, the diference expected in the scenarios gets slightly
smaller, but it is still clearly shown. A similar fgure for LIME can
be found in Figure S3 Supplementary Material.

4.4. Discussion

4.4.1. Ensemble for ETA. We developedmultiple alternatives
to combine the outputs of the RF, XGBoost, and FCNN
models via another model. Even though several second-level

Here, we expect a
difference between the
two scenario forms.

SC3: Low vs. High Temperature

Lighter triangles
represent the low 
temperature trips.

Temperature
Distance

5-minute time-bin
Weekday

Week
Month

Dropoff Y
Dropoff X

Pickup Y
Pickup X

1000500 1500–500 0
Feature contribution by SHAP

L1-RF
L1-XGBoost
L1-FCNN

(c)

Here, we expect a
difference between the
two scenario forms.

SC4: Low vs. High Distance

Lighter triangles
represent the low 
distance trips.

Temperature
Distance

5-minute time-bin
Weekday

Week
Month

Dropoff Y
Dropoff X

Pickup Y
Pickup X

500–500 1000 15000
Feature contribution by SHAP

L1-RF
L1-XGBoost
L1-FCNN

(d)

Figure 6: Explanations via SHAP per feature, sample, and scenario for the frst-level models; each subfgure refers to one scenario: (a) for
SC1, (b) for SC2, (c) for SC3, and (d) for SC4; the ten trips with an expected lower infuence are marked with lighter triangles—the ones with
an expected higher infuence with fewer light triangles.
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models achieved a high prediction precision on the New
York City dataset, only an FCNN-based one was able to
outperform our previous models from Schleibaum et al. [4]
in all evaluation metrics. Interestingly, for the Washington
DC dataset, the results were not that clear: while the FCNN-
based ensemble performed better than the frst-level FCNN-
based model as regards the MAE and mean relative error
(MRE), for the MAPE, the observed pattern is the opposite.
We believe that this is caused by three reasons. First, feature

selection and hyperparameter tuning were performed for the
New York City dataset and consequently not optimal for the
Washington DC dataset. Second, the Washington DC
dataset with around 650K trips used is much smaller than
the New York City one with 1.25M trips, causing the second-
level models to havemuch fewer data to be trained on.Tird,
the gap between the performance of the three frst-level
models is much closer for the models trained on the New
York City dataset than for those frst-level models trained on

#explanation models
Output

BL JM1 JM2 JM3

X1

X2

X

X|Ψ| ψ|Ψ|

ψ2

ψ1
X1

X2 ψ2

ψ1

ŷ|Ψ|
X|Ψ|

|Ψ| + 1 |Ψ| + 1

ψ|Ψ|

ŷ|Ψ|

ŷ

ŷ2

ŷ

ŷ1

ŷ2

ŷ1 X1

X2 ψ2

ψ1

ŷ2

ŷ1

1
ex

X
... ...

X|Ψ| ψ|Ψ|

ŷ|Ψ|

...
X

|Ψ| + 1

ŷ ŷ

X1

X2 ψ2

ψ1

ŷ2

ŷ1

X|Ψ| ψ|Ψ|

ŷ|Ψ|

...
Xζ ζ ζ ζ

[ex
ψi, eζ

ψi] ex
ψieζ

ψi ex
ψi, eζ

ψid ( )

Figure 7: Overview of our three joining methods (JM1, JM2, and JM3) compared to the baseline (BL). Tose models to which an ex-
planation method is applied are highlighted in green, showing that the number of explanation models is higher (providing more insights) in
our proposed explanation methods. Furthermore, we show the output—e refers to an explanation and d() to the diversifying function
described previously.

Pickup X
Pickup Y

Dropoff X
Dropoff Y

Month
Week

Weekday
5-minute time-bin

Distance
Temperature

Here, we expect a
difference between the

two scenario forms.

SC2: Night-Time vs . Rush-Hour

–500 –250 0 250 500 750 1000
JM1: Joined feature importance by LIME

Night-time
Rush-hour

L1-RF
L1-XGBoost
L1-FCNN

(a)

Here, we expect a
difference between the

two scenario forms.

SC2: Night-Time vs. Rush-Hour

Temperature
Distance

5-minute time-bin
Weekday

Week
Month

Dropoff Y
Dropoff X

Pickup Y
Pickup X

–250 10007505000–500 250
JM2: Joined feature importance by LIME

Night-time
Rush-hour

(b)

Here, we expect a
difference between the

two scenario forms.

SC2: Night-Time vs. Rush-Hour

Temperature
Distance

5-minute time-bin
Weekday

Week
Month

Dropoff Y
Dropoff X

Pickup Y
Pickup X

–250 0 750500 1000–500 250
JM3: Joined feature importance by LIME

Night-time
Rush-hour

(c)

Here, we expect a
difference between the

two scenario forms.

SC2: Night-Time vs. Rush-Hour

Temperature
Distance

5-minute time-bin
Weekday

Week
Month

Dropoff Y
Dropoff X

Pickup Y
Pickup X

–250 10007505000–500 250
BL: Feature importance by LIME

Night-time
Rush-hour

(d)

Figure 8: Joint local feature importance via LIME for each feature of the samples in the second scenario (SC2: night time vs. rush hour) for
the joiningmethods JM1 (a), JM2 (b), and JM3 (c) compared to the BL (d). Each line connects the feature importance for one trip, and (a) the
line width corresponds to the infuence on the second level.
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the Washington DC dataset. Terefore, we assume that
a better-performing XGBoost model or excluding it from the
ensemble could further improve the prediction precision. As
we already outperformed the approaches of [1, 12, 13] in our
previous work [4], we consider the usage of a stacked
heterogeneous ensemble as an efective method to increase
the prediction precision for static route-free ETA. With the
dataset considered, we reduced the MAE by nine seconds to
around 169 seconds per trip on average; both MRE and
MAPE were reduced by around one percentage point.

4.4.2. Explaining First-Level ETA Models. We applied the
two model-agnostic XAI methods LIME and SHAP to
evaluate and explain our frst-level ETAmodels post hoc and
locally. In SC2 and SC4, we could show that all three models
learned the expected behavior. For SC3, all ETA models that
include the temperature consistently learned a low infuence
of the temperature on the ETA. As described previously, this
is most likely caused by the low infuence of weather-related
data in general rather than a pattern that is not properly
learned by our ETA models. Even though Schleibaum et al.
[4] showed the positive infuence of including the feature in

the models on the prediction precision, as their general
infuence is low, the explanation or feature importance value
assigned is not very meaningful. In case someone focuses on
explainable ETA models, removing the temperature or the
month feature might be worth considering. Regarding SC1,
we could show that information like the pickup location,
which is encoded into multiple and, therefore, correlating
features, is difcult to explain by LIME and SHAP. We
observed that the explanations produced by LIME are more
separated in our scenarios than those of SHAP. As the focus
of our work is not to compare LIME and SHAP, we refer the
interested reader to the work of Belle and Papantonis [31];
but in general, LIME has a relatively low runtime and SHAP
has the advantage of producing additive explanations.

4.4.3. Joint Explanation of Ensembles for ETA. We presented
three relatively simple methods for joining the frst- and
second-level explanations of an ensemble to generate a joint
explanation. Te main advantage and at the same time
drawback of joining method JM1 (adding a dimension) is
that more information or all explanations are shown.
When—as we did—multiple trips are shown in one graphic,
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Figure 9: Joint local feature importance via SHAP for each feature of the samples in the second scenario (SC2: night time vs. rush hour) for
the joiningmethods JM1 (a), JM2 (b), and JM3 (c) compared to the BL (d). Each line connects the feature importance for one trip, and (a) the
line width corresponds to the infuence on the second level.
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we assume that it is harder to understand, but on the other
hand, especially when only one trip is visualized, this pro-
vides additional insights not provided by JM2 and JM3. For
instance, it might be interesting to see if diferent frst-level
models disagree on a feature’s importance for a specifc
sample, how strong the infuence of each of the models is,
and if some relation was not learned correctly. For such
a case, a smarter choice of colors or an alternative to the used
line plots could improve understandability. However, with
respect to larger ensembles or those that have more or many
frst-level models, less dense explanation created by JM1
might be confusing or not understandable anymore.

As regards joining method JM2 (basic join of the con-
tributions), we observed an unexpectedly high diference in
the BL method. We believe that this diference is at least
partly caused by correlated features such as the pickup
latitude and longitude. Nevertheless, the general direction of
the feature importance is similar. Even though the XAI
methods might not be built for correlated features, especially
in stacked ensembles and practice, correlated features exist.
Interestingly, when considering LIME, the larger values are
made larger; for SHAP, the efect is opposite. For JM3
(diversifying the contributions), we observed the same but
slightly stronger efect. In contrast to JM1, JM2, and BL, JM3
has a hyperparameter that has to be chosen by the user,
which makes this method more complicated to apply.

Interestingly, none of the related work [22, 27, 32] has
used the BL method to generate an explanation or compare
their explanation to it. As we did not fnd other literature
regarding explaining ensembles, we assume that our work

presents three novel joining methods. While the general
concept that we applied to create a joint explanation of
a stacked ensemble with two levels that performs a re-
gression is relatively simple, the proposed concept is neither
specifc to the underlying XAI method nor to the regression
models. It could even be applied to the probabilities gen-
erated by classifcation models. In addition, the concept does
not depend on the number of frst-level models and can, as
we did, be applied to frst-level models that only share a part
of their input features. Also, the joining methods are model-
agnostic, and a combination of diferent XAI methods is
possible. When, for instance, considering one or multiple
complex models on the frst level, explaining them with an
XAI method that has a faster inference time, and combining
that on the second level with an XAI method like SHAP, is
possible.

4.4.4. Limitations and Future Work. As argued before, we
applied relatively moderate criteria for identifying outliers
before training various ETAmodels. We did this to make the
comparison to nonreproduced papers fairer. However, we
expect that we could further increase the prediction pre-
cision of the composed ensemble model. Another option to
potentially achieve a higher prediction precision is to include
other ETA models into the ensemble as additional frst-level
models, for instance [1–3, 13].

While the evaluation of the performance of ETA models
is relatively straightforward, the evaluation of explanations is
not; especially, determining the infuence of the slight
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diferences between our joining methods is afected by this
problem. Moreover, we considered only four self-chosen
scenarios to demonstrate and evaluate the generated ex-
planations; many more scenarios like the ones that combine
features—for instance, pickup at the city center during rush
hour—might be interesting and valuable for evaluation.
While we focused on generating explanations in a general
way so that others can adapt and build upon our work,
correlated features or information that span over multiple
features like the pickup location could be explained better
when the features are explained jointly or the x and y values
of the pickup location and their infuence on the ETA are
visualized on a map.

Regarding explanations, future work will look into ways
to explain information that spans over multiple features.
Another option to extend this work is to use other XAI
methods or use diferent ones for diferent models to gen-
erate more accurate explanations per model type. Te latter
could also be used to generate explanations relatively fast, for
instance, by using LIME on frst-level models with a greater
feature space and SHAP on the second-level models with
a smaller feature space. Moreover, the explanations gener-
ated here are vectors of values and, therefore, still hard to
understand by afected users like taxi drivers or passengers.
Te explanations could be translated into more human-
friendly ones, for instance, by linking an explanation of the
locations infuence on the ETA to points of interest like the
main train station that is close to the dropof location and
thus possibly increasing the ETA for an upcoming trip.
Moreover, our explanation could be enhanced from route-
free to route-based ETA as such approaches are more likely
to be used by taxi drivers and passengers thanks to their
increased prediction precision. In addition, using the gen-
erated explanations might be benefcial not only for users of
an ETA model but also for the designers of such models.
Based on the explanations, some frst-level models or fea-
tures used in a model might be excluded—leading to
a smaller and more precise ETA model.

5. Conclusions

On-demand transportation modes, such as ridesharing or
ridehailing, are key building blocks of sustainable passenger
transportation. Estimating the time of arrival of vehicles
(taxis) in ridesharing or ridehailing is relevant for the
comparison and computation of schedules and provides
important information to drivers and passengers. In this
paper, we investigate how the prediction precision of ETA
algorithms can be improved by combining multiple ML
models into a stacked heterogeneous ensemble—which, on
its own, is novel and has been shown to outperform state-of-
the-art static route-free ETA methods on two datasets.
Furthermore, to enable the explainability and transparency
of the stacked model, we proposed XAI methods for
explaining the frst-level models of the ensemble, as well as
three novel methods for joining the frst and second-level
explanations of the ensemble model. To demonstrate the
feasibility and beneft of our approach, we use a taxi trip
dataset collected in New York City to evaluate our

explanations against a baseline model that wraps the whole
ensemble in one function. Based on the limitations, more
tuning of the ensemble models and the inclusion of other
ETAmodels from the related work is promising. In addition,
we want to explore the explanation of correlated features and
the combination of diferent XAI methods to explain
ensembles.

Data Availability

As described in Section 3.2, we use the New York City
Yellow taxi trip data from 2015 to 2016, which is publicly
available, and the Washington DC taxi trip data recorded in
2017 to support the fndings of this study. Links to the
datasets are included in [28, 29]. Methods used to enhance
the datasets by the additional features considered
throughout this paper are provided in our code repository,
see [11].
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Supplementary Materials

In Figure S1, we visualize the LIME explanations generated
via the proposed joining methods for SC1, SC3, and SC4; in
Figure S2, we do the same for Figure 13: the SHAP expla-
nations. Figure 13 shows the content of Figure 10 for LIME.
Figure S1: Content of Figure 8 for for SC1, SC3, and SC4.
Figure S2: content of Figure 9 for SC1, SC3, and SC4.
Figure S3: content of Figure 10 for LIME. (Supplementary
Materials)

References

[1] A. C. de Araujo and E. Ali, “Deep neural networks for pre-
dicting vehicle travel times,” in Proceedings of the 2019 IEEE
SENSORS, pp. 1–4, IEEE, Montreal, QC, Canada, October
2019.

[2] K. D. Kankanamge, Y. R. Witharanage, C. S. Withanage,
M. Hansini, D. Lakmal, and U. Tayasivam, “Taxi trip travel
time prediction with isolated XGBoost regression,” in Pro-
ceedings of the 2019 Moratuwa Engineering Research

Journal of Advanced Transportation 13

https://downloads.hindawi.com/journals/jat/2024/9301691.f1.zip
https://downloads.hindawi.com/journals/jat/2024/9301691.f1.zip


Conference (MERCon), pp. 54–59, IEEE,Moratuwa, Sri Lanka,
July, 2019.

[3] Y. Li, K. Fu, ZhengWang, C. Shahabi, J. Ye, and Y. Liu, “Multi-
task representation learning for travel time estimation,” in
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pp. 1695–
1704, ACM, London, UK, July, 2018.

[4] S. Schleibaum, J. P. Müller, and M. Sester, “Enhancing ex-
pressiveness of models for static route-free estimation of time
of arrival in urban environments,” Transportation Research
Procedia, vol. 62, pp. 432–441, 2022.

[5] M. A. Ganaie, M. Hu, A. K. Malik, M. Tanveer, and
P. N. Suganthan, “Ensemble deep learning: a review,” Engi-
neering Applications of Artifcial Intelligence, vol. 115, Article
ID 105151, 2022.

[6] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Ex-
plainable ai: a review of machine learning interpretability
methods,” Entropy, vol. 23, no. 1, p. 18, 2020.

[7] M. L. Scott and S.-I. Lee, “A unifed approach to interpreting
model predictions,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems.
NIPS’17, pp. 4768–4777, Curran Associates Inc, Red Hook,
NY, USA, July, 2017.

[8] Y. Xia, K. Chen, and Y. Yang, “Multi-label classifcation with
weighted classifer selection and stacked ensemble,” In-
formation Sciences, vol. 557, no. 2021, pp. 421–442, 2021.

[9] M. Gour and S. Jain, “Automated COVID-19 detection from
X-ray and CT images with stacked ensemble convolutional
neural network,” Biocybernetics and Biomedical Engineering,
vol. 42, no. 1, pp. 27–41, 2022.

[10] M. S. Akhtar, A. Ekbal, and E. Cambria, “How intense are
you? Predicting intensities of emotions and sentiments using
stacked ensemble [application notes],” IEEE Computational
Intelligence Magazine, vol. 15, no. 1, pp. 64–75, 2020.

[11] S. Schleibaum, “Estimated time of arrival,” https://gitlab.tu-
clausthal.de/ss16/stacked-etaand-explanation.Mar.2022.

[12] I. Jindal, Z. T. Qin, X. Chen, M. Nokleby, and J. Ye, “Opti-
mizing taxi carpool policies via reinforcement learning and
spatio-temporal mining,” in 2018 IEEE International Con-
ference on Big Data (Big Data), pp. 1417–1426, IEEE, Seattle,
WA, USA, December, 2018.

[13] M. Haliem, G. Mani, V. Aggarwal, and B. Bhargava,
“ADistributedModel-FreeRide- sharing approach for joint
matching, pricing, and dispatching using deep reinforcement
learning,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 12, pp. 7931–7942, 2021.

[14] H. Wang, X. Tang, Y.-H. Kuo, D. Kifer, and Z. Li, “A simple
baseline for travel time estimation using large-scale trip data,”
ACM Transactions on Intelligent Systems and Technology,
vol. 10, no. 2, pp. 1–22, 2019.

[15] M. Alfateh, T. Elsir, A. Khaled, P. Wang, and Y. Shen, “JSTC:
travel time prediction with a joint spatial-temporal correlation
mechanism,” in Journal of Advanced Transportation, L. Sun,
Ed., vol. 2022, Article ID 1213221, 16 pages, 2022.

[16] Z. Zou, H. Yang, and A.-X. Zhu, “Estimation of travel time
based on ensemble method with multi-modality perspective
urban big data,” IEEE Access, vol. 8, pp. 24819–24828, 2020.

[17] Z. U. Ahmed, K. Sun, M. Shelly, and L. Mu, “Explainable
artifcial intelligence (XAI) for exploring spatial variability of
lung and bronchus cancer (LBC) mortality rates in the
contiguous USA,” Scientifc Reports, vol. 11, no. 1, Article ID
24090, 2021.

[18] B. Guido and Y. Hayashi, “A comparison study on rule ex-
traction from neural network en- sembles, boosted shallow

trees, and SVMs,”Applied Computational Intelligence and Soft
Computing, vol. 2018, Article ID 4084850, 20 pages, 2018.

[19] B.. Guido, “Transparent ensembles for covid-19 prognosis,” in
Machine Learning and Knowledge Extraction, A. Holzinger,
P. Kieseberg, A. M. Tjoa, and E. Weippl, Eds., vol. 12844,
pp. 351–364, Springer International Publishing, Berlin,
Germany, 2021.

[20] H. Deng, “Interpreting tree ensembles with inTrees,” In-
ternational Journal of Data Science and Analytics, vol. 7, no. 4,
pp. 277–287, 2019.

[21] F. Juraev, S. El-Sappagh, E. Abdukhamidov, F. Ali, and
T. Abuhmed, “Multilayer dynamic ensemble model for in-
tensive care unit mortality prediction of neonate patients,”
Journal of Biomedical Informatics, vol. 135, Article ID 104216,
2022.

[22] A. Kallipolitis, K. Revelos, and I. Maglogiannis, “Ensembling
EfcientNets for the classifcation and interpretation of his-
topathology images,” Algorithms, vol. 14, no. 10, p. 278, 2021.

[23] F. Khalifa, A. Ali, and H. Abdel-Kader, “Improved version of
explainable decision forest: forest-based tree,” IJCI In-
ternational Journal of Computers and Information, vol. 0,
no. 0, p. 0, 2022.

[24] J. Obregon and J.-Y. Jung, “RuleCOSI+: rule extraction for
interpreting classifcation tree ensembles,” Information Fu-
sion, vol. 89, pp. 355–381, 2023.

[25] N. Ren, X. Zhao, and X. Zhang, “Mortality prediction in ICU
using a stacked ensemble model,” in Computational and
Mathematical Methods in Medicine, M. E. Fantacci, Ed.,
vol. 2022, Article ID 3938492, 12 pages, 2022.

[26] N. Sendi, N. Abchiche-Mimouni, and F. Zehraoui, “A new
transparent ensemble method based on deep learning,”
Procedia Computer Science, vol. 159, pp. 271–280, 2019.

[27] S. Wilson, K. Fernandes, and J. S. Cardoso, “How to produce
complementary explanations using an ensemble model,” in
Proceedings of the 2019 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, IEEE, Budapest, Hungary,
July, 2019.

[28] City of New York, “TLC trip record data,” 2019, https://www.
nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[29] Kaggle, “DC taxi trips,” https://www.kaggle.com/c/nyc-taxi-
trip-duration.

[30] M. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust
you?: explaining the predictions of any classifer,” in Pro-
ceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Demon-
strations, pp. 97–101, Association for Computational Lin-
guistics, San Diego, CA, USA, December, 2016.

[31] V. Belle and I. Papantonis, “Principles and practice of ex-
plainable machine learning,” Frontiers in Big Data, vol. 4,
Article ID 688969, 2021.

[32] B. Rozemberczki and R. Sarkar, “Te Shapley value of clas-
sifers in ensemble games,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge
Management, pp. 1558–1567, Association for Computing
Machinery, New York, NY, USA, June, 2021.

[33] S. Schleibaum, J. P. Müller, and M. Sester, “An explainable
stacked ensemble model for static route-free estimation of
time of arrival,” 2022, https://arxiv.org/abs/2203.09438.

14 Journal of Advanced Transportation

https://gitlab.tu-clausthal.de/ss16/stacked-etaand-explanation.Mar.2022
https://gitlab.tu-clausthal.de/ss16/stacked-etaand-explanation.Mar.2022
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://www.kaggle.com/c/nyc-taxi-trip-duration
https://arxiv.org/abs/2203.09438



