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Te staggered work hours (SWH) policy is a practical strategy for managing travel demand, aiming to spread out the temporal
distribution of travel volume by adjusting the schedules of travelers’ activities.Te infuence of the SWH policy on the commuting
patterns of passengers using bus transit is not yet clear. We addressed this issue in a many-to-one bus line, treating commuters as
Q-learning agents learning to minimize regrets by selecting appropriate bus runs. Te learning outcomes reveal a SWH-induced
equilibrium, where commuters departing from the same station with the same work start time experience identical minimal
commuting costs, regardless of the chosen bus. Subsequently, we investigate the efectiveness of SWH policy by manipulating two
key control variables: the division of travel demand between two categories of travelers and the staggered time interval. Te results
confrm that congestion during peak hours can potentially be mitigated by carefully selecting the above two key parameters.
Correspondingly, we provide optimal control boundaries for these two parameters to design an efective SWH policy. Fur-
thermore, we explore the combined impact of physical distancing and SWH policy on trafc fow patterns during an epidemic
outbreak. Concurrently, we assess the infection risk through a surrogate index, revealing that the SWH policy has a positive efect
in mitigating the risk of contact exposure.

1. Introduction

One feasible solution to alleviate urban congestion is the
implementation of travel demand management measures.
Tese measures aim to redistribute travel demand in terms
of space, mode of travel, or time by modifying the travel
behavior of trafc participants. Usually, travel demand
management policies include ridesharing, car sharing, on-
demand services, tolls, and fexible work arrangements.
Staggered work hours (SWH) policy is one type of fexible
work arrangements, and it is the primary focus of this paper.
Unlike rigid work schedules, SWH policy permits employees
to maintain the same number of daily working hours but
with varying work schedules. One signifcant advantage of
the SWH policy is its ability to disperse travel demand

during the peak hours, thereby mitigating peak congestion
and reducing commuting times. Comprehending how SWH
policy infuences commuters’ travel behavior is essential in
the development of an efective SWH policy and optimizing
the transport system during its implementation.

Te optimal distribution of work start times was frst
examined by Henderson [1]. He carried out a theoretical
study by considering trafc congestion and productivity
efects. Arnott [2] generalized Henderson’s model by con-
sidering frm heterogeneity and analyzed optimal congestion
tolls. Rather than relying on the fow congestion model (e.g.,
Refs. [1, 2]), subsequent studies depict the dynamic con-
gestion pattern during peak periods through the bottleneck
model introduced by Vickrey [3]. A considerable number of
studies have expanded Vickrey’s model in diverse ways. For
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instance, scholars have taken into account limitations such
as vehicle parking [4], broadened the model to networks
with multiple bottlenecks [5], and evaluated the impact of
pretrip information on the selection of departure times
[6, 7]. For a thorough understanding of the extensions and
applications of the bottleneck model, interested readers are
directed to the review literature by Small [8] and Li et al. [9].
Ten, using the bottleneck model, several researchers have
studied the infuences of the SWH policy on trafc con-
gestion and urban productivity [10–12]. Recently, Yang et al.
[13] explored the infuence of SWH policy on the departure
time choice behavior of commuters by experimental studies.

Public transit networks handle substantial passenger
loads, particularly during morning and evening peak hours.
Terefore, it is essential to understand how commuters
choose their departure times when utilizing urban mass
transit services. Several studies have tackled this problem.
For instance, Huang et al. [14] developed a departure time
choice model for a one-to-one transit line and assumed that
commuters choose their departure time by trading of the
costs of in-vehicle crowding with the costs of schedule
delays. In a subsequent study, Tian et al. [15] expanded
commuting patterns to a many-to-one transit line and
provided equilibrium properties. De Palma et al. [16, 17]
discussed the formulation of in-vehicle crowding in public
transport and obtained the optimal pricing and the optimal
scheduling. Other than in-vehicle crowding, some re-
searchers assume that the primary congestion cost of
travelling is the waiting time at oversaturated stations. For
example, Yang and Tang [18] depicted a rail transit bot-
tleneck model, where commuters select their departure
times by trading of between schedule delay costs and
queuing time costs. Ten, they proposed a fare-reward
scheme to relieve queuing congestion at transit stations.
Tang et al. [19] proposed a hybrid fare scheme by consid-
ering the heterogeneity in transit commuters’ scheduling
fexibility. However, nearly all previous studies have focused
on equilibrium departure rates, assuming that commuters
share the same work start time.Te travel behavior of public
transit commuters remains unknown when implementing
a SWH policy. Our work aims to fll this gap.

While mathematical equilibrium models are efective in
examining equilibrium properties, they encounter analytical
challenges when dealing with complex real-world factors, such
as user heterogeneity, time-varying demand, and fexible
transport services. In addition, these models overlook the
crucial aspect that travelers learn and self-adjust their behavior
over time. As such, agent-based simulation technology appears
to be one feasible way to deal with user equilibrium. Such
a method is inherently superior insofar as it can depict in-
dividual responses to the work start time and the interaction
between other participants muchmore realistically. It has been
proved that agent-based simulation technology is efective,
fexible, and expansible in trafc system modelling [20, 21].
Yang et al. [22] utilized a multiagent-based Q-learning al-
gorithm for evaluating the infuence of SWH policy by sim-
ulating travelers’ time and location choices in their activity
patterns. Xie et al. [23] simulated commuter departure time
choices based on the BM reinforcement learning model in

a many-to-one bus transit scenario. In our approach, pas-
sengers select their departure time guided by the regret theory.
Tis theory posits that an agent’s decision is infuenced not
only by the associated utility but also by the anticipated
disutility (regret) for not making a better decision [24]. Te
adjustment process is modeled using a multiagent-based Q-
learning method, where the regret value serves as the re-
inforcement learning signal to guide choices.

So far, the SWH policy has been applied to tackle issues
like congestion, but it could also bear signifcance for
addressing other societal challenges, such as public health
crises during an epidemic outbreak. For instance, in the
context of the COVID-19 pandemic, certain measures like
lockdowns or travel interventions have been implemented to
decrease interactions among travelers on public transport
(Tomas et al. [25]). One such intervention is physical dis-
tancing, which mandates that the occupancy of vehicles or
facilities never exceeds a predetermined threshold (e.g., 50%
of the maximum vehicle capacity). Consequently, the initial
problem transforms into peak-hour bus commuting with
a capped bus capacity. Ten, our primary concerns involve
assessing the collective impact of capped bus capacity and
SWH policy on trafc fow patterns and understanding the
properties of the resulting equilibrium state. In addition, we
seek to explore the role of the SWH policy in reducing the
probability of infection. To our knowledge, these topics have
not been previously discussed in the realm of public transit
systems. Te insights gained can ofer valuable recommen-
dations for adjusting public transportation operations and
scheduling residents’ work hours during epidemic outbreaks.

In summary, the purpose of this study is to delineate the
departure patterns of commuters travelling on a capacity-
limited urban bus transit line. Specifcally, we aim to un-
derstand how the combined efects of SWH policy, line
characteristics, and physical distancing infuence com-
muters’ choices of departure times. We make the following
contributions:

(1) We derive the SWH-induced equilibrium using
a multiagent-based Q-learning algorithm, in which
the regret value is considered as the reinforcement
learning signal guiding departure time choices.

(2) We evaluate the SWH policy by analyzing the
properties of the equilibrium state of trafc fow in
terms of the commute travel cost and time-space
distribution of departure fows.

(3) We examine the combined efect of physical dis-
tancing and SWH policy on trafc fow patterns on
public transit during an epidemic outbreak.

(4) We provide optimal values for the staggered time
interval and the proportion of the staggered pop-
ulation in designing a SWH policy, both with and
without the requirement of physical distancing.

We emphasize that we test the SWH policy only from the
perspective of commuters, i.e., based onminimizing their travel
costs. Te beneft analyses of the other two participants—the
bus transit operator and the company—are beyond the scope of
our discussion.
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Te remainder of the paper consists of four sections.
Section 2 defnes the problem and provides an overview of the
methodology. Section 3 introduces an agent-basedQ-learning
model.We experimentally evaluate the SWHpolicy in Section
4. Conclusions and future studies are discussed in Section 5.

2. Problem Definition

We consider a bus line connecting a central business district
to several residential areas, as depicted in Figure 1. Com-
muters adjust their departure times in response to assigned
work starting times, taking into account in-vehicle crowding
costs and schedule delay costs. Tis scenario aligns with
previous studies [15, 23], ofering ideal reference lines for
model verifcation.

More precisely, the bus line includes Sboard-only sta-
tions H1, H2, · · · , HS−1, HS and a destination station W. We
refer to stations near the start of the line as upstream sta-
tions, and stations near the end of the line as downstream
stations. During the peak hours, a number of N � 

S
s�1ns

commuters travel through the bus line, where ns is the
number of commuters departing from station Hs. Te bus
company schedules M buses during the peak period, and
each bus has a maximum capacity of Cbus (passengers). Te
buses arrive at the destination station W with fxed-time
headway Hbus (h). Let A � 1, 2, . . . , M{ } be the index set of
buses, where 1 denotes the frst bus reaching the destination.
For modelling tractability, the running time in each of two
neighboring stations from H1 to W is assumed to be con-
stant and is denoted by τs.

All commuters are considered to be frequent users who
are acquainted with the bus timetable through day-to-day
learning or have complete information about the schedule
provided by the trafc authorizer. Under this assumption,
passengers experience zero waiting time at the station.
Terefore, the departure time choice problem transforms into
a bus run choice problem, illustrating how commuters select
a bus that minimizes their total generalized commuting costs.

Figure 2 illustrates the scheme of the multiagent-based
learning process. Commuters respond to the imposed work
starting time by minimizing their disutility of travelling and
arriving by selecting their departure time. In this dynamic
system, one agent must alter his/her departure time to re-
spond to other agents’ decisions. When an agent takes
a particular bus, it will increase the degree of in-bus con-
gestion, afect the ride experience of other agents, and
consequently infuence their decision-making. By consid-
ering the mutual interactions among commuters, all par-
ticipants’ schedules can be calculated. As such, the
accumulative volume distribution can be determined. For
these reasons, such models are suitable for investigating how
individual agents interact and learn to maximize their re-
wards. All agents are expected to converge to the state
represented by the equilibrium if they are rational. In other
words, each agent aims to choose the strategy that maxi-
mizes their utility function, creating a steady state—a
combination of strategies for all agents—where no agent can
beneft by unilaterally changing their strategy.

Here, we clarify two key components in Figure 2.

2.1. SWHPolicy. As a preliminary analysis, we here consider
a simple double-work start-time scenario. Ten, the control
variables relevant to the SWH policy are (i) the demand
proportion of the two groups and (ii) the staggered time
interval of the two groups.

Formally, bus commuters are divided into two groups:
(1) commuters in Group 1 have the same work start time a∗1
and (2) commuters in Group 2 have the same work start time
a∗2 . Let a∗1 ≤ a∗2 , and then, the staggered time interval equals
to Δt � |a∗1 − a∗2 |. Te number of commuters within the two
groups follows the division of Φ(ρ, 1 − ρ), where ρ is the
proportion of Group 1 among all commuters. For instance,
Φ(0.7,0.3) represents that 70% of the commuters belong to
Group 1 and the remaining passengers are in Group 2.

2.2. Bus Operation Policy. Here, we are referring to a bus
operation policy concerning physical distancing during
epidemics. We consider two scenarios: one with the
adoption of physical distancing and another without it. In
the frst scenario, we assume normal conditions where urban
buses can be used up to their full physical capacity. In the
second scenario, which pertains to epidemic conditions, the
occupancy rate of vehicles must not exceed a predefned
threshold to ensure safe social distancing, i.e., 50% total
occupancy. Terefore, the control variable relevant to the
bus operation policy in this context is the bus occupancy.

3. Multiagent-Based Q-Learning Model

In our approach, commuters are viewed as Q-learning agents
who make departure time decisions. In what follows, we use
the words “commuter” and “agent” interchangeably there-
after. One agent’s decision will infuence other agents’ de-
cisions when travelling in the same bus line. For example, an
agent choosing to take a certain bus will increase the degree of
congestion in this bus, thus afecting other agents’ ride ex-
perience. To avoid congestion or capacity limitation, the agent
who initially decides to take the same bus may select a new
bus, which will again infuence other agents.

Te following basic concepts need to be defned in
advance when implementing the Q-learning algorithm.

(i) Action Set: Tis corresponds to the set of bus runs,
as we have transformed the problem of choosing
departure times into a bus run selection issue.

(ii) Reward: Tis represents the immediate feedback
received upon taking a bus, and in our study, it is the
inverse of the generalized commuting cost. Te

H1
H2 HS−1 HS

W
n1

n2 nS−1 nS

τ1 τS−1 τS

Figure 1: Bus line with multiple board-only stations and a single
destination station.
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value of the commuting cost is bus-dependent, i.e.,
the number of agents who take t\he same bus.

(iii) Q-Table: Utilized for calculating the maximum ex-
pected future rewards associated with an action. In
this paper, the regret value serves as the reinforcement
learning signal. Each agent maintains a Q-table that
stores regret values for each bus run. A lower regret
for a particular action implies a higher reward or,
equivalently, a lower cost associated with taking that
action.

Algorithm 1 presents the pseudocode of such a learning
process in a daily iterative manner. At the beginning of
a learning episode, agents receive the average congestion
cost of each bus run based on previous days. Afterward, each
agent chooses a bus run by using the ε − greedy policy
derived from the Q-table. Ten, the agent takes the bus and
records its commuting cost (Section 3.1). When the travel is
fnished, the agent estimates his/her regret using the actual
commuting cost and the received history information
(Section 3.2). As an intermediate step, each agent also es-
timates the costs of his/her nontaken buses to compute the
regret. Eventually, the Q-table is updated and guides the bus
run selection on the next day (Section 3.3).

3.1.GeneralizedCommutingCost. We use the term “reward”
instead of “cost” for consistency in our terminology. Te
reward is inversely associated with one agent’s generalized
commuting cost from taking a bus run. Generally, com-
muting costs encompass ticket fare, crowding costs, in-bus
travel costs, and penalties for schedule delays (early or late
arrival). For simplicity, we assign a zero value to the ticket
fare since commuters leaving from the same station incur
identical fares, which do not impact their departure time
choices. Besides, the travel cost is the same for all commuters

departing from the same station, and it does not infuence
the departure time choices of commuters.Terefore, without
loss of generality, we set the value of the travel cost to zero
from the same station in our discussion. In summary,
commuters merely make their bus runs choices by trading
of their in-bus crowding costs and the schedule delay
penalties.

Specifcally, let TCa
s denote the total commuting cost of

a commuter who departs from stationHs and takes a bus run
a ∈ A. TCa

s is given in the following equation:

TCa
s � ccrowdness(a, s) + cdelay−penalty(a). (1)

In equation (1), ccrowdness(a, s) is the commuter’
crowding cost by taking bus run a at station Hs, and its value
is determined by the degree of crowding efects and the in-
bus time. Ten, ccrowdness(a, s) can be calculated by

ccrowdness(a, s) � 
S

k�s

g 
k

m�1
n

m
a  · τk, (2)

where nm
a indicates the number of commuters from station

Hm taking bus a and τk is the time spent on the bus between
two neighboring stations Hk and Hk+1. Te function g(·)

calculates the crowding cost per unit of in-bus travel time,
which is assumed to be monotonically increasing with the
number of commuters carrying on.

In equation (1), cdelay−penalty(a) indicates the schedule
delay penalty with respect to the scheduled work start time
by taking bus service a. We assume that there is a bus ar-
riving at the workplace W punctually, and this bus run is
labeled by a∗. We also call a∗ the work start time. In this way,
any bus run with index a< a∗ will ultimately arrive early
with an early arrival time of a∗ − a, while any bus run with
index a> a∗ will arrive late with a late arrival time of a − a∗.
Tus, the schedule delay cost cdelay−penalty(a) is given as

Agent 1

Agent n

Departure 
time 

distribution 
for N
agents

Update 
strategy 

Update 
strategy 

Generalized 
travel cost

Day iteration

Bus line 
characteristics 

Operating 
policy

Commuter
characteristics 

SWHs 
policy

DYNAMIC EQUILIBRIUM AGENT-
BASED USER 

EQUILIBRIUM 

Reach stable state
Aggregate result

Figure 2: Scheme of the multiagent-based learning process.
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cdelay−penalty(a) �

β a
∗

− a( Hbus, a< a
∗
,

0, a � a
∗
,

c a − a
∗

( Hbus, a> a
∗
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where the coefcients β and c are the costs of a unit schedule
delay that is early and late, respectively. According to Small
[8], we set 0< β< c.

All commuters are assumed to be homogeneous re-
garding the value of time, the schedule delay coefcients, and
the feeling of congestion. Heterogeneous commuters can be
easily distinguished by their diference in the value of the
travel time and schedule delay costs. To make the conclu-
sions more concise, we do not consider the departure
choices of heterogeneous commuters in this work.

3.2. Regret Estimation. Within the Q-learning algorithm,
regret serves as a reinforcement signal, guiding commuters to
minimize their estimated regret. To calculate regret, a com-
muter must possess comprehensive knowledge of (i) the av-
erage cost incurred by the commuter and (ii) the average cost of
the best-fxed action in hindsight. Unfortunately, determining
the latter necessitates advance knowledge of the commuting
cost for all bus runs each day, a task typically impossible in
reality. To solve this, Romas et al. [24] proposed an alternative
defnition of regret that describes the estimated regret of each
action. A commuter can estimate regret according to this
model by combining global and local information.

Te global information refers to the mean estimated
reward of all bus runs in the system. As suggested by Romas
et al. [24], such information can be collected by a central
authority at the end of each day and sent to terminal clients
through a mobile app. Here, the app recommendations are
merely used to calculate the agents’ regrets in their decision-
making process. For a bus run a ∈ A, let r(at

s) be the reward
for taking bus run a at station Hs on day t. Te value of r(at

s)

is inversely associated with the commuting cost TCa
s , i.e.,

r(at
s) � −TCa

s . Using such information, the app can compute
the mean reward for all bus runs. At a given station Hs, let
r̂(as) be the mean reward of taking bus a at station Hs up to
time T, and can be calculated by

r̂ as(  �
1
T



T

t�1
r a

t
s . (4)

Te local information, on the other hand, is the actual
reward an agent gained.Te history estimate of an action can
be defned as E � r(at

s)|a
t
s ∈ A, t ∈ [1, T] , where r(at

s)

represents the most recent reward estimate of one agent for
taking bus run a on day t departing from station Hs. More
specifcally, the value of r(at

s) is given by equation (5),
depending on whether or not the action is executed in the
current day. We use _a

t

s to distinguish the bus run taken by
the agent on day t from any of its other buses at

s. If at
s � _a

t

s,
r(at

s) equals to the experienced reward by taking bus run _a
t

s.
Otherwise, we assume the reward of nontaken actions is the
same as the previous day’s estimation. Tat is, r(at

s) can be
approximated by the most recent observation:

r a
t
s  �

r a
t
s  if a

t
s � _a

t

s,

r a
t−1
s  otherwise.

⎧⎪⎨

⎪⎩
(5)

Building upon the local and global information from the
above defnitions, we can now formulate the estimated
action regret. Let Ra

s denote the estimated regret of taking
bus run a at station Hs up to day T, with the formulation
provided in equation (6).Te former term on the right-hand
side of equation (6) is a linear combination of the local
average reward and the global average reward by taking
a bus. By maximizing the reward, we can fnd the best es-
timated bus run with the maximum expected reward. Te
latter term on the right-hand side of equation (6) represents
the history estimates of taking a bus. Tus, the estimated
action regret Ra

s can be seen as an estimate of the average
amount lost up to time T for not taking the best estimated
action.

R
a
s � max

bs∈A

1
2

r̂ bs(  +
1
T



T

t�1
r b

t
s ⎡⎣ ⎤⎦ −

1
T



T

t�1
r a

t
s . (6)

(1) Initialize Q-table: Q(a) � 0 ∀a ∈ A;
(2) Initialize history of estimates: E � 0;
(3) Initialize learning and exploration rates: α0, ε0;
(4) Fort ∈ 1, 2, · · · , T{ } do
(5) Receive app recommendations r̂(as) | as ∈ A ;
(6) Update learning and exploration rates: α � α0λ

t, ε � ε0μt;
(7) Choose action _a

t

s ∈ A using ε − greedy policy derived from Q-table;
(8) Take action _a

t

s and observe the commuting cost r( _a
t

s) using equation (1);
(9) Update estimate r(at

s) ∈ E using equation (5);
(10) Update regret Ra

s of action _a
t

s using equation (6);
(11) Update Q value of _a

t

s using equation (8): Q( _a
t

s)←(1 − α)Q( _a
t

s) + αR
_a

t

s
s

(12) End

ALGORITHM 1: Algorithm overview (for one agent only).
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3.3. Learning Process. A sketch of the learning process is
illustrated in Algorithm 1. In the Q-learning model, we use
the ε − greedy principle to balance exploration and exploi-
tation. Te ε − greedy principle works as in equation (7). A
uniform random number between 0 and 1 is generated and
then compared with ε. We call ε the exploration rates. If the
new generated number is smaller than ε, we choose to explore,
i.e., not to exploit what we have learned so far. In this case, the
bus run is selected randomly, independent of the action-value
estimates. Otherwise, the ε − greedy approach selects the bus
run with the highest estimated reward most of the time.

_a←
argmaxa Q(a), with probability 1 − ε,

random  selection, with probability  ε.
 (7)

Taking a commuter departing from station Hs for in-
stance, his/her learning process works as follows. At each day
t ∈ [1, T], he/she receives recommendation information
r̂(as) from the app. Ten, he/she chooses a bus _a

t

s ∈ A

obeying the ε − greedy principle. Upon arriving, the com-
muter calculates his/her commuting cost r( _a

t

s) immediately.
Afterward, the commuter updates his/her history action
estimation E using equation (5) and calculates the estimated
regret of taking a bus run _a

t

s using equation (6). Finally, the
commuter updates the Q value of action _a

t

i using the esti-
mated action regret for that action, as follows:

Q _a
t

s ←(1 − α)Q _a
t

s  + αR
_a

t

s

s , (8)

where α is the learning rate.
In the interactive progress, the learning rate α and the

exploration rate ε are updated by multiplying by the decay
rates λ and μ as α � α0λ

t and ε � ε0μt, respectively. Initially,
according to [24], we set α0 � 1.0, ε0 � 1.0, and λ � μ � 0.99.

4. Results and Discussion

4.1. Parameter Settings. Te simulation conditions are set as
follows: S � 4 stations, M � 50 buses, τ � (0.2, 0.2, 0.3, 0.1)

(h), n1 � 200, n2 � 350, n3 � 200, and n4 � 150 (persons).
According to Tian et al. [15], g(n) � 0.35n (RMB/h) and
(β, c) � (10, 30) (RMB/h). Te default bus capacity and
time headway are set to Cbus � 80 (persons) and Hbus � 5/60
(h), unless otherwise stated. For the SWH policy, we fx the
work start time of Group 2 to a∗2 � 40. Ten, the control
parameters are the travel demand division ρ and work start
time of Group 1. Here, the proportion ρ is identical for the
passengers boarding at all the stops. In one test, the iteration
in the learning model is set to T � 2000. When calculating
the mean values of the related cost, 50 repetitions are used to
guarantee accuracy.

4.2. Spatial-Temporal Characteristics. We frst plot the ag-
gregative travel profle in Figure 3 without implementing
a SWH policy, i.e., a∗1 � a∗2 � 40, serving as a reference line
for comparative experiments. Besides, the commuting costs

of commuters on each bus are also calculated at each station.
Te result is represented in box plots (25%–75% quartile, 1.5
IQR) as shown in Figure 4.

We could fnd the following observations from Figures 3
and 4:

(1) Commuters from upstream stations utilize more bus
services than those from downstream stations. For
example, commuters departing from station H1 take
the bus services in a range of [24, 45], and this range
decreases to [26, 44], [31, 43], and [32, 43] for
commuters departing from H2, H3, and H4, re-
spectively. Tat is to say, the farther the station is
from the workplace, the longer the duration of the
commuting period.

(2) Te profle of the cumulative number of departures
exhibits a single peak shape. Under the hypotheses
that per time unit cost of a late arrival is higher than
per time unit cost of an early arrival, the time-
declining rate of the late-arriving commuters is
higher than the time-increasing rate of early-arriving
ones. Due to the limited bus capacity, buses around
the on-time service (a∗ � 40) are fully occupied.

(3) Te commuting cost at stationsH1,H2, andH3 exhibit
centralized distributions. Tat is to say, commuters
from the same departure station have almost the
identical and minimal commuting costs regardless of
which bus they take. In other words, user equilibrium is
almost achieved.We use the term “almost” because the
standard deviation of commuting costs for users
departing from the station is relatively high.

Te aforementioned simulation results align closely with
the referenced analytical results obtained by Tian et al. [15].
Tis confrms the reliability of the proposed learning model
and thus enables us to apply it to a numerical evaluation of
the efect of SWH policy.
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Figure 3: Commuters’ departure time distribution when SWH
policy is not implemented.
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Te outcomes of applying the SWH policy are presented
in Figures 5 and 6, depicting departure time profles and the
corresponding commuting costs, respectively. Here, the
results are obtained from a typical SWH policy with a∗1 � 30,
a∗2 � 40, and Φ(0.5,0.5) and other default parameters. Te
staggered time interval is 50minutes, given that the time
headway is Hbus � 5/60 (h).

From Figures 5 and 6, we draw the following fndings:

(1) Te SWH policy does infuence commuters’ de-
parture time choices and alters the cumulative de-
parture fows. Te profle of the cumulative number
of departures exhibits a double-peak shape. Te two
peaks are at the work start times of a∗1 � 30 and
a∗2 � 40, respectively.

(2) Te SWH-induced equilibrium is identifed, where
commuters departing from the same station with the
same work start time encounter identical minimal
costs, regardless of the bus run they choose. As
shown in Figure 6, the cost variation of commuters
from the same group is considered small at the same
station.

(3) Tis segregation ultimately leads to a reduction in the
mean commuting cost. For instance, when the SWH
policy is implemented, the mean commuting cost for
commuters from station H1 is 10.58, compared to
14.26 when the SWH policy is not implemented.

It can be expected that as the staggered time interval
increases, commuters from the two groups will gradually
become more separated. When the time interval is signif-
cantly large, commuters from the two groups will not share
the same bus run. To elucidate this segregation efect, we
introduce a new index to measure the degree of mixing
between the two categories of commuters.

Here, the mixed degree σ is defned as follows:

σ �
card X1 ∩X2( 

card X1 ∪X2( 
, (9)

where X1 and X2 are two sets with the elements of the bus
index serving the commuters from Groups 1 and 2, re-
spectively. Tus, card(X1 ∩X2) indicates the number of
buses that are shared by both groups and card(X1 ∪X2)

refers to the total number of utilized buses. When σ � 0,
commuters from the two groups are totally separated from
each other; when σ � 1, all buses are shared by commuters
from the two groups.

Figure 7 shows how the ratio σ varies with the travel
demand division ρ and staggered time interval Δt. Note that,
for a given travel demand division, there is a critical stag-
gered time interval that divides the curve of the mixed ratio
into two regions: a volume-mixed region and a volume-
separated region.

In the volume-mixed region, the value of the mixed ratio
σ reduces as the staggered time interval increases. When the
staggered time interval is larger than the aforementioned
critical value, σ does not depend on the staggered time
interval anymore, with a minimum value of 0. Tis means
that in the volume-separated region, a commuter’s decision
is not infuenced by the commuters from the other group.
Moreover, the results suggest that the value of such a critical
staggered time interval depends on the travel demand di-
vision. Usually, it increases with the value of ρ. Tat is to say,
a smaller staggered time interval is enough to separate the
two groups if the volume proportion of groups with the
earlier work start time (i.e., Group 1) is more considerable.

4.3. Optimal Design. For the SWH policy, the relationship
between the staggered time interval and the proportion of
the staggered population needs to be determined appro-
priately to reduce the in-vehicle crowding. Depending on
whether physical distancing is enforced, we solve the SWH
policy design problem in a normal case (in Section 4.3.1) and
in a pandemic outbreak case (in Section 4.3.2).

4.3.1. Normal Period. Tere is no passenger fow re-
striction in the normal period, and each bus can serve
passengers to its maximum capacity, i.e., Cbus � 80 per-
sons. Tree types of costs—the mean total commuting
cost, the in-vehicle crowding cost, and the schedule delay
cost—are calculated by altering the staggered time interval
and the demand division. Te results are illustrated in
Figure 8. Here, the mean values of the three related costs
are calculated by averaging all the commuters’ costs in the
transit system.

As indicated in Figure 8(b), achieving the minimum
crowding cost requires satisfying two conditions: (1) en-
suring a sufciently large staggered time interval, and (2)
equally dividing the staggered population proportion. To
gain an exact solution, we address the following two sub-
problems: (I) determining if there exists an optimal time
interval that minimizes crowding costs for a given demand
division and (II) establishing whether there is an optimal
division of commuters that minimizes crowding costs when
the staggered time interval is specifed.
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Figure 4: Box chart of commuters’ commuting costs from the same
station when SWH policy is not implemented.

Journal of Advanced Transportation 7



(1) Fixing the Demand Proportion of the Two Groups. Figure 9
shows the relationship between the mean crowding cost and
the staggered time interval Δt for six selected travel demand
divisions.Te curve labeled by ρ � 1.0 stands for a special case
of SWH policy where two groups have the same work start
time. Tis is used as the baseline for comparison.

One can observe the following conclusions from Figure 9:

(1) Tere are two critical values of Δt that divide the
crowding cost curve into three regions: a policy-failure
region, a cost-reduction region, and a minimum cost
region.We distinguish the above two critical values by

Δ t
�
and Δ�t, and Δ t

�
≤Δ�t. In the policy-failure region,

i.e., Δt ∈ [0,Δ t
�
], the mean crowding cost is in-

dependent of the staggered time interval. Imple-
menting the SWH policy in this region will not ease
rush-hour congestion. In the cost-reduction region,
i.e., Δt ∈ [Δ t

�
,Δ�t], the mean crowding cost reduces as

the staggered time interval increases. Ten, when
Δt≥Δ�t, the crowding cost does not reduce anymore
and maintains a minimum value in the minimum-
cost region. Taking ρ � 0.1 for example, the two
critical values of the staggered time interval are Δ t

�
�

4 and Δ�t � 17, corresponding to 20min and 85min,
respectively.

(2) Let Δ_t denote the optimal staggered time interval,
where the minimum cost is achieved by the smallest
staggered time interval. By defnition, Δ_t � Δ�t. We
fnd a tight relationship between the value of Δ_t and
the value of the demand mixed ratio σ. Recall that in
Figure 7, the volume relationships of the two groups
exist in two cases: a volume-mixed region and
a volume-separated region. Te above two regions
are rightly separated by the critical value Δ_t. Te
minimum crowding cost is achieved by separating
the two classes of commuters until they travel in-
dependently, i.e., in a volume-separated region.
When the staggered time interval is smaller than Δ_t,
the two groups in a volume-mixed region and their
departure time decision afect each other. A simple
case is provided in Figure 10 with demand division
ρ � 0.5.

(3) Te optimal staggered time interval value depends
on the quantitative relationship between two stag-
gered groups. Generally, the optimal staggered time
interval decreases as the demand division increases.
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Figure 5: Commuters’ departure time distribution when SWH
policy is implemented, a∗1 � 30, a∗2 � 40, and Φ(0.5, 0.5).
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Figure 6: Box chart of commuters’ total commuting costs when
SWH policy is implemented, a∗1 � 30, a∗2 � 40, and Φ(0.5, 0.5).
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Figure 7: Diagram of the mixed ratio σ in the space of the travel
demand division ρ and staggered time interval Δt.
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(4) With regard to the minimum cost, it is also sensitive
to the demand division. Due to demand division
symmetry, i.e., ρ � 0.1 and ρ � 0.9, will fnally have
the same minimum cost. Moreover, among all of
the divisions, the minimum crowding cost can be
achieved when ρ � 0.5.

(2) Fixing the Staggered Time Interval. Figure 11 presents the
mean crowding costs as a function of the demand division ρ
for six given staggered time intervals. Te curve with Δt � 0
represents a special case where SWH policy is not imple-
mented, serving as the baseline for comparison.

One can reach the following conclusions from Figure 11:

(1) Tere are two critical demand divisions that divide
the crowding cost curve into three regions: a policy-
failure region, a cost-reduction region, and a cost-
increase region. For clarity, the above two critical
values are denoted by ρ

�

and �ρ, and ρ
�

≤ �ρ. In the
policy-failure region, i.e., ρ ∈ [0, ρ

�

], the mean
crowding cost does not depend on the staggered time
interval, and SWH policy fails to mitigate in-vehicle
congestion. Ten, a further increase to the demand
division ρ will ease in-vehicle congestion. At value �ρ,
the minimum cost is reached. If the demand pro-
portion is larger than �ρ, in-vehicle congestion in-
creases. Taking Δt � 1 for instance, the two critical
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Figure 8: SWH policy: diagrams of the three related costs in the space of the travel demand division ρ and staggered time interval Δt. (a)
Total commuting cost. (b) In-vehicle crowding cost. (c) Schedule delay cost.
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values of demand division are ρ
�

� 0.3 and �ρ � 0.8,

respectively. However, if the staggered time interval
is larger, the crowding cost is quite sensitive to the
demand division, and the policy-failure region does
not exist anymore.

(2) When the staggered time interval is predetermined,
the optimal division of the two categories of com-
muters is defned when the minimum in-vehicle
crowding cost is reached. Let _ρ indicate the opti-
mal division. Tis means that _ρ � �ρ.

(3) Te optimal demand proportion _ρ is sensitive to the
staggered time interval. Generally, as the staggered time
interval increases, the optimal demand proportion, _ρ,

tends to decrease. For example, _ρ � 0.7 when Δt � 5,
while _ρ � 0.6 when Δt � 10. However, when the
staggered time interval is large enough, the value of _ρ
stabilizes and ceases to decrease further, settling at
a value of 0.5. For instance, the critical demand pro-
portion for Δt � 20 and Δt � 15 is identical, with the
same value of _ρ � 0.5.

(4) In terms of theminimum cost, it is also sensitive to the
staggered time interval. Te minimum cost decreases
as the staggered time interval increases. However,
once the staggered time interval surpasses a critical
value, the minimum cost no longer decreases.

Summarily, the staggered time interval and volume
division are two controllable parameters for designing
a SWH policy. From the point of view of local optimization,
we fnd the scenario-dependent optimal amount of control
variables to minimize the crowding cost, assuming that one
of the two control parameters is predetermined.

Figure 12 illustrates the diagrams of efcient control
regions when designing an efcient SWH policy.

(i) Given the travel demand division, as Figure 12(a)
suggests, the staggered time interval should be
within its upper and lower boundaries. A staggered
time interval that is smaller (or larger) than its lower
boundary (or upper boundary) will not relieve in-
vehicle congestion.

(ii) In the same way, when the staggered time interval is
predetermined, the travel demand division needs to
be selected within the crowding cost reduction re-
gion as shown in Figure 12(b).

From the point of view of system optimization, the
optimal combination of staggered the time interval and
volume division should be set to achieve minimum
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Figure 9: Mean crowding costs as a function of the staggered time
interval for six selected demand divisions.
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crowding costs. As shown in Figure 12, the volume division
needs to set be at _ρ � 0.5 and the staggered time interval has
a value of Δ_t � 15.

4.3.2. Pandemic Outbreak Period. Tis section examines the
supplementary impact of physical distancing on public
transport services with the implementation of the SWH
policy. In this analysis, we presume that the physical dis-
tancing policy limits bus capacity to 50% total occupancy,
i.e., Cbus � 40 (persons). Amid the COVID-19 pandemic,
overall transport demand signifcantly decreased due to
community activity restrictions. Nevertheless, for compar-
ative reasons, we assume that the total demand remains
consistent with prepandemic scenarios (as discussed in
Section 4.3.1).

Figure 13 shows the joint impact of the travel demand
division ρ and staggered time interval Δt on the mean
commuting cost and its two components (the in-vehicle
crowding and schedule delay costs). Compared to the
scenario with Cbus � 80, the implementation of a physical
distancing strategy leads to an additional reduction in in-
vehicle congestion costs. However, due to limited boarding
constraint, certain commuters have to adjust their de-
parture times—either earlier or later—to take a bus,
resulting in elevated schedule delay costs. On average, the
decrease in crowding costs fails to ofset the rise in schedule
delay costs, ultimately leading to an overall increase in total
commuting costs.

To delve deeper into the combined impact of SWH
policy and physical distancing, we assess the changes in the
three types of costs incurred by commuters who board from
the same station with identical work start times. Two cases
are discussed, i.e., Δt � 5 and Δt � 15, and the results are
illustrated in Figures 14(a) and 14(b), respectively. Here, we
set the demand proportion to ρ � 0.5, which means that the
commuters are equally divided into two groups in each
station.

We draw the following conclusions from Figure 14:

(1) Commuters from the downstream, i.e., station H3
and H4, are signifcantly afected by the physical
distancing measures. Tese commuters need to de-
part earlier or later to avoid taking a fully loaded bus.
Te considerable rise in schedule delay costs out-
weighs the benefts gained from reduced in-vehicle
crowding.Tis leads to a signifcant surge in the total
commuting cost.

(2) When the staggered time interval is relatively small,
i.e., Δt � 5, commuters from Group 2 (with a later
work start time) in downstream stations sufer much
higher commuting costs than Group 1. Te in-
crement of schedule delay costs mainly contributes
to the rise in total commuting cost. However, the
diference between those two groups will disappear
when the staggered time interval is large enough. As
indicated in Figure 14(b), commutes from the two
groups have almost the same cost.

Finally, we provide the optimal parameter settings for
designing an efcient SWH policy under the requirement of
physical distancing. Diagrams of efcient control boundaries
are given in Figure 15. It is noticed that the combined efect
of SWH policy and physical distancing changes the efcient
control boundaries; however, the diference is insignifcant
compared with Figure 12. Specifcally, the policy-failure
region is slightly smaller. In terms of system optimization,
the optimal demand proportion should be set to ρ � 0.5 and
the staggered time interval has a value of Δ_t � 15. Tis value
is identical to the case where a SWH policy is implemented
under normal conditions, i.e., Cbus � 80.

4.4. Risk of Infection. Finally, we would like to explore the
combined efects of a SWH policy and physical distancing
concerning the risk of infection during bus transit. When
assessing the risk of infection, two crucial factors need to be
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Figure 12: Diagram of efcient control boundaries when only SWH policy is implemented. (a) Fixing the travel demand division. (b) Fixing
the staggered time interval.
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considered. One factor is the level of physical contact be-
tween passengers, which is clearly related to crowd density.
Typically, a higher number of physical contacts (or greater
crowd density) implies a higher risk of infection to some
extent. Te second factor is the duration of physical contact.
Longer durations in a crowded environment increase the
probability of passengers getting infected.

A feasible way to assess this risk is by using simulation
technology that describes a social-activity contact network
and simultaneous disease transmission (Mo et al., [26]).
However, we do not consider such a method due to its
complex and tedious analyses and the introduction of more
parameters. Moreover, we lack actual data to calibrate the
model parameters.

Here, we adopt the value of in-vehicle crowding as
a surrogate index to depict the risk of infection when
commuting on a bus line. Tis is reasonable since in-vehicle
crowding is defned as the function of the degree of crowding
efects and the in-bus time, which contains the two critical
factors for evaluating the risk of infection. Te risk of in-
fection will increase if commuters travel on a more crowded
bus; it will be much higher if they travel for longer distances.

By this defnition, we conclude that the SWH policy
provides a signifcantly safer commuting environment for
public transit in terms of the risk of infection. However,
transit safety benefts are not uniformly distributed
throughout the bus schedule. Buses near the work start times
are typically fully loaded, failing to meet the requirements of
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Figure 13: SWH-distancing policy: diagrams of the three related costs in the space of the travel demand division ρ and staggered time
interval Δt. (a) Total commuting cost. (b) In-vehicle crowding cost. (c) Schedule delay cost.
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physical distancing. In contrast, those buses departing earlier
or later, deviating from the scheduled work start time, are
safer due to the smaller number of onboard passengers.

To illustrate the above point, we record the number of
utilized buses and the number of infection-safe buses in
Figure 16, respectively. Here, an infection-safe bus refers to

one where the number of onboard passengers is no more
than 50 per cent of its maximum occupancy. We take the
case without SWH as the baseline for comparison, i.e., when
ρ � 0 and Δt � 0. In the case without SWH, the mean
number of utilized buses is 22.81, of which a mean number
of 13.43 buses are safe. When implementing the SWH policy
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Figure 14: Comparisons between SWH (Cbus � 80) and SWH-distancing (Cbus � 40) policies in two cases when ρ � 0.5. (a) Δt � 5.
(b) Δt � 15.
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Figure 15: Diagram of efcient control boundaries when both SWH and physical distancing policies are implemented. (a) Fixing the travel
demand division. (b) Fixing the staggered time interval.
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with parameter settings of ρ � 0.5 and Δt � 15, the number
of utilized buses is 31.51 and the mean number of safe buses
is 23.44.

On the basis of SWH policy, enforcing physical dis-
tancing (or limiting the maximum bus load) will further
reduce the risk of infection. Figure 17 shows the reduced
infection risk as a percentage from enforcing a policy that
combines SWH and physical distancing, compared with
implementing SWH only. It is crucial to note that physical
distancing has a signifcant impact only when the staggered
time interval is small. Te bus load factor (i.e., the mean
number of passengers per bus) is largely reduced if the
staggered time interval is large. In this case, physical dis-
tancing will not dramatically afect the bus load factor. So,
the efectiveness of physical distancing is limited. For

example, in Figure 17, there is only a 13.7% decrease in
infection risk when the staggered time interval is Δt � 2,
whereas there is a decline of 2.54% when the staggered time
interval is Δt � 18.

5. Conclusions

Tis study examined how the SWHpolicy afected commuting
pattern during peak hours. It focused on a straightforward bus
route with multiple origins and a single destination. Com-
muters’ daily departure time choices were simulated using
amultiagent-basedQ-learningmodel. In thismodel, the regret
value served as the signal for reinforcement learning, guiding
individuals in making optimal choices for their departure
times. Te study explored SWH’s efects on commuting costs
and the time-space distribution of departure fows. Results
indicated that a well-designed SWH policy infuences com-
muters’ departure time choices, leading to a deconcentration
of the temporal distribution of travel demand. Notably, a new
SWH-induced equilibrium is achieved, where commuters
departing from the same station with the same work start time
experience identical minimal costs, regardless of their choice
of bus.

Concerning the design of an efective SWH policy, the
following conclusions are drawn. First, with the division of
travel demand, the minimum in-vehicle crowding is
achieved when the staggered time interval surpasses a certain
threshold. Second, given a staggered time interval, the in-
vehicle crowding is reduced by properly adjusting the di-
vision proportion of the two groups. Tese conclusions can
be extended to situations involving physical distancing
during epidemic outbreaks. It is worth noting that SWH
policy also contributes to lowering the risk of infection
during such periods.

In this study, we focused solely on the benefts com-
muters gain from adopting the SWH policy. We neglected
the decisions of frms to impose start times (arrival times) on
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Figure 16: Te number of utilized buses and safe buses when SWH policy is implemented.

12.6

11.0

9.45

7.85

6.25

4.65

3.05

0

2

4

6

8

10

12

14

16

18

20

St
ag

ge
re

d 
tim

e i
nt

er
va

l Δ
t 

0.90.60.5 1.00.0 0.1 0.4 0.80.2 0.3 0.7
Travel demand division ρ

Figure 17: Percentage reduction in infection risk by enforcing
physical distancing based on the SWH policy.

14 Journal of Advanced Transportation



their employees. For frms, the optimal design should not
signifcantly deviate from the initial work schedules and
should yield minimal changes (Yildirimoglu et al. [27]). Tis
is because implementing substantial changes in work
schedules may reduce positive production externalities.
Tus, a SWH policy should mitigate congestion on public
transit networks while reducing the impact on enterprise
productivity as much as possible. Tis topic will be con-
sidered in future studies.

Another meaningful extension is to replace the current
simplifed bus line model with a more realistic one that takes
into account the stochastic nature of public transport op-
erations. Tis will allow us to explore how travel choice
behavior infuences the overall reliability of the bus line. In
addition, it would be interesting to investigate the combined
efect of the SWH policy and other bus operating methods,
such as stop-skipping and limited boarding, on the overall
efciency of the bus system.
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