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If dedicate a lane to connected autonomous vehicle (CAV) on a multilane road, the trafc congestion and safety risks remain
a major problem but in a diferent style. Random and disorderly mandatory lane-changing behaviour before approaching the next
ramp or intersection would have a disturbing efect on the following vehicles of the trafc fow. Tis paper mainly establishes the
optimal mandatory lane-changing location matching model for each target vehicle in the dedicated CAV lane environment. Te
aim is to minimizing the total travel time, which could take the disturbing efect into account. Tis model nests the cell
transmission model (CTM) to describe vehicle running. Te constraints include the relation between target CAV lane-changing
cell and the corresponding behaviour start time, the updating of the fow, and occupancy for varied cells. We use the Ant Colony
Optimization (ACO) algorithm to solve the problem. Trough the case study of a basic two-lane road scenario in Ningbo, we
acquire the convergence results based on the ACO algorithm. Our optimal lane-changing locationmatching scheme can save 5.9%
total travel time when compared to the near-end location lane-changing scheme. We test our model by increasing the total
number of upstream input vehicles with 4%, 11%, 15%, and the mandatory lane-changing vehicles with 60%, 200%, respectively.
Te testing results prove that out optimization method could deal with varied road trafc fow situations. Specifcally, when the
trafcs and mandatory lane-changing vehicles increase, our method could perform better.

1. Introduction

To realize the coordinated optimization of vehicles, roads,
and networks to alleviate related trafc problems, governors
and researchers are actively exploring road environments
suitable for connected autonomous vehicles (CAV). Tey
found that CAV-related road environment could be ex-
pected to achieve multiple purposes: (1) Improve road ca-
pacity [1]. Te road capacity would become higher as the
CAV penetration in the mixed trafc fow increases [2].
Collaborative adaptive cruise control (CACC) would con-
tribute to improve road capacity by 21% and 80%, when the
market share of CAV is 50% and 90%, respectively [3]. (2)
Improve trafc efciency. CAV can improve trafc efciency
because of the advanced sensing and communication
equipment in the vehicle networking system [4]. Lee et al.
used VISSIM simulation to obtain a result that the network

total network time is saved by 16% and the network average
speed is improved by 15.7%, under the condition of 30%
CAV penetration [5]. (3) Reduce trafc accident rate. Li et al.
proved that the collision risk of freeway can be reduced by
36.5%∼98.5%, through the coordinated deployment of
CACC and road variable speed limit strategies [6]. (4)
Reduce energy consumption. Gawron et al. found that the
functions in the CAV-enabled smart transportation system,
such as energy-saving driving, feet driving, and smart in-
tersection, can save about 9% energy consumption [7].

Before CAV market penetration rate reaches 100%,
mixed fow of CAV and human-driven vehicle (HV) would
be a long-lasting state. How to coordinate these two trafc
fows is an important issue. Because of lack of connected
communications, HV cannot communicate with sur-
rounding vehicles, trafc lights, and other trafc detection
devices. So, the mixed trafc situation is more complicated,
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and it is more likely to cause new types of congestion, trafc
accidents. Currently, although it is still difcult to set up the
CAV operating environment for all lanes in the whole road
network, it is relatively feasible to design dedicated CAV
lanes for some highways and main roads. Te dedicated lane
can greatly reduce trafc complexity from separating CAV
and HV onto diferent lanes. Besides, lots of studies propose
that the CAV should drive on dedicated lanes, which can
alleviate coordination problem related to the car following
interactions between CAV and HV. Talebpour et al. found
that dedicated CAV lanes perform better in the aspects of
travel time reliability and trafc congestion levels, when
comparing varied CAV management strategies [8].

However, the introduction of dedicated lanes for CAVs
inevitably disrupts the established balance of the existing
trafc system, causing diverse sensitivity reactions, especially
when some CAVs exit the dedicated lane to enter a regular
lane, such as highway exits or main road intersections
[9, 10]. When there is a reduction in road capacity within
these areas, CAVs tend to make more mandatory lane
changes (MLC) within these intricate zones [10]. Without
proper regulation, this surge in behaviour can result in
unstable trafc fow, backward congestion propagation,
congestion difusion to alternative paths, and even a cas-
cading failure of the road network [11, 12].

In response to the negative impacts on the road trafc
system caused by dedicated lanes for CAVs, this study aims
to establish the optimal mandatory lane-changing location
matchingmodel for each target vehicle in the dedicated CAV
lane environment. Te goal is to minimize trafc distur-
bances and prevent potential congestion-related issues.

2. Literature Review

2.1. Lane Changing Control Strategy in CAV Environments.
In the realm of CAV, the development of an efective lane
changing control strategy is paramount for ensuring safe,
efcient, and coordinated movement within the trafc fow.
Regarding the controller structure, control strategies can be
classifed into two categories: trajectory planning-tracking
(which includes both a trajectory planning stage and a tra-
jectory tracking stage) and integrated lane change control
strategies [13]. Te trajectory planning-tracking control
strategy is used to achieve the minimum impact on external
trafc by determining the optimal time for lane-changing
maneuvers and planning the longitudinal trajectory of the
vehicle following the lane change [14]. Tis control strategy
is more complex and is typically employed for microlevel
control of individual CAV integrated lane change control
strategies are typically used for macrolevel control, where
they operate by controlling various aspects such as speed,
acceleration, time, and trajectory to achieve objectives such
as minimal delays, smooth trafc fow, and comfortable
driving experience [15, 16]. Tis control strategy model is
relatively simpler and is more suitable for scenarios with
simpler road environments and higher vehicle densities.

2.2. Lane Changing Models in CAV Environments. Based on
the above vehicle control theory, a series of vehicle control
models are proposed. Due to the lack of real-world CAV
exposure data, research studies in CAV operation mostly
rely on trafc simulation technology.Te current simulation
models for vehicle lane-changing primarily focus on mi-
croscopic simulation. Tey generally concentrate on the
decision details of each vehicle and accurately update its
position and car-following gap distance at each discrete
interval. Mainstream lane-changing models include the
Cellular Automata Model [17, 18], the Gipps model
employing multiple factors [19, 20], game theory models
between target and infuenced vehicles [21, 22], the MOBIL
model based on safety-incentive dual criteria [23], and ar-
tifcial intelligence models represented by fuzzy logic and
neural networks [24]. Additionally, some studies have in-
corporated more realistic factors, such as diferences in
driving tendencies based on varying speed profles and the
impact of roadway conditions [25, 26].

Although these lane-changing models in a CAV envi-
ronment can portray vehicle trajectories more realistically,
the speed of simulation is very slow because the simulation
perspective is very detailed microscopic. CAV needs real-
time driving instructions to ensure safe, orderly, and efcient
movement of vehicles. However, there is generally a long-
time lag in waiting for lane-changing decision feedback
through microscopic simulation [27]. Tis time-consuming
process would not meet the response requirement related to
dynamic decision-making in the CAV environment.
Terefore, some researchers have begun to employ meso-
macro trafc simulations [28].

2.3. Application of CTM in CAV Environments. Te CTM
stands as a robust model, renowned for its simplifed for-
mulation and macroscopic approach, enabling the model-
ling of large-scale networks encompassing various factors
[29]. Within CAV-related research, the CTM model typi-
cally delineates the trajectories of both CAVs and HVs in
mixed trafc fows [30, 31]. Tese studies predominantly
focus on longitudinal fow evolution, utilizing an extended
CTM framework to discern the genesis and dissipation of
shock waves and queues within CAV-mixed trafc dy-
namics. However, the utilization of CTM in modelling
lateral trafc fow evolution remains relatively constrained,
with Pan et al. being one of the few to propose a multiclass
multilane cell transmission model [32]. Tis model in-
corporates the minimum headway acceptance criteria for
lane-changing maneuvers by both vehicle types, thereby
enabling the simulation of lane-changing behaviours of
CAVs and HVs within mixed trafc environments. Tis
illustrates the potential applicability of CTM across various
trafc fow scenarios. We seldom see using CTM to conduct
the MLC location matching work.

Building upon this literature foundation, our study seeks
to enhance computation efciency and enable real-time
CAV command transfer. Taking a mesomacro level
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approach, we use dedicated CAV lane as the scenario and
nest the CTM to establish theMLC location matching model
for the quasi-of-lane CAV and then solve the model by
adopting the Ant Colony Optimization (ACO) algorithm,
thereby addressing potential safety and congestion risks
associated with dedicated CAV lanes and improving trafc
efciency.

3. Model Establishment and Algorithm Design

3.1. Scenario Creation for Dedicated CAV Lanes. Te dedi-
cated CAV lanes can be arranged in road scenarios with no
less than two lanes. Varied numbers of lanes make little
diference in our optimization method proposal. To facilitate
model expression, a two-lane scenario is used for analysis in
this paper. A two-lane road scenario is established as shown
in Figure 1(a), which consists of the ordinary lane L1 and the
dedicated CAV lane L2. Each lane is divided into cells with
the same length.Te cell numbers are arranged from small to
large according to the direction of trafc fow.

In this paper, we allow the vehicle to leave dedicated
CAV lane to ordinary lane but not consider the opposite
lane-changing behaviour. If a CAV wants to enter the
dedicated lane, it would not be a mandatory behaviour. It
could fnd a chance of large spatial gap between neighbour
vehicles to change the lane, thus not afecting the stable
operation of CAVs in the dedicated lane. So, the opposite
lane-changing behaviour is not themajor factor contributing
to the potential change in trafc efciency. It is the reason
why we do not consider this factor when modelling.

According to our lane-changing direction assumption,
the two-lane road scenario could be changed to the cell
diagram of Figure 1(b). Table 1 explains the three types of
cells. Lane-changing cell i (i� 1, . . ., I) is a specifc design,
that only the matched CAV has the right to use the red arrow
to enter the neighbour lane.

3.2. Model Construction of an Optimal Mandatory Lane-
Changing Location Matching Model

3.2.1. Restatement of the Question. Teproposed work is like
to assign lane-changing locations to each CAV who is
previously on the dedicated lane but must diverge from the
roadway in the next link. It means that the vehicles are
matched to the individual cells and are forcibly ordered to
change lanes at these locations. Tis method is used to
minimize the negative impact on both the trafc operations
on dedicated and nondedicated lanes, provided that the
CAV and lane-changing cell are efectively matched. We
propose to discretize the entire road section before the of-
ramp or intersection into I equal cells and assign J CAVs
with MLC demand on the dedicated lane to n cells to change
lane. Te objective function of the model is minimizing the

system total travel time for all vehicle groups, where the
calculation of vehicle travel time in each cell is the key issue.
We intend to acquire the travel time information through
the vehicle occupancy and fow updating process in the
CTM. Specifcally, we construct lane-changing time by
correlating it with the CAV speed before the MLC starting,
the CAV and HV speeds in the afected area of MLC (in-
directly related to the car-following gap distance), etc.
Furthermore, all parameters mentioned in this chapter,
along with their meanings, have been compiled into a table
and included in Table 2 for easy reference.

We make the following assumptions to delineate the
conditions under which the model is applicable and to
simplify the analysis process:

(1) Each cell could only accept at most one vehicle for
lane changing.

(2) Te front vehicles are arranged to change lanes in the
front cells. It can contribute to preventing lane-
changing movement disorders.

(3) Te vehicle will not encounter any emergency sit-
uations during the lane-changing process, such as
a nonyielding vehicle behind the changing vehicle on
a regular lane.

(4) No lane change is allowed in the upstream
subsection.

3.2.2. Model Description. Tis optimization model is based
on the lane-based CTMmodel, and we construct a schematic
diagram of merging and diverging of two-lane cells as shown
in Figure 2 It is longitudinally divided into cells such as i− 1,
i, and i+ 1. L1 and L2 represent lanes 1 and 2 separately. If
cell i on lane 2 is a lane-changing cell, then xt

i,L1 represents
the occupancy in cell i on lane 1 at time interval t, ut

i,L1
represents the sending fow from cell i to cell i+ 1 on lane 1 at
time interval t, and �u

t
i,L2 represents the lane-changing fow

from cell i to cell i+ 1 at time interval t.

3.2.3. Triggering Lane-Changing Behaviour Start Time by the
Arrival of Target Connected and CAV. If a CAV is matched
to a certain cell to change lane, it is necessary to determine
when the CAV enters the corresponding cell to start the
lane-changing process. It is because this time directly afects
the simulation results of the CTM at adjacent time intervals
in the neighbour cells. Firstly, this paper records the position
sequence number of this CAV in the entire vehicle feet. In
the CAV environment, each CAV is a motion detector.Tus,
it is easy to obtain position sequence number of each CAV.
Secondly, we record the cumulative number of vehicles
passing through the corresponding cell. At last, they are
combined to acquire the lane-changing behaviour start time.
Te relevant constraints are as follows equation (1).
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(1)

where yg,h � 0 is a variable that judges whether vehicle g

changes lane in cell h. If they are matched, then yg,h � 1;
otherwise, yg,h � 0. yg,h acts as a decision variable in our
model. Te frst two lines of equation (1) depict the
aforementioned queue rule (the front vehicles are arranged
to changes lanes in the front cells), where J is the total CAVs
that would change lane in this link. Te last two lines tell us
how to calculate the lane-changing behaviour start time. In
these two inequalities, ki,j denotes the number of all vehicles
between vehicle j and the rear of cell i at the beginning of the
simulation on dedicated lane. It is also called the relative
position sequence number of vehicle j. ni is the time interval
when cell i starts the procedure of lane-changing. Te third
and fourth inequalities together could contribute to the
solving of ni. Te third inequality means that the total re-
ceiving fows before time interval ni plus the total vehicles
that have changed lanes in the upstream cells should be less
than the relative position sequence number. Te fourth

inequality together with the third one could tell us that
vehicle j just arrives at target cell i at time interval ni.

3.2.4. Flow and Occupancy Update of Lane-Changing Cells.
Te outfow from dedicated CAV lane to ordinary lane on
the lane-changing cell could be described as equation (2). If
the lane-changing maneuver in the cell i has been provided
to one of the CAVs, we named the time between the arrival
and left of the matched CAV as the duration of the lane-
changing procedure. Te condition in the frst line of
equation (2) could tell us that the variable t is just in the
procedure time. During this time, the outfow would be
determined by taking the minimum of two quantities. Te
frst constraint refects the requirement that the lane-
changing could be achieved only if the car-following gap
distance in the neighbor cell is accepted. Te second term
means that the outfow should not exceed the maximum
receiving fow in cell i+ 1 of the ordinary lane.

�u
t

i,L2 �

min f
l

x
t
i,L1

− αt
i

⎛⎝ ⎞⎠, Xi+1,L1 − x
t
i+1,L1􏼐 􏼑 · δ⎛⎝ ⎞⎠, if   􏽘
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h�1
�u

h

i,L2 � 0,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

In equation (2), Xi,L1 denotes the maximum occupancy
in cell i of the ordinary lane. δ is the average speed at which
congestion waves propagate upstream within high density
regions of the road. It could be expressed as the ratio of the

reverse wave speed to the free fow speed. f(·) is a 0-1
variable describing whether the lane change can be achieved,
taking 1 if the independent variable is greater than 0 and
0 otherwise. αt

i is the minimum acceptable gap distance for
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Figure 1: Two-lane road scenario and its cell diagram.
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lane change. Its calculation would be depicted in the next
subsection. l is the cell length.

Straightforward fow of cell i during the lane-changing
procedure could be described as the frst line of equation (3).
It is determined by not only the general fow, capacity, and
remaining occupancy but also the situation that whether the

target CAV has arrived at the ordinary lane or not. Te last
line of equation (3) could depict two conditions. One is at
the time before target CAV arrival or after lane change. Te
other is for ordinary cells on dedicated lanes. Although we
put their fow update equation in the framework of lane-
changing cell, it would not infuence the calculation result.

u
t
i,L2 � min x

t
i,L2 − 1, Qi,L2, Qi+1,L2, X

t
i+1,L2 − x

t
i+1,L2􏼐 􏼑δ, 1 − �u

t

i,L2􏼐 􏼑 · �k
t

i + �u
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if 􏽘

J
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u
t
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i,L2, Qi,L2, Qi+1,L2, Xi+1,L2 − x

t
i+1,L2􏼐 􏼑δ􏼐 􏼑, otherwise,

(3)

where Qi,L2 denotes the fow capacity in cell i of the ordinary
lane.M is a constant taking a very large quantity. �k

t

i denotes
the total number of vehicles driving in front of CAV j in cell i
at time interval t. If the target CAV does not successfully

change the lane, the fow received by the downstream cell of
the dedicated lane would be constrained by �k

t

i , and �k
t

i is
calculated as the following equation:

�k
t

i � x
t
i,L2 − 􏽘

ni

t�1
u

t
i−1,L2􏼐 􏼑 − 􏽘

i−1

g�1
􏽘

j−1

h�1
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J

j�1
yi,j � 1  and  t≥ ni and  􏽘

t−1

h�1
�u

h

i,L2 � 0. (4)

Table 1: Cell type description.

Cell type Description
Lane-changing cell It is located on the dedicated lane; the matched CAV would leave the lane at this cell

Merging cell It is located on the ordinary lane; both the cell that receives the lane-changing CAV
and its upstream neighbor cell belong to this cell

Ordinary cell All the cells that do not belong to lane-changing cell and merging cell

Table 2: Model parameters and descriptions.

Parameter
L1 Ordinary lane
L2 Dedicated CAV lane
I Total number of lane-changing cells
xt

i,L1 Te occupancy in cell i on lane 1 at time interval t
ut

i,L1 Te sending fow from cell i to cell i+ 1 on lane 1 at time interval t
�u

t
i,L2 Te lane-changing fow from cell i to cell i+ 1 at time interval t

yg,h A variable that judges whether vehicle g changes lane in cell h
J Te total CAVs that would change lane in this link

ki,j

Te number of all vehicles between vehicle j and the rear of cell i at the beginning of
the simulation on dedicated lane

ni Te time interval when cell i starts the procedure of lane-changing
Xi,L1 Te maximum occupancy in cell i of ordinary lane

δ Te average speed at which congestion waves propagate upstream within high
density regions of the road

αt
i Te minimum acceptable gap distance for lane change

l Cell length
Qi,L2 Te fow capacity in cell i of ordinary lane
�k

t

i Te total number of vehicles driving in front of CAV j in cell i at time interval t
gmin Te minimum safe following distance
li Te average follow-up headway in cell i
ct

i Vehicle equivalent used to quantify the space
σ Unit time interval length
T Te total number of time intervals
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Te occupancy update equation for lane-changing cell i
is as the following equation:

x
t+1
i,L2 � x

t
i,L2 + u

t
i−1,L2 − u

t
i,L2 − �u

t

i,L2, (5)

where xt
i,L2 denotes the occupancy of cell i on the dedicated

lane at time interval t. Te above equation shows that the
current cell occupancy is equal to the previous cell occu-
pancy plus the receiving fow minus the outfow due to
straightforward propagation and lane-changing behavior.

3.2.5. Flow and Occupancy Update of Merging Cells

(1) Calculation of Minimum Acceptable Gap Distance for
Lane Change. Te minimum acceptable gap distance αt

i for
MLC is a signifcant parameter infuencing the CTM. For
instance, equation (2) used it to check whether the lane-
changing fow could be sent. Moreover, although it is
permitted to send, the efect of this lane-changing behavior
on the downstream fow in the ordinary lane is unknown.
We could use αt

i to express this infuence.
Mathematically, the variable αt

i is related to the mini-
mum safe following distance gmin for vehicles, the speed

diference (v2(t) − v1(t)) between two lanes, and the relative
position with reference to the of-ramp or intersection spot
(see Figure 3, we use the remaining distance d(t) to depict
it). Specifcally, apart from gap acceptance criterion and lane
speed diference, the matched vehicle with MLC intention is
also afected by the remaining distance. Te remaining
distance d(t) refers to the distance from the current position
of the matched vehicle to its target of-ramp or intersection
spot. Tis distance is directly related to the driver’s as-
sessment of level of urgency associated with her/his MLC
intention. Te level of urgency is considered to follow three
sequential stages as the vehicle approaches its target turning
point [33, 34].Tese three stages are separated by two critical
positions dr and dc. Take a vehicle intending to execute
a MLC as example, the target turning point is considered to
be remote as long as the remaining distance d(t)>dr, and
close if d(t)<dc, where dr and dc are distances that defne
the range within which the variable αt

i linearly varies from
the upper bound to the lower one based on the current speed
diference v2(t) − v1(t).

αt
i �

cl · h v2(t) − v1(t)( 􏼁 + cf · h v1(t) − v2(t)( 􏼁 + gmin, if  d(t)> dr,

cl · h v2(t) − v1(t)( 􏼁 + cf · h v1(t) − v2(t)( 􏼁􏽮 􏽯 ·
d(t) − dc

dr − dc

+ gmin, if  dc ≤d(t)≤dr,

gmin, if  d(t)< dc,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where the function h(x) is defned as equation (7).

h(x) �
x, if  x≥ 0,

0, if  x< 0.
􏼨 (7)

Te constant cl and cf presents relationship between
speed diference with extra leading gap and extra lag gap,

when the matched vehicle is still not too aggressive to ex-
ecute a lane change.

To successfully change lanes, several important factors
need to be considered. It would at least include the car
following gaps in both lanes, the speed diference between
the two lanes, and the extra lag gap, etc. Of course, if it is the
MLC in our article, in addition to the above factors, the

Cell i-1 , Lane 2
xti–1,L2

Cell i+1 , Lane 2
xti+1,L2

ut
i,L2

ut
i,L1ut

i–1,L1

ut
i–1,L2

ui,L2

Cell i+1 , Lane 1
xti+1,L1

Cell i-1 , Lane 1
xti–1,L1

Cell i , Lane 1
xti ,L1

Cell i , Lane 2
xti ,L2

–t

Receiving fow Sending fow

Figure 2: Schematic diagram of merging and diverging cells caused by lane-changing maneuvers.
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distance between the current position and the downstream
of-ramp should also be considered. Tis distance is directly
related to the driver’s assessment of level of urgency asso-
ciated with her/his MLC intention. Tus, it would afect the
minimum acceptable gap for MLC. In our paper, these
factors are all considered to a certain extent. However, our
simulation model is limited to the characteristics of meso-
macro perspective. When considering the car following gap,
it is not as much detail as microsimulation can. But even so,
it does not afect the fdelity of the lane changing operation.
Te reasons are as follows.

As to CAV lanes, we do not need to think too much of
the car-following distance infuence when changing lanes.
Because all CAVs are controlled by CAV data center and
their speeds can be simultaneously adjusted.When changing
lanes, other CAVs can accelerate and decelerate simulta-
neously to avoid trafc safety problems.

As to ordinary lanes, although we have set a minimum
acceptable gap based on speed diference, an issue is that
how to keep enough distance between the MLC vehicle and
the vehicle behind (also called extra lag gap). Generally, if the
speed of the following vehicle is lower than MLC vehicle,
then it is not likely to cause collision risk. Tis time the extra
lag gap is not an important factor. However, if the speed
relation is opposite, then it is dangerous to change lane
without any restriction rule. We add the following rule to
deal with this scenario. Relevant legislation can be

introduced to ensure the priority right of MLC for CAV. If
a high-speed vehicle in the adjacent lanes does not give way
to the MLC CAVs, then penalties would be imposed to this
vehicle. As to the situation where the CAV speed is lower
than the target lane, we use this method to ensure the safety
of lane changing. Te impact of this measure is mainly
refected in the delay of the following vehicles caused by the
deceleration. Fortunately, these impact results have been
considered in our objective function.

(2) Allocation of Space for Merging Flow. Te vehicles
changing lanes will cause disturbance to the upstream ve-
hicles in the target lane. We would allocate more space for
merging fow to express this infuence. In another words, we
use vehicle equivalent (VE) to quantify the space. If li is the
average follow-up headway in cell i, then the VE ct

i could be
presented by αt

i /li.

(3) Flow and Occupancy Update of Merging Cells. Te oc-
cupancy update equation of the CAV merging cell can be
obtained as equation (8).

x
t+1
i+1,L1 � x

t
i+1,L1 + u

t
i,L1 − u

t
i+1,L1 + �u

t

i,j, (8)

where the receiving fow could be expressed as the following
equation:

u
t
i,L1 � max min x

t
i,L1, Qi,L1, Qi+1,L1, X

t
i+1,L1 − x

t
i+1,L1􏼐 􏼑δ􏼐 􏼑, −c

t
i · �u

t

i,j, 0􏼔 􏼕. (9)

Multiplying the number of lane-changing vehicles by
VE, we could achieve the virtually occupied space ct

i · �u
t
i,j.

Tis space would not be used when calculating the receiving
fow from the ordinary lane. In another word, ct

i · �u
t
i,j

quantifes the reduction in the amount of infow of cell i+ 1
from the ordinary lane due to the perturbation caused by the
lane change.

3.2.6. Objective Function Establishment. Te objective is to
minimize the total travel time of all the participating vehicles
in the simulation, which is shown in the following equation:

Z � 􏽘
T

t�1
􏽘

I

i�1
x

t
i,L1 + x

t
i,L2􏼐 􏼑 · σ, (10)

where σ is unit time interval length. T is the number of time
intervals, which is large enough to allow all vehicles to leave
the simulation link.

3.3. Algorithm Steps. Te ACO algorithm is a probabilistic
algorithm that can be used to fnd the optimal path in
a graph. Te heuristic probabilistic search method is prone
to fnd the global optimal solution rather than getting stuck
in a local optimum. By establishing the inside heuristic
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lane
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(yi,j = 1)

ν1 (t) ν1 (t)

αi
t

d (t)
Off-Ramp

Leading
Vehicle

–

ν2 (t)

|ν1 (t) – ν2 (t)|

Figure 3: Minimum acceptable gap distance αt
i and its impact factors.
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information function and pheromone intensity update
equations, the ACO could be used to solve our model.

When solving this model with the ACO algorithm, the
path found by each ant is assumed to be a sequence of cells.
Each cell in the sequence is matched to the CAV with lane-
changing intention in order of vehicle code. Te related
algorithm and its annotations are shown in the following
steps. Some important steps and the included parameters are
described in Algorithm 1.

In this algorithm, two list type variables, CELLTABLE
and ROUTETABLE, are used to express the path solutions
found by ant colonies. ROUTTETABLE is the transpose of
CELLTABLE. Each row of CELLTABLE corresponds to
a lane-changing vehicle. Each column represents an ant.
Each row of ROUTETABLE corresponds to an ant. Each
column represents a lane-changing vehicle. Teir elements
are matched cells.

Te frst equation in the algorithm is the equation of
transition probability (line 11 in the algorithm). Given a ve-
hicle is matched to a cell, the matching probability of the next
vehicle and another cell could be calculated by this equation.
In the equation, α is the coefcient of pheromone intensity
factor, and β is the coefcient of heuristic information
function factor. allowedrk,j−1

contains all the cells whose
number is larger than rk,j−1. If the cell is out of allowedrk,j−1

,
then we set the corresponding transition probability to be 0.

We update the heuristic information function as follows
(line 20 in the algorithm). Given cell h and i, we should check
whether both cells exist in the path found by ant k. If yes,
then we should calculate the lane-changing delay in cell i and
express it as delayk,h,i. Summing up these delays after
searching all ants, we could acquire total delay. It is better to
retain the cell i if the total delay is low. In another word,
heuristic information value and total delay should be in-
versely proportional. Tus, we present heuristic information
function ηh,i with the style of line 20.

We update the pheromone intensity by using the pre-
vious pheromone and additional pheromone (line 21, 22 and
23 in the algorithm). We use the pheromone volatility factor
ρ to reduce the infuence of previous pheromone. As to the
additional pheromone, it is related to total pheromone Q (a
constant) and objective function value Zk. Tere is a positive
correlation between additional pheromone and Q and
a negative correlation between additional pheromone and
Zk. Specifcally, even if the ant does not pass the two selected
cells together, we should also provide quantity to the ad-
ditional pheromone. Te only diference is that we use
a constantW (less than 1, generally adopting 0.5) to control
the pheromone value to prevent fast local convergence. In
addition, we could constrain the pheromone into a certain
range to prevent premature convergence.

4. Case Study

4.1. Case Background. Zhejiang Province in China is cur-
rently building “Hangzhou-Shaoyong Wisdom Express-
way.” Te expressway starts from Xiasha interchange in
Hangzhou City and ends at Chaiqiao interchange in Ningbo
City and has a total length of 175 kilometers. Its long-term

goal is to provide a vehicle-road collaborative autonomous
driving experience. Besides, since Ningbo Zhoushan port is
the world’s largest port by throughput volume, the gov-
ernment has the plan to provide a dedicated lane for con-
nected truck platoon to serve efcient road freight transport
for this port. In this paper, we select the 13.89 km section
from Beilunshan interchange to Chaiqiao interchange
(eastbound direction) for analysis. Te road is assumed to be
a two-lane expressway scenario. We deploy the initial ve-
hicles along the whole road and study the lane-changing
subsection from Xiapu interchange to Chaiqiao interchange.
Figure 4 shows the map of road section and interchange.

Te schematic diagram composed of the two-lane cells
based on the study section is shown in Figure 5.Te left side of
the driving direction is the dedicated CAV lane; the right side
deploys the ordinary lane. Assume the free-fow speed and
simulation time step to be 100 km/h and 10 s separately, and
thus, the length of each cell is approximately 279m. Since the
total length from Beilunshan to Xiapu is 8.33 km, then we
could provide 30 cells to divide the lane in this subsection by
considering single cell length. We numbered these cells with
codes 1, 2, 3, . . ., 30. Similarly, the subsection from Xiapu to
Chaiqiao is divided into 20 cells, numbered 31, 32, 33, . . ., 50.

4.2. Parameter Initialization

4.2.1. Vehicle Deployment and Fundamental Diagram in the
Cell. Te initial vehicle numbers of all cells are generated in
a random way, which obey to uniform distribution. Figure 6
shows the initial vehicle numbers on CAV-only lanes and
ordinary lanes separately. To analyse the lane-changing
infuence in the studied subsection (cell 31–50) fairly and
objectively, we assume that no lane change is allowed in the
upstream subsection and the initial vehicles in the studied
subsection would not change lanes.

We should provide the upstream vehicles which have
MLC demand in the downstream subsection. Tese vehicles
are shown in the Table 3.

Figure 7 in the example describes the fundamental di-
agrams of trafc fow on the ordinary lane and the dedicated
lane, respectively. Tese diagrams are also called fow-
density trapezoidal relationship graphs. Tey can refect
the diferences with respect of maximum fow, minimum
headway, maximum vehicle speed, reverse shock wave
propagation velocity, etc. Te maximum fow of dedicated
lanes and ordinary lanes is 2500 and 1600 veh/h separately,
which shows the dedicated lane performs better. Te ratio of
the unit distance to the trafc density is the headway, and the
minimum headway is obtained from the maximum trafc
density. Due to the varied maximum trafc densities in the
two lanes, the minimum headways are also diferent. Te
fgures show that the minimum headway in the dedicated
lane is smaller than that in the ordinary lane. In addition, the
slope between the point in the line and the origin is the
vehicle speed. In this three-segment line, when the fow and
density are arranged on the frst line segment, the maximum
vehicle speed can be obtained. It is also named free-fow
speed. By comparing the settings of the two fundamental
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diagrams, it can be found that the free-fow speed on the
dedicated lane is higher than that in the ordinary lane. Te
slope of the third line segment shows the reverse shock wave
propagation velocity δ. Tey are 40 and 30 km/h separately
in these two lanes. Te value diferences in these indicators
can refect the relative advantages of dedicated lanes.

4.2.2. Parameters of ACO. We set the parameters of the
ACO algorithm in Table 4. As to the parameters m, α, β, ρ,
andQ, the reference ranges are [1, 10], [1, 4], [0, 5], [0.1, 0.5],
and [100, 500], respectively. Table 4 shows the relative
feasible input of the parameters after several tests.

4.3. Analysis of Optimization Results

4.3.1. Convergence Process of Iterative Optimization. Te
process of the system total travel time versus the number of
generations is shown in Figure 8. Te green line represents
the evolutionary curve of the optimal solution, and the blue
line represents the mean value of the system total travel time
for all solutions under the corresponding iteration. Te
trend of the total travel time shows that it can eventually
converge with the increase of the number of iterations. Te
optimal total travel time could keep stable after the 750th
iteration, indicating that the ACO performs well in solving
the model. During the initial 50 iterations, the objective

function value decreases rapidly. It is because the ran-
domness and self-organization characteristic of the ACO is
more apparent at the beginning of the iterations. In the
subsequent iterations, the objective function value decreases
more slowly because more pheromones are stacked on the
shortest path. Tese stacked pheromones produce the efect
of positive feedback on the historical better solutions, which
would be retained in the following iterations. At the last
stage of the iteration, since the accumulation of pheromone
tends to be stable, the total travel time will not fuctuate
greatly. Finally, the optimal system total travel time obtained
is 84130 s.

4.3.2. Simulation Results of the Optimal Solution. Te
matching relationship between the vehicles with MLC de-
mand and lane-changing cells under the condition of op-
timal solution is shown in Figure 9. Te MLC vehicles 1–5
take cells 36, 40, 43, 49, and 50 as the lane-changing loca-
tions, respectively. Teir lane-changing start times corre-
spond to the 32nd, 35th, 26th, 28th, and 25th time intervals,
respectively. Among them, the vehicles in cells numbered 43,
49, and 50 change lanes relatively early because these ve-
hicles are in leading positions initially, and thus, their
moving is less afected by other vehicles. In addition, these
vehicles are closer to the target cells, which will also con-
tribute to the early start of lane-changing operation.

Input: ant number m, limited iteration number N
Output: CELLTABLE, ROUTETABLE
Initialize list CELLTABLE and ROUTETABLE with lane-changing vehicle j← 2, . . ., J and ant k← 1, . . ., m separately
Initialize the pheromone intensity matrix τ with an all-ones matrix and the heuristic information function matrix η with 0.2
while n≤N do
j← 1 //Assign the 1st lane-changing vehicle to j
rk,j←RAND k� 1, . . ., m //For the ant k, match a lane-changing cell to vehicle j, and name the selected cell as rk,j

CELLTABLE (j)← r//Match m lane-changing cells to vehicle j
for (k← 1, . . ., m) do

for (j← 2, . . ., J) do
prk,j−1 ,i← (τrk,j−1 ,i

α · ηrk,j−1 ,i
β/􏽐h∈allowedrk,j−1

τrk,j−1 ,h
α · ηrk,j−1 ,h

β) , i ∈ allowedrk,j−1 //Given cell

rk,j−1 is matched to vehicle j− 1, the conditional probability of selecting cell i to match with vehicle j is shown in this equation
rk,j←Roulette (prk,j−1 ,i) //Acquire the j th matching cell rk,j based on roulette wheel selection

end
end
CELLTABLE (j)← r
ROUTETABLE←TRANSPOSE (CELLTABLE)
Zk← Simulate (ROUTETABLE (k)) k� 1, . . ., m //For the ant k, execute CTM simulation according to equations (1)–(9), and

output the objective value Zk

ηh,i← (1/1 + 􏽐 k�1···m and h,i∈ROUTETABLE(k)delayk,h,i),∀h< i //heuristic information function update

Δτh,i← 􏽘 k � 1 · · · m and h, i ∈ ROUTETABLE(k)(Q/Zk)

+ 􏽐 k � 1 · · · m and (h ∉ ROUTETABLE(k) or i ∉ ROUTETABLE(k))(Q · W/Zk),∀h< i
τh,i← (1 − ρ) · τh,i + Δτh,i //pheromone intensity update
Update (Zmin) //Compare the objective function values of all ants in this iteration and the optimal value in the last iteration, and

choose the minimum one as the optimal objective function value of this iteration, and then use its corresponding cell sequence as the
optimal solution
Update n and CELLTABLE and ROUTETABLE as appropriate

end

ALGORITHM 1: Te ACO algorithm.
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To explore the infuence of the lane-changing process on
following vehicles, we analyzed the accumulative infow and
outfow of the fve lane-changing cells. Teir fow curves are
shown in subfgures of Figure 10, respectively. In order to
focus more clearly on the fow variation around the start

time of the lane change, horizontal axis values in each graph
center on respective lane-changing start time.

In the cumulative infow-outfow graph, the longitudinal
gap between the two curves at a given time interval is the
occupancy of the cell. As can be seen from these fgures, the

Figure 4: Te study section from Beilunshan interchange to Chaiqiao interchange in Hangzhou-Shaoyong wisdom expressway.

Driving direction
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Figure 5: Schematic diagram composed of the two-lane cells.
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Figure 6: (a) Initial vehicle input in the CAV-only lane; (b) initial vehicle input in the ordinary lane.
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longitudinal gaps of these cells at the lane-changing start
time are relatively narrow, indicating that the occupancy of
the cell is low at this time interval. It also refects that the
MLC vehicles have found good times and locations to ex-
ecute lane change under the optimal solution. After the lane
change is initiated, the infows of arrival vehicles in the lane-
changing cell fail to move forward to the next cell rapidly.
Tus, the cumulative outfow curve becomes fat. It results in
a wide longitudinal gap between the two curves. As time goes
by, the congestion dissipates and the longitudinal curve gaps
of most cells get back to normal.

Given the cumulative amount of passed vehicles as
a reference, the lateral gap between the two curves is the
consumed time for the corresponding vehicle to pass
through the current cell. As can be seen from the below parts
of these fgures, their lateral gaps are relatively narrow. It
means that the leading vehicles (in front of the lane-
changing vehicles) can pass the cells in less time. How-
ever, the vehicles close to the rear of the MLC vehicles take
more time to pass the cells due to the infuence of lane
change. Additionally, vehicles far behind would be less af-
fected by lane changes.

Te horn angles formed between the two curves could
help evaluate the efectiveness of the solution indirectly. If
the angle is small and the horn shrinks early, it means that
the trafc fows in these cells move efciently and the
corresponding solution is relatively better. Te horn angle
and shrinking start time seems well in these fgures, which
proves the efectiveness of solution.

4.3.3. Comparative Analysis with the Near-End Location
Lane-Changing Scheme. Te near-end location lane-
changing scheme is generally chosen by more drivers for
MLC. For instance, Zhang et al. showed that 50% of drivers
make aMLCwithin the 600m near the freeway of-ramp [35].
However, it would easily cause the phenomenon of lane-
changing vehicle bunching. In this paper, we arrange drivers
to change lanes in cell 50 to correspond to the near-end
location lane-changing scheme. We compare the simulation
results of the optimal solution and this scheme as follows.

Te total travel time of our scheme and the near-end
location lane-changing scheme is 84130 s and 89370 s sep-
arately. Our scheme saves the total travel time by 5.9% when
compared to the near-end location lane-changing scheme.
Besides, the system total delay is 1480 s in our scheme, while
it is 6720 s in the compared scheme. Figure 11 shows the
cumulative infow and outfow of cell 50 in the condition of
compared scheme. Te vehicles (from leading to following
vehicle) start to change lanes at time intervals 25, 29, 36, 48,
and 55, respectively. It can be found that the lane change
behaviour of the MLC vehicle 2 at the 48th time interval
causes the largest delay with a total of 890 s. Under our
scheme, the maximum system delay caused by a MLC ve-
hicle is only 210 s.

Table 3: Te information of the vehicles with MLC demand.

Te code for the vehicles with
MLC demand 1 2 3 4 5

Its current cell code 2 7 18 22 27
Position sequence number 150 133 100 87 70
Note. Te position sequence number of a CAV shows its relative position when arranging the vehicles of a lane from downstream to upstream.
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Figure 7: (a) Flow-density relation on the ordinary lane; (b) fow-density relation on the CAV-only lane.

Table 4: Parameter table of ACO.

Parameters Value
Number of ants (m) 30
Coefcient of pheromone intensity factor (α) 3
Coefcient of heuristic information function factor (β) 1
Pheromone volatility factor (ρ) 0.1
Total pheromone (Q) 100
Maximum number of iterations (N) 1000
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4.4. Multiscene Application Analysis

4.4.1. System Impact of Varied Upstream Input Vehicles.
We would study the change of the downstream lane-
changing locations when the number of upstream input
vehicles increases. Due to the limitation of cell maximum
occupancy, not all upstream cells can increase the number of
vehicles. We selected a batch of cells with less initial oc-
cupancy for additional vehicle input. According to the initial
cell vehicles shown in Figure 6, we select the even-numbered
cells within the frst 20 cells on the CAV lane, namely, cell 2,
cell 4, . . ., cell 18, and cell 20, for vehicle increase. We add
20%, 50%, and 80%more vehicles to these cells, respectively,
(the increasing vehicles occupy 4%, 11%, and 15% of the
total number of initial vehicles, respectively). We arrange
these additional vehicles in the front row of the corre-
sponding cells. Te vehicle-cell matched schemes after op-
timization are shown in Table 5. As the trafcs increase, the
saving of total travel time in our method also goes upward
(from 5.9% to 9.9%) compared to near-end location lane-
changing scheme. It means that our method performs better
especially when road is congested.

By comparing Figures 9, 12–14, we could clearly fnd the
vehicle-cell matching changes before and after vehicle input
variation.

See from the above fgures, it can be found that when the
number of upstream input vehicles increases by 4%, the 4th
and 5th vehicles (in cell 22 and 27 separately) would not
change the matched lane-changing cells. When the number
increases by 11%, only the 5th vehicle’s matching result
remains unchanged. When the number increases by 15%, all
the matched results are changed. It concludes that the
variation of upstream input vehicles has a great impact on
the vehicle-cell matching results. But it has less of an impact
on the target MLC vehicle if this vehicle is in the front
position of the feet.

It can also be seen that the MLC vehicles’ matched cells
have a tendency of moving upstream when the number of
input vehicles increases.Tematched cell number in average
is 43.6 when there are no more input vehicles. Tis average
number drops to 41.4, 40.8, and 40.4 when the number of
input vehicles increases by 4%, 11%, and 15%. One of the
reasons is that when the number of input vehicles increases,
the earlier lane-changing behavior will have less of an impact
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Figure 10: Continued.
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on the overall system trafc fow operation. So, we could
learn that the MLC vehicle would change the lane earlier
when the road is congested.

4.4.2. System Impact of Varied MLC Vehicles. We provide
two more scenarios of MLC vehicles to explore whether our
method could be applied. We increase the number of MLC
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Figure 10: Cumulative infow and outfow curves of varied cells on the dedicated lane. (a) Cell 36. (b) Cell 40. (c) Cell 43. (d) Cell 49.
(e) Cell 50.

190

170

150

130

110

90

70

50

Cu
m

ul
at

iv
e v

ol
um

e

Time interval
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Cumulative Infows
Cumulative outfows

Figure 11: Cumulative infow and outfow curves of cell 50 on the dedicated lane.

Table 5: Lane-changing location matching schemes under varied upstream input vehicles increases.

Vehicle increasing proportion
of the total
initial vehicles (%)

Te cell number
corresponding to the

best lane-changing locations

Te optimal total
travel time of
the system (s)

Time saving compared
to near-end location

lane-changing scheme (%)
0 36, 40, 43, 49, 50 84130 5.9
4 31, 38, 39, 49, 50 85920 6.8
11 31, 34, 43, 46, 50 89060 9.2
15 31, 35, 43, 46, 47 90780 9.9
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vehicles by 60% and 200%, respectively. It means that the
numbers are changed to 8 and 15. Te initial position se-
quences of the expansionMLC vehicles are shown in Table 6.

Table 7 shows the comparison of our method and the
near-end location lane-changing scheme in the case of MLC
vehicles’ expansion scenarios. Te system total travel times
by our method are 84670 s and 88210 s separately in 8 and 15
MLC vehicles scenarios, which could save time by 6.4% and
11.5% compared to the near-end location lane-changing
scheme under the two scenarios. It means that our
method performs better especially when MLC demand
increases.

5. Discussion

In this paper, the setting of dedicated lanes for CAV and
variable sections for MLC could be used for practical en-
gineering application. Our design aims to deploy lateral
signal control along the dedicated lanes, while the corre-
sponding sections permit to enable MLC behaviour for the
matched vehicles. More specifcally, the contribution lies in

providing the best locations match for the CAVs with MLC
demand, and it is diferent from the conventional CAVMLC
research studies. Some of the previous research studies
design lane-changing trajectories for the road of 100% CAV
penetration [36, 37], etc. Others focus on the detailed design
of lane-changing rules but mostly ignore the impact of these
rules on the overall trafc performance [20, 38]. Our re-
search can be applied to mixed-vehicle scenarios, and the
optimal MLC location for each CAV is determined by
considering the impact of lane-changing behaviour on
overall trafc performance. Besides, although the design of
the lane-changing rule is not the major focus of this paper,
sufcient details have been considered at the level of the
mesoscopic trafc simulation model. Te model has fully
considered the impact of minimum acceptable gap distance
requirement and lane-changing behaviour on the following
trafc fow in the target lane, making the lane-changing rule
relatively feasible. For example, we amplify the virtual
outfow of lane-changing vehicles by using the variable of VE
ct

i , to achieve the hindering efect of the lane-changing
behaviour on the following trafc fow. Terefore, this

Cell 2 Cell 7 Cell 18 Cell 22 Cell 27

...

...

...... ... ... ...

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Driving direction

Figure 12: Schematic diagram of the lane changing position for the total number of upstream input vehicles to increase by 4%.
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Figure 13: Vehicle-cell matching when upstream input vehicles increase by 11%.

Cell 2 Cell 7 Cell 18 Cell 22 Cell 27

...

...

...... ... ... ...

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Driving direction

Figure 14: Vehicle-cell matching when upstream input vehicles increase by 15%.
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paper has properly considered the criteria of computing
efciency and accuracy in the selection of the simulation
model and lane-changing rule. It is a compromise method.
In future research, on the basis of not excessively reducing
the computing efciency, we would further incorporate
moremicroscopic lane-changing rules or use real-world data
to calibrate the current lane-changing parameters to im-
prove the accuracy of model application.

We use the ACO algorithm to solve the vehicle-cell
matching model. Many studies related to the matching of
vehicles and road facilities use ACO, and they also validate
the feasibility of ACO [39, 40]. ACO can be used for some
real-time decision-making problems, due to its fast con-
vergence characteristics in the process of searching for the
optimal solution. If people want to quickly obtain the so-
lution of the engineering scheme, perhaps some simple
heuristic algorithms such as Latin hypercube sampling could
be more recommended. But we cannot guarantee the result
validity of these algorithms. Fortunately, we do not need to
worry about the validity issue of ACO too much. Our model
combined with ACO can reduce the total travel time by 5.9%
when compared to the near-end location lane-changing
scheme. In future, we would compare ACO with more
evolutionary algorithms (such as genetic algorithm) to test
its accuracy.

Te MLC behaviours would be most likely to occur on
the same location near the of-ramp or intersection if no
control measure is carried out. It has a negative impact on
the safe and stable operation of the trafc system if it is in
a congested scenario. Our method could be specifcally
applied for congested roads. We verify this point by con-
ducting sensitivity analysis. Te trafc demand sensitivity
results show that if the trafcs increase (from 0 to 15%), the
saving of total travel time in our method also goes upward
(from 5.9% to 9.9%) compared to the near-end location lane-
changing scheme. Te MLC demand sensitivity results show
that if the numbers of MLC vehicles increase to 8 and 15
from 5, the total travel time savings achieve to 6.4% and
11.5% compared to the near-end location lane-changing
scheme. So, the performance of our method in congested
situation is better than the scene without control measure.

Our vehicle-location matching for MLC is a scheme sent
to CAV before it comes to the next link. Te CAV has

enough time to execute the scheme after entering the next
link. So, our research could help trafc engineers implement
the real-time trafc control on specifc roads. As to the
operation, frstly, the CAV data centre should collect CAV
dynamic position information. Secondly, this centre should
adopt our method to achieve the matching scheme once
receiving all the MLC requests about leaving the mainline in
the next link. Tirdly, this centre should send the matching
information to the screen of the corresponding CAV to
achieve in-vehicle information guidance. In conclusion, our
research can provide dynamic decision-making assistance
for the CAV data centre in improving the efciency of trafc
operation.

About the case of Hangzhou-Shaoyong Wisdom Ex-
pressway, in the ofcial scheme design of this road, it indeed
mentioned the requirement of reserving a dedicated lane for
connected vehicles. It is in line with our application back-
ground. However, the road used in this paper is still under
construction, so there are some assumptions about trafc
fow and so on. Te reason why we do not borrow the data
from other real scenarios is that some technologies are not
yet mature and nearly no such data could be referred to. For
example, because the safety problem of autonomous driving
has not been completely solved, the penetration rate of
autonomous driving vehicles is very low, and the CAV
network system is not established, etc. Tis research is
oriented to future scenarios. Since there is no application of
data related to the trafc fow of CAV in the real envi-
ronment, simulation experiment is generally used. Related
research studies adopted a hypothetical scenario for analysis
[36]. Even if there are real test data, they only design the feld
with few autonomous vehicles.

If CAVs cannot fnd the corresponding lane changing
space on the HV lanes under some conditions, is the method
still useful? When the CAV arrives at the designated place
and fnds there is not enough gap on the HV lane, the model
has set the CAV to slow down or even wait until there is
a safe gap to change lane. Te delays of itself and the related
vehicles have all been taken into account in the model. Tis
situation generally corresponds to the scenario of high ve-
hicle occupancy and MLC CAVs. Any schemes in this sit-
uation would produce delays. Our scheme performs better in
the aspect of delay when compared to other schemes.

Table 6: Te initial position sequences of the expansion MLC vehicles.

Number of vehicles
to change lanes

Te initial position sequence of the
expansion MLC vehicles

(from upstream to downstream)
Cells for MLC vehicles input

8 (+60%) 150, 143, 133, 120, 111, 100, 87, 70 2, 4, 7, 11, 15, 18, 22, 27
15 (+200%) 155, 150, 143, 138, 133, 127, 120, 111, 105, 100, 94, 87, 81, 76, 70 1, 2, 4, 5, 7, 9, 11, 15, 17, 18, 21, 22, 23, 24, 27

Table 7: Comparison of our method and the near-end location lane-changing scheme in the case of MLC vehicles expansion scenarios.

Number of vehicles
to change lanes

Cell numbers matched
by MLC vehicles

Total
travel time (s)

Time saving compared
to near-end location

lane-changing scheme (%)
8 31, 36, 37, 39, 46, 48, 49, 50 84670 6.4
15 31, 32, 34, 35, 36, 39, 40, 41, 42, 44, 45, 47, 48, 49, 50 88210 11.5
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However, these conclusions are based on an assumption.Te
real-world evolution of future short-term trafc fow is
assumed to be close to that from ourmodel. It is possible that
the trend of trafc fow is not consistent with our model.
Faced with this uncertain trafc development trend, the only
thing we can do is to improve the accuracy of our prediction
method. For instance, we could shorten the simulation unit
time and the cell length. If the trafc fow evolution is
unusual, a microsimulation model can be nested to consider
more factors to achieve relatively correct fow estimation. Of
course, for some extreme trafc development trends, any
trafc fow estimation method could not deal with this kind
of situation. At this time, some emergency measures need to
be taken. For example, if the efect of lane-changing mea-
sures is not as good as expected, it is necessary for the data
centre to intercept the upstream trafc fow or to instruct the
remaining MLC CAVs to change lanes in advance to ease
congestion. In conclusion, our model contributes to provide
a reference for the lane-changing scheme for the MLC CAVs
in nonemergency scenarios.

6. Conclusion

Tis paper focuses on how to deal with confict problems
arising from the MLC behaviour of CAV in the case of
setting up dedicated lanes. If more CAVs conduct MLC
behaviour near of-ramps or intersections, it would increase
the potential congestion risk and safety hazards. By estab-
lishing a MLC location matching model and fnding
a suitable algorithm to solve it, an optimal MLC location is
matched in advance for each CAV on the whole road section.
Tis method could be helpful to the solving of the afore-
mentioned trafc confict.

To be specifc, the MLC locationmatching model nesting
the CTM is constructed to reduce the impact of lane change
on following trafc fow and the ACO is used to acquire the
result.Te model is based on the objective of minimizing the
total travel time of all vehicles and the constraints including
the vehicle MLC start time, the fow, and occupancy update
in varied cells. Tese constraints are diferent from the
traditional CTM model, especially in the coding of each
vehicle and the lane-changing delay calculation.

Te feasibility of the model and the algorithm is
demonstrated by a two-lane scenario. It shows that ob-
jective function convergence can be obtained. Comparative
experiments show that the total travel time and vehicle
delay under the optimal solution are signifcantly better
than the general near-end location lane-changing scheme.
To prove the reliability of our method, the results of the
optimal solution are analysed for the scenarios of 4%, 11%,
and 15% increase in the total number of upstream input
vehicles and 60%, 200% increase in the total demand of
MLC. Tese tests verify the efectiveness of our method.
Particularly, the method has much more superiority in
congested road.

In future, we should do an in-depth study of how lane-
changing from ordinary lane to dedicated lane infuence the
total travel time. Teoretically, after the dedicated lane re-
ceiving the entry request signal from the adjacent lane, the

CAV operation centre can adjust the speeds of neighbour
vehicles on the dedicated lane to leave enough clearance for
the lane-changing vehicle to enter smoothly. It will generally
cause few trafc conficts. As to the potential impacts of these
behaviours (this lane change is human’s behaviour and thus
more complex) on transportation system cost and how to
deal with the related optimization of control measure, our
future research would pay more attention on these prob-
lems. In addition, as to our current research, when the CAV
leaves the dedicated lane, the control right would be
transferred to the driver. Tere should be many uncertain
disturbance factors infuencing the human-computer in-
teraction. We would explore these factors and calibrate
related parameters to make the model better resemble real-
life scenarios.
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