
Research Article
A Collaborative Control Framework: Achieving Emergency
Vehicle Priority While Minimizing Negative Impact on
Ordinary Vehicles at Signalized Intersection

Ke-jun Long, Zhong-gen Zhang, Zhi-bo Gao , Si-qi Zhong, and Jian Gu

Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems,
Changsha University of Science & Technology, Changsha 410114, Hunan, China

Correspondence should be addressed to Zhi-bo Gao; gaozhibo@csust.edu.cn

Received 5 November 2023; Revised 1 February 2024; Accepted 26 February 2024; Published 20 March 2024

Academic Editor: Peng Hang

Copyright © 2024 Ke-jun Long et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When an emergency vehicle (EV) passes through an isolated signal intersection, it is crucial to ensure the efcient passage of the
EV while minimizing the negative impact on ordinary vehicles (OVs), particularly in high-trafc fow scenarios. Given the
constraints on temporal and spatial resources within intersection areas, OVs ahead of EV often face challenges in fnding safe gaps
for giving way, resulting in signifcant obstructions to OVs. Tis research introduces a novel collaborative control framework to
jointly optimize dynamic emergency lane settings and signal schemes, considering EV priority and OVs benefts for a single
signalized intersection. Firstly, we propose a dynamic emergency lane control algorithm to help obstructed EV in roadway
segments by extending and reallocating temporal and spatial resources for vehicles. Ten, we establish a collaborative control
model considering EV priority and OVs benefts. Assigning the highest priority to the emergency priority phase, this model
optimizes signal schemes to prevent interphase confict, taking into account OVs benefts. Finally, our collaborative control
framework also employs an Eco-Driving algorithm for the optimization of OV speed to reduce fuel consumption. Te case study
results reveal that in comparison to other baseline methods, our proposed model signifcantly reduces EV travel time, si-
multaneously lowering the travel time and fuel consumption of OVs. Sensitivity analysis of varying trafc fow scenarios reveals
that, as vehicle volumes increase, our proposed method demonstrates more pronounced reductions in both EV and OV travel
time. In addition, there is a progressive increase in the proportion of dynamic emergency lane utilization, with activation
occurring at earlier locations.

1. Introduction

Te severity of hazards arising from emergency incidents
increases substantially over time. Empirical evidence in-
dicates that for every additional minute in emergency re-
sponse time, there is a signifcant increase in fatality hazards,
ranging from 8% to 17% [1, 2]. Emergency vehicle (EV)
travel time is the critical component of emergency response
time [3]. Consequently, reducing EV travel time has
emerged as a focal point of interest among researchers.
Related studies have indicated that intersections are among
the most frequent congestion-prone areas in the city [4].
Signal interference and obstruction by vehicles are the
primary reasons for signifcant delays when EV pass through

the intersection [5]. Efectively improving the efciency of
EV pass through intersection areas is an imminent challenge
for urban emergency response systems.

Currently, research on the priority of EV pass through
intersection areas can be classifed into three categories. Te
frst category involves greedy signal preemption to prevent
obstructions by the red phase [6, 7]. Many studies employ
devices like RFID and video to detect EV presence. Sub-
sequently, they adjust the signal schemes by switching to the
original schedule [8] or dynamically adjusting it based on
indicators such as trafc fow and saturation [9] to imple-
ment EV priority [10]. Te common signal optimization
schemes still rely on fxed signal timing plans, such as green
phase splitting or extension [11]. Existing research indicates
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that signal preemption can reduce EV travel time by 14% to
35% [12]. However, a greedy signal preemption method can
lead to a substantial negative impact on ordinary vehicles
(OVs) from conficting directions, thereby signifcantly
degrading overall trafc efciency. Benefting from the de-
velopment of connected and autonomous vehicles (CAV)
[13–16], real-time optimization of vehicle trajectories and
signal schemes has become feasible [17–19]. In the CAV
environment, the new method involves controlling the
trajectory of OVs to yield the right of way to EV, thereby
reducing hindrances they encounter from OVs. Te second
category involves optimizing vehicle trajectories ahead of EV
or forming platoons to facilitate collaborative lane-changing,
thereby avoiding hindrance caused by OVs in road segments
[20]. For instance, Wu et al. [21] introduced an emergency
lane preclearance algorithm that coordinates the control of
EV and OVs. Liu et al. [20] proposed a method of control for
the platoon to give way to the EV, taking into account trafc
congestion, number of vehicles, initial state, and speed limit.
However, the formation of vehicle platoons typically ne-
cessitates considerable distances and time, rendering it less
practical for the relatively short distances between in-
tersections in urban areas and more suitable for application
on highways and expressways [21, 22]. Te third category
involves the collaborative optimization of OVs trajectories
and signal schemes, with limited reported studies in this
area. Qin and Khan [23] proposed segregating OVs into two
groups: passing and yielding, to reduce obstruction to EV,
and they considered optimizing signal schemes based on the
state of upstream intersections. Djahel et al. [24] estimated
trafc congestion and emergency severity using fuzzy logic.
OV was removed from the emergency route and signal
preemption was used to reduce congestion. However, in the
intersection situations of high-trafc fow scenarios, pro-
viding sufcient road space for OVs to yield becomes
challenging.

Te above research results indicate that signal priority
and trajectory control can efectively alleviate EV delays.
Nonetheless, two challenges continue to endure: (1) During
emergency events, the trafc volumes at intersections often
surge, and depending solely on the above methods may not
clear OVs, leaving the possibility of EV obstructions still
prevalent. (2) Te previous research has not adequately
solved the benefts to OVs. Consequently, there is a necessity
to explore methods that enhance EV efciency while si-
multaneously minimizing negative impact on OVs.

Under the CAV environment, lane function settings at
intersections can be optimized based on real-time trafc
information [19, 25, 26]. CAVs can also adjust their lateral
and longitudinal trajectories to adapt to the received control
strategies. Tis advancement has also brought about new
approaches to solving the problem of special vehicles (such
as buses and EVs) pass through intersection areas and has
provided convenience and widespread application in urban
trafc domains [27, 28]. For instance, Ding et al. [19]
proposed a model to optimize signal timings and variable
lane settings in the CAV environment. Wu et al. [29] ex-
plored the benefts of providing dynamic exclusive bus lanes

to provide a very high level of priority for buses. In con-
clusion, changing lane functionality in response to real-time
trafc demands improves overall trafc efciency [30–32].
Hence, this paper proposes the utilization of a portion of the
reversible lane as a dynamic emergency lane (DEL) to extend
the spatial resources available for EV. Simultaneously, an
emergency priority signal (EPP) is incorporated into the
signal timing scheme at the intersection to prevent conficts
between EV and OVs and achieve collaborative optimization
of DEL and EPP. Based on the above concept, this study aims
to propose a collaborative control method for signal timing
considering EPP and DEL; furthermore, the study in-
corporates vehicle trajectory control to coordinate these
control strategies.

Te research contributions of the paper are as follows: (1)
explicit EV priority solutions on signal intersection are
proposed, EV does not entail parking in high-trafc fow
scenarios; (2) Te infuence of EVs on the OVs from con-
ficting directions is minimized by the Collaborative Control
Model considering EV Priority and OVs Benefts; (3)
Trough a speed optimization method based on eco-driving,
the paper ensures that vehicles pass the stop line when the
green light is activated, simultaneously reducing fuel
consumption.

Te remainder of this paper is organized as follows.
Section 1 describes the problem and presents the notations.
Section 2 formulates the collaborative control framework
(CCF) to optimize intersection signaling schemes and EV
and OVs trajectories. Section 3 presents Cases studies. Fi-
nally, conclusions and recommendations are provided in
Section 4.

2. Problem Description and Model Parameters

2.1. Problem Description. As shown in Figure 1, the solid
lines represent the paths of EV within the intersection area.
Te orange and red lines correspond to EV using and not
using the DEL as they pass through the intersection area.
After taking into account several factors, such as the location
and the speed of vehicles in the roadway segments, EVs face
a crucial choice. Tese choices involve determining the path
of the EV, the specifc timing and location for activating
DEL, and selecting signal schemes that give priority to the
EV. From Figure 1, it becomes evident that EVs encounter
hindrances from OVs, leading to a signifcant increase in the
time required for EVs to pass through the intersection. Tis
paper introduces the concept of DEL and EPP, securing
absolute right-of-way for EVs within the intersection. Ad-
ditionally, it employs the Collaborative Control Model
considering EV Priority and OVs Benefts to minimize the
negative impact of EV priority on OVs. All these measures
are seamlessly integrated into a CCF, presenting a more
efcient method for EV priority.

2.2.ModelAssumptions. Taking references from the relevant
literature [19, 32], the following assumptions are made in the
study:
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(1) All vehicles are equipped with V2X communication
capabilities, enabling real-time reception of control
instruction and facilitating speed control.

(2) OVs have been organized into platoons according to
their travel demands.

(3) Te lane-changing actions are assumed to be
instantaneous.

2.3. Parameter Specifcation. Te model parameters are
described in Table 1, while themodel variables are detailed in
Table 2.

3. Formulation of a Collaborative
Control Framework

Figure 2 shows the CCF used in this study. Te collabo-
rative framework aims to prioritize EV pass through in-
tersections while simultaneously maximizing the beneft of
OVs in high-trafc fow scenarios.Te core of the CCF is an
optimization model of DEL setting and EPP signal timing.
Using the vehicle information as input, the dynamic
emergency lane control algorithm provides the EV tra-
jectory control and determines the DEL setting (i.e., using
or not using). Simultaneously, the collaborative control
model, considering EV priority and OVs benefts provides
a signal timing scheme to ensure EV prioritization. Ten,
the eco-driving vehicle speed optimal method is employed
to reduce OVs’ fuel consumption.

3.1. Dynamic Emergency Lane Control Algorithm. EVs, such
as ambulances, police cars, and fre engines, play a crucial
role in rapidly reaching their destinations for mission-
critical purposes, ensuring the safety of lives and property
[33]. Congestive intersections are the most difcult point
that EV needs to overcome. In our research, we propose
a segment of the exit lane as DEL and optimize the speed of
OVs to facilitate EVs priority pass through at the congestion
intersection.

3.1.1. Problem Defnition. EVs are granted permission to
surpass the designated road speed, allowing them to enter
intersections at optimal speeds to minimize EV travel time.
However, the heightened speeds of OVs pose safety risks,
prompting the trafc manager to establish a maximum speed
limit forOVs. As illustrated in Figure 3(a), this speed restriction
results in potential obstructions for EVs encountering OVs
within the intersection. Previous research indicates that merely
controlling the speed of OVs is inadequate to prevent ob-
struction. EVs are compelled to decelerate and follow behind
OVs through the intersection.While some studies propose that
lane-changing maneuvers by OVs could alleviate obstructions
for EVs, in scenarios characterized by high trafc fow, sig-
nalized intersections often contend with a signifcant number
of OVs on the exit lanes, leaving inadequate space for the OVs
in front of EVs to change lanes and yield.

As depicted in Figure 3(b), this paper introduces a novel
method of temporarily allocating a segment of the exit lane
as a DEL to expand the spatial resources available for the

DEL

Figure 1: Typical intersection.

Journal of Advanced Transportation 3



Table 1: Input parameters.

Parameters Meanings
Lane
i Te arms where i � 1, 2, 3, 4, denote the west, south, east, and north
m m � 1, 2 represents moving directions, that is, left-turn, straight ahead
i, m Te platoon in arm i with direction m (phase)
dins Intersection vehicle passage distance
Li,m Te lane length of phase i, m

vEV0 , v0i,m EV and OVs initial speed
xd

i,m, xc
i,m Te distance from the trailing car in the lane and DEL

vOVmax, vEVmax Te maximum speed of OVs and EV
aOV
max, aEV

max Te maximum acceleration of OVs and EV
aOV
min, aEV

min Te maximum deceleration of OVs and EV
ψ Te set of all OVs
ψ1,ψ2 Te set of incompatible and non-incompatible OVs (ψ1,ψ2ϵψ)
ψ1s,ψ1l Te set of OVs for straight and left-turning (ψ1s,ψ1lϵψ)

Phase
ni,m Total number of OVs in phase
di,m Te initial position of OVs in phase
vconEV Te speed limits for EV turning
ε Te minimum clearance times
x, y Te major and minor axes of the ellipse
M A large constant (for example: 9999)
Trajectory control
lAi,j Regression coefcient of velocity and acceleration during deceleration
kA

i,j Regression coefcient of velocity and acceleration during acceleration
ψn−s,ψs Te set of OVs for no-stopping and stopping (ψs,ψn−sϵψ)

Table 2: Control variables.

Variables Meanings
Lane
tEV Te minimum passage time of EV through the intersection area

tOV
Te passage time of OV with uniform acceleration to the maximum speed and then

traveling at a constant speed through the inner area
dre Te positions where EV and OV confict
tre Te timing of confict between EV and OV

dcf
Te positions where conficts occur between EV and COV (the earliest position

where EV can change lane)
dall Lane changing in the range of EV
dEV

i,m(t), dOV
i,m (t), dCOV

i,m (t) Te positions of EV, OV, and COV at time t
vEVi,m(t), vOVi,m (t), vCOVi,m (t) Te velocities of EV, OV, and COV at time t
aEV

i,m(t), aOV
i,m (t), aCOV

i,m (t) Te accelerations of EV, OV, and COV at time t
Phase
T Total travel time for OV
TEV

i,m, GEV
i,m Green light start time and duration for the EPP

TOV
i,m , GOV

i,m Green light start time and duration for the ordinary signal phase
tEVinc Te time by EV within the intersection area
tOVinc Te time by OV within the intersection area
φ(i, m, j, k) 0-1 variable (representing the order of EPP and ordinary phase)
μ(j, k, i, m) 0-1 variable (representing the order between two ordinary phases)
Trajectory control
t
begin
i,m Earliest time to reach the intersection stop line

tendi,m Time to leave the intersection stop line
t
r(n)
i,m Diferent steps of OV movement n ∈ 0, 1, 2, 3, 4

an(t) Diferent steps of acceleration and deceleration n ∈ 0, 1, 2, 3, 4
MOEA,n Fuel consumption model
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priority passage of EV. We devise an algorithm to assess
whether an EV needs to utilize the exit lane as a DEL, taking
into account the positions and speeds of EV, OVs, and
contrafow ordinary vehicles (COVs). If utilization is
deemed necessary, the optimal opening location and time
for the DEL must be determined. Trough the imple-
mentation of the Dynamic Emergency Lane Control Al-
gorithm, EVs can circumvent obstructions by utilizing the
DEL, thereby mitigating delays at the intersection [20].

3.1.2. Confict between EV and OVs. Te frst step involves
evaluating whether the EV encounters obstructions from

OVs. EVs possess the highest priority among all vehicles
[34], necessitating immediate acceleration by OVs ahead
to prevent obstruction. Te acceleration process for OVs
in two distinct scenarios:①Uniform acceleration to reach
and maintain maximum speed ② Continuous uniform
acceleration. Te minimum time tm required for the EV to
pass through the intersection without OVs interference
maintains the highest speed and follows a uniform mo-
tion, as calculated in equation (1). Te moment when OVs
in front hinder the EV is denoted as tb. Te tb modeling
equations are presented in equations (2) and (3),
respectively.

Dynamic Emergency Lane 
Control Algorithm

Input Vehicle
Information

Speed
Number 
of OVsLocation

EV Control EPP Scheme

Emergency Priority Model
Consider OV Benefit

Start Time of 
Green Phase 

Duration of 
Green Phase 

Phase 
Sequence

Speed Optimal based on 
Eco-driving 

Acceleration
/Speed/Location 

DEL Control

Figure 2: Formulation of collaborative control framework.
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Figure 3: Vehicle trajectory (a) DEL is not turned on (b) DEL is turned on.
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. (3)

3.1.3. Optimization of DEL. Subsequently, our study in-
volves calculating the optimal time and location for trans-
forming the partial exit lane into DEL to satisfy the priority
requirements of EVs. Tis process entails defning the time
window tp and spatial range dp for DEL activation. Te
determination of tp depends on two crucial factors: ① the
clearance time of the exit lane, denoted as tc. Te earliest
moment at which an EV can pass through the exit lane
without trafc conficts is tc. Tis objective is realized
through a collaborative control of speed for COVs and
signals.Tis method not only ensures the quick exit of COVs
from the exit lane but also prevents OVs from entering the

lane. ② Te time it takes for an EV to pass through the
intersection without encountering interference, denoted as
tm. Te process is modeled through the equations (4)–(6).
Te time range for the activation of DEL, is determined
based on two scenarios:①When EV encounters hindrance
from OVs. Te activation range is determined by the earliest
opening location of the DEL (dc) and the position at which
EV and OVs cause confict (db).②When EV encounters no
hindrance from OVs, the activation range extends from the
earliest opening location of the DEL to the intersection’s
stopping line. Tese are formulated in following equations:
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tp � tc, tm􏼂 􏼃, (6)

dc � vEVtc, (7)

db � vEVtb, (8)

dp �
dc, db􏼂 􏼃, if tb < tm,

dc, Li,m􏽨 􏽩, if tb � tm.
􏼨 (9)

Te optimization of DEL activation entails considering
the travel time, positions, and speeds of both EV and OVs.
Te EV travel time comprises two components: the time
spent traversing road segments, denoted as tr, and the time
of passing through the internal intersection, denoted as ti.

Te tr represents the temporal diference between when
an EV enters and exits the road segment. It encompasses
three primary scenarios: when an EV does not use DEL,
when an EV utilizes DEL without OVs interference, and
when an EV does not use DEL despite OVs interference.Te
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details of these scenarios, each involving distinct trajectories
and constraints for left-turning and straight movements,
such as the following equations:
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Te total travel time for OVs (TS) encapsulates the sum
of the time required for OVs to pass through the in-
tersection. It is equivalent to the weighted sum of the du-
ration time for various green phases, with the weights
defned by the number of vehicles in each respective phase.
Te specifc computation method for TS is expounded upon
in Section 2.2.

3.2. Collaborative Control Model considering EV Priority and
OVs Benefts. Extending the green phase is a commonly
employed method to facilitate the efcient passage of EVs

through intersection [35]. In most cases, it falls short of
completely addressing the issue of EVs being obstructed by
OVs. As detailed in Section 3.1, we propose the utilization of
DEL and EPP to improve the situation of EVs within the
intersection. Simultaneously, the challenge remains with
EVs causing signifcant disturbances to OVs. To tackle this
issue, in Section 3.2, we optimize OV benefts by considering
vehicle speed and position to optimize the starting time,
duration, and sequencing of signal phases. Since these two
strategies (utilizing or not utilizing the DEL) are suitable for
diferent trafc conditions in the road segments, the
framework chooses the method based on practical
considerations.

3.2.1. Objective Function. In this study, a movement-based
method is applied for signal timing, with the objective
function aiming to minimize the total travel time of OVs.
Given the context of CAV, we adjust the speeds of OVs to
ensure their passage through the stop line when the green
phase is activated. Terefore, the total travel time T is cal-
culated as the sum of the start time and duration for each
green phase, with the weighting coefcient being the number
of OVs in each phase. Hence, the following objective
function is established.

Te status of the DEL impacts the objective function of
the proposed model. When EV must utilize DEL to prevent
potential obstructions caused by OVs, resulting in convoy
grouping (i, m) denoted as ψ1. Conversely, EV will not
utilize DEL, convoy grouping (i, m) is represented as ψ2.Te
objective function is presented in the following equation:
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(14)

3.2.2. Start Time of Green Phase. Tominimize the time spent
by EVs in parking and waiting during red phases, the ini-
tiation of the EPP should correspond to the earliest expected
arrival time of the EV at the intersection’s stop line. When
the EV utilizes the DEL, the DEL starting time aligns with
the arrival time of the EV, as determined in Section 3.1. In
schemes where the EV does not use DEL, the EV can only
follow OVs through the intersection, and to avoid OVs
arriving early, causing a waste of temporal and spatial re-
sources within the intersection, we employ a speed optimal
model in Section 3.2.5 to help the EV and OVs in forming

a new platoon. Te starting time of the green phase is then
set to the arrival time of the lead vehicle in the new platoon.
Te calculation for TEV

i,m can be expressed as follows:

T
EV
i,m �

tm, (i, m) ∈ ψ1,

tm − t
OV
inc · ni,m + 1􏼐 􏼑, (i, m) ∈ ψ2.

⎧⎨

⎩ (15)

To avoid wasting time due to the early arrival of OV at
the stop line before the phase starts, the start time of or-
dinary green phases must be later than the earliest arrival
time of OVs, as follows:
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3.2.3. Duration of the Green Phase. Te minimum duration
of the green phase must exceed the time it takes for vehicles to
pass through the intersection. Te duration of the phase is
equivalent to the time required for the vehicles to traverse the
intersection area, as determined by the vehicle movement. To
describe the vehicular movement in the inner area of the in-
tersection, the description model includes one and two-
dimensional. Several works have been done using various
methods [36–39], including the two-dimensional car-following
model, the social force-based model, and the optimal trajectory
guidance model, which has the possibility of describing the
two-dimensional moving process of vehicles. However, this
paper focuses on solving the priority passage of EVs at high-
trafc fow signalized intersections. Tis is achieved primarily
by introducing EPP and optimizing the phase sequence to
avoid conficts between vehicles. Hence, the paper adopts
a one-dimensional movement assumption; the EV trajectory in
the straight-through and left-turning phases is defned as
a straight line and an elliptical arc, respectively.

Moreover, it is crucial to note that the minimum du-
ration of the green phase for EV priority and ordinary phases
difers based on the diferent demands, and they should be
discussed separately.

(1) Emergency Priority Phase. When the EV utilizes the DEL,
the duration of the EPP (GEV

i,m) is equivalent to the time
required for the EV to traverse the intersection area, as
determined by the EV trajectory. When the EV does not
utilize the DEL, extending the duration of the green phase
becomes necessary to ensure EV priority. Te GEV

i,m is cal-
culated as the sum of the time it takes for both the EV and
OVs to pass through the intersection area. Te equations are
as follows:
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(2) Ordinary Signal Phase. Te duration of the ordinary
green phase should exceed the time required for OV to pass
through the intersection area. Te speed time of a single OV
(tOVinc ) to pass through the intersection is based on OV’s
trajectories and speeds. Te duration of the ordinary green
phase GOV

i,m is determined by considering the time spent by
OVs and the product, as illustrated as follows:

t
OV
inc �

������

x
2

+ y
2

􏽱

v
OV
max

, (i, m) ∈ ψs,

πy + 2(x − y)

2v
OV
max

, (i, m) ∈ ψl,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
OV
i,m ≥ t

OV
inc · ni,m + ε, (i, m) ∈ ψ1,ψ2.

(18)

3.2.4. Ordering of Incompatible Signal Phase. To avoid
conficts among vehicles within the internal area of the
intersection, we analyze the phase confict relationships, as
shown in Figure 4. Constraints are imposed on the starting
time and duration of incompatible phases, preventing in-
compatible phases from being simultaneously activated.

(1) Ordering of EPP and Ordinary Signal Phases. Te se-
quencing of incompatible phases between the EPP and
ordinary phases is represented by a binary variable φ.
Specifcally, φ(i, m, j, k) � 1 denotes that phase (i, m) begins
before phase (j, k), while φ(j, k, i, m) � 0 signifes the op-
posite. To prevent the overlapping of incompatible phases,
constraints are set on the relationship between the starting
time and duration of these phases, as follows:

T
OV
i,m ≤φ(i, m, j, k)T

EV
i,m +(1 − φ(j, k, i, m))M, (i, m)(j, k) ∈ ψ1,ψ2,

T
OV
i,m ≥ (1 − φ(j, k, i, m)) T

EV
i,m + G

EV
i,m􏼐 􏼑, (i, m)(j, k) ∈ ψ1,ψ2,

φ(i, m, j, k) + φ(j, k, i, m) � 1, (i, m)(j, k) ∈ ψ1,ψ2,

(19)

8 Journal of Advanced Transportation



(2) Ordering between Ordinary Signal Phases. Similar to the
relationship outlined in the “Ordering of EPP and ordinary
signal phases,” the sequencing of ordinary signal phases that
exhibit conficts is represented by a binary variable μ.
Specifcally, μ(i, m, j, k) � 0 denotes that phase (i, m) begins
after the completion of (j, k), while μ(i, m, j, k) � 1 signifes
the opposite. Constraints are formulated concerning the
relationship between the starting time and duration of
conficting phases, as follows:

T
OV
i,m + μ(j, k, i, m)M ≥T

OV
i,m + T

OV
i,m , (i, m)(j, k) ∈ ψ1,ψ2,

μ(i, m, j, k) + μ(j, k, i, m) � 1, (i, m)(j, k) ∈ ψ1,ψ2.

(20)

3.2.5. Speed Optimal Method considering Eco-Driving.
Te Speed Optimal Method ensures the timely traversal of
OVs across the intersection stop line at the start of the green
phase, thereby preserving spatiotemporal resources at the
intersection. Moreover, to minimize fuel consumption
resulting from frequent acceleration, deceleration, and stops
of OVs [40], this study incorporates a speed optimal method
considering eco-driving. Tis section concentrates on op-
timizing OV speed, considering constraints such as the
optimal signal timing scheme obtained in Section 3.2 and the
current OV speeds and positions, with the objective of
minimizing fuel consumption for OVs.

(1) VT-Micro Model. We chose the classic VT-Micro model
[41], which is calibrated based on the vehicle’s instantaneous
speed and acceleration, to calculate fuel consumption for
each vehicle. Te model can be represented as follows:

MOEA,n �

􏽘

3

i�0
􏽘

3

j�0
􏽘

t

t�0
exp k

A
i,j · vn(t)

i
· an(t)

j
􏼐 􏼑, a≥ 0,

􏽘

3

i�0
􏽘

3

j�0
􏽘

t

t�0
exp l

A
i,j · vn(t)

i
· an(t)

j
􏼐 􏼑, a< 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i, m) ∈ ψs,ψn−s,

min MOEA,n􏼐 􏼑, (i, m) ∈ ψs,ψn−s,

(21)

(2) Vehicle State Modeling. Ten the control of vehicle states
can be formulated as an optimal control problem as follows
[42, 43]: Te dynamics of the vehicle are described in
equation (22). Equations (23) and (24) defne the initial and
fnal states of the vehicle:

Conficts of OV

Lef-turning 
conficts of EV
Straight conficts
of EV

Trajectory 
of OV

Lef-turning 
trajectory of EV
Straight 
trajectory of EV

Figure 4: Trafc confict between all phases.
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􏽢d
OV
i,m (t) � v

OV
i,m (t),

􏽢v
OV
i,m (t) � a

OV
i,m (t),

⎧⎪⎨

⎪⎩
(22)

d
OV
i,m (0) � 0,

v
OV
i,m (0) � v

0
i,m,

⎧⎨

⎩ (23)

d
OV
i,m T

OV
i,m􏼐 􏼑 � di,m,

v
OV
i,m T

OV
i,m􏼐 􏼑 � v

OV
max,

⎧⎪⎨

⎪⎩
(24)

a
OV
min ≤ a

OV
i,m (t)≤ a

OV
max,

0≤ v
OV
i,m (t)≤ v

OV
max,

⎧⎨

⎩ (25)

(3) Determination of OV Stopping. Analyzing the position,
speed, and platoon length of OVs enables the determination
of whether they come to a stop upon reaching the in-
tersection stop line. Consequently, OVs are classifed into
groups ψs and ψn−s. Distinct speed optimal methods are then
formulated for scenarios in which OVs come to a stop and
situations in which they do not.

t
begin
i,m �

di,m

v
OV
min

−
v
0
i,m − v

OV
min􏼐 􏼑 3v

0
i,m − v

OV
min􏼐 􏼑

2a1v
OV
min

−
v
OV2

max − v
OV2

min

2a2v
OV
min

, (i, m) ∈ ψ1,ψ2,

t
end
i,m � T

OV
i,m + G

OV
i,m , (i, m) ∈ ψ1,ψ2.

(26)

(4) Speed Optimal Method without Stopping. In order to
maximize the utilization of temporal and spatial resources
within the intersection area, we require that OVs pass the
stop line at their maximum speed. Our model moderates
OVs acceleration and deceleration to minimize fuel con-
sumption; however, frequent acceleration and deceleration
may compromise passenger comfort [40]. Terefore, we
restrict that OVs should not accelerate or decelerate more
than once. Te scenarios for speed adjustment in OVs are
shown in Figure 5.

Te constraints governing the relationship between the
distance, speed, and acceleration of OVs on road segments,
as well as the relationship between the speed and acceler-
ation of OVs, are as follows:

di,m � V0 t
r2
i,m − t

r0
i,m􏼐 􏼑 −

a1

2
t
r2
i,m − t

r1
i,m􏼐 􏼑

2
+ V1 t

r4
i,m − t

r2
i,m􏼐 􏼑 +

a2

2
t
r4
i,m − t

r3
i,m􏼐 􏼑

2
, (i, m) ∈ ψn−s,

a1 t
r2
i,m − t

r1
i,m􏼐 􏼑 � V0 − V1, (i, m) ∈ ψn−s,

a2 t
r4
i,m − t

r3
i,m􏼐 􏼑 � V1 − Vmax, (i, m) ∈ ψn−s,

(27)

(5) Speed Optimal Method with Stopping. When OVs are
required to come to a stop at the intersection stop line, the
acceleration and deceleration rules are consistent with the
“Speed Optimization Method without Stopping.” However,

there is a modifcation in the speed optimal method for OVs,
as depicted in Figure 6. Te constraints can be expressed in
the following equations:

Di,m � v
0
i,m t

r2
i,m − t

r0
i,m􏼐 􏼑 −

a1

2
t
r2
i,m − t

r1
i,m􏼐 􏼑

2
+ V1 t

r4
i,m − t

r3
i,m􏼐 􏼑 +

a2

2
t
r4
i,m − t

r3
i,m􏼐 􏼑

2
, (i, m) ∈ ψs, (28)

a1 t
r2
i,m − t

r1
i,m􏼐 􏼑 � V0, (i, m) ∈ ψs, (29)

a2 t
r3
i,m − t

r4
i,m􏼐 􏼑 � Vmax, (i, m) ∈ ψs. (30)
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4. Solutions and Results

4.1. Simulation Setup

4.1.1. Simulation Scene and Solve. To validate the proposed
method in this research, experiments were conducted using
a case study involving a typical signalized intersection with
a dual-directional six-lane confguration. Te dataset includes
crucial information related to vehicle positions, speeds, and
quantities. Te data generation process employed independent
random sampling techniques to ensure universality. Concur-
rently, to reduce unnecessary experimental numbers and time
consumption, theNgene tool was utilized to generate scenarios,
and a D-optimal design was employed for evaluation [44, 45].
Te results indicated that the reliability and robustness of the
experiments could be ensured with just 800 experimental
groups. Consequently, a comprehensive dataset comprising
1,000 sets of experimental data was generated.

Te proposed model aims to minimize the total travel
time and fuel consumption for OVs. Te following decision
variables are listed in Table 2. Various constraints are applied
to the model to ensure its accuracy and practicality. For the
building of the CCF, we used Python and AMPL (A
mathematical programming language) to write. Te CPLEX
solver was employed for efcient and rapid solution-fnding.
Te computational setup comprised an 11th Gen Intel(R) i5-
1135G7 processor running at 2.40GHz and 16.0GB of
memory. Te average solving time was observed to be less
than 75ms, efectively meeting the real-time computational
demands.

4.1.2. Benchmarks. To evaluate the efectiveness of our
proposedmodel (collaborative control framework,CCF), we
refer to relevant literature and compare it against the fol-
lowing three baseline methods:

T
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V

OV
i,mT

OV
i,mT
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ni,m
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V
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Figure 5: OV without stopping (a) before optimization (b) after optimization.
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Figure 6: OV with stopping (a) before optimization (b) after optimization.
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(1) Greedy Preemption Scheme (GPS). An EV is granted
a green phase when it arrives at an intersection until it exits.
While this extreme approach achieves favorable EV per-
formance, to a signifcant impact on OVs approaching from
conficting directions. Tis method has been widely
employed as a benchmark in previous studies [6, 10].

(2) Elastic Signal Preemption Scheme (ESPS). Te recent
work proposes elastic signal preemption [2, 46]. Te EV
performance is the paramount goal for the Elastic signal
preemption scheme. To fairly compare diferent methods,
we modify this baseline to only control trafc signals using
our signal algorithm for EVs and ignore the impact of path

EV
 T

im
e (

s)

GPS
ESPS

CCF
FLS

20 40 60 80 1000
Experiment/numbers

10

15

20

25

Figure 7: Comparison of the EV travel time (frst 100 experiments).
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Figure 8: Comparison of the OV beneft (a) time (b) fuel.

Table 3: Measurement conversion.

Mode DEL opening ratio (%) Location (m)
Straight 51.37 146.35
Left-turning 43.67 142.61
All 47.52 144.48
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planning on EVs to optimal the schedules of trafc signal
control for the fast passing of EVs through intersections.

(3) Fuzzy Logic-Based Scheme (FLS). Te fuzzy logic-based
approach is popular for trafc signal control of EV pre-
emption [47]. Considering EV distance, EV queue length,
occupancy level, and conficting queue length, this scheme
designs fuzzy rules to guarantee a fast emergency response
while reducing the increase of congestion.

4.2. Results and Analysis

4.2.1. EV Travel Time. As shown in Figure 7, the proposed
method indicates that the time for an EV to pass through the
intersection is consistently lower or equal to that of other

baseline methods. Specifcally, compared to GPS, ESPS, and
FLS, the EV travel time of the proposedmethod decreased by
12.92%, 10.71%, and 41.69%, respectively. Our proposed
model attains this improvement through the collaborative
optimization of DEL and EPP. Tis method efectively
mitigates the risk of EV obstruction by preceding OVs,
leading to a substantial reduction in the time required for the
EV to pass through the intersection.

4.2.2. OVs Benefts. Figure 8 illustrates the signifcant
benefts for OVs of our proposed method compared to other
methods. When compared to GPS, ESPS, and FLS, our
proposed method resulted in a reduction of 44.68%, 16.55%,
and 10.26% in OVs’ travel time, and a decrease in fuel
consumption by 31.39%, 10.71%, and 6.65%.

Diverging from the signal timing schemes applied in the
compared methods, our proposed method introduces
heightened fexibility through the introduction of individual
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Figure 9: EV time under varied trafc volumes.
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EPP. Simultaneously, the method takes into account various
factors, including vehicle volumes in diferent phases and the
relationship of phase conficts. Trough optimization of
sequencing, starting time, and duration of green phases, our
proposed method enhances trafc efciency.

4.2.3. Analysis of Using DEL. Based on the data presented in
Table 3, it is evident that 47.52% of the experiments benefted
from the DEL, enabling EVs to pass through the intersection
without stopping. Among these EVs, approximately
144.48m into the intersection, they necessarily used the
DEL. Notably, if the DEL had not been used, EVs would have
been obstructed by OV, causing obstructions of over 100m.
Furthermore, a slight variation was observed in the pro-
portion of EVs (whether left-turning or straight) using the
DEL and the corresponding locations of DEL utilization.
Tis discrepancy can be attributed to the fact that when
making a left turn within the intersection, EVs need to
decrease their speed to ensure safety, reducing the urgency of
occupying the intersection’s temporal and spatial resources.
In conclusion, utilizing DEL in most cases efectively de-
creases the time spent on EV pass through the intersection.

4.2.4. Sensitivity Analysis. To further validate the univer-
sality of our proposed method, we conducted a sensitivity
analysis to evaluate EV travel time, benefts for OVs, and the
probability and location of DEL utilization under varying
vehicle volumes. Tis analysis is shown in Figures 9–12.

Figure 9 clearly demonstrates that our proposed method
consistently maintains lower or equal EV travel time, even
with an increase in vehicle volume. In stark contrast, the
baseline methods exhibit a continual and substantial in-
crease in EV travel times as vehicle volume increases. Tis
diference is primarily attributed to the growing presence of
OVs ahead of EVs, rendering the baseline methods in-
efective in efciently clearing the emergency lanes for EVs.
Conversely, our proposed method introduces the utilization
of DEL and EPP to achieve emergency priority, resulting in
a reduction of EV obstructions caused by OVs.

Simultaneously, as illustrated in Figure 10, our proposed
method outperforms the compared model in terms of travel
time for OVs, even as vehicle volume rises. In summary, the
advantages of our proposed method become more prom-
inent, especially in addressing the issue of EV delays caused
by lead vehicle obstructions in high-trafc fow scenarios,
thereby improving overall trafc efciency.

As depicted in Figure 11, with the rise in vehicle volume,
the initiation point for the DEL utilization shifts from
144.48m to 102.22m. EVs encounter obstructions by OVs at
an earlier stage, necessitating an earlier adoption of lane
borrowing.

Figure 12 shows a consistent upward trend in the pro-
portion of DEL utilization as vehicle volume increases. When
lane vehicle volumes exceed 900 veh/h, over 80% of the ex-
periments choose to utilize DEL to alleviate interference from
OVs. Tis emphasizes the superiority and necessity of our
proposed method in high-trafc fow scenarios.

5. Conclusions

In this paper, we introduce a collaborative control frame-
work to facilitate the efcient passage of EVs and simulta-
neously minimizing interference for OVs, particularly in
high-trafc fow scenarios. First, we introduce the dynamic
emergency lane control algorithm, enabling EVs to utilize
the DEL and circumvent delays caused by OV obstructions.
Subsequently, we present the collaborative control model,
considering EV priority and OVs benefts. Tis model in-
corporates the EPP at the intersection by considering phase
confict relationships and the earliest arrival time of OVs as
constraints. It optimizes the phase sequence, the start time,
and the duration of ordinary green phases. In addition, the
speed optimal method based on eco-driving, ensures that
OVs reach the stop line promptly when green lights start,
reducing fuel consumption.

Te case study results demonstrate that the proposed
method markedly reduces the EV travel time, concurrently
reducing travel time and fuel consumption for OVs. Sen-
sitivity analysis conducted on varying trafc volumes in-
dicates that, as trafc volumes increase, both EV travel time
and OV travel time experience notable benefts compared to
baseline methods. Additionally, there is an increased fre-
quency of EV utilizing the DEL, with the DEL activation
occurring at an earlier stage. Ten, we plan to expand this
method at the network level. Te combination of the pro-
posed method and the reservation-based models is also
worth investigating.
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[47] M. Miletić, B. Kapusta, and E. Ivanjko, “Comparison of two
approaches for preemptive trafc light control,” in Pro-
ceedings of the 2018 International Symposium ELMAR,
pp. 57–62, Zadar, Croatia, September 2018.

16 Journal of Advanced Transportation




