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Tis paper innovatively explores BEV (battery electric vehicle) users’ risk attitudes and charging inertia, examining their efects on
en route charging and charging route choice behavior. An attitudinal survey was conducted to explore the two latent variables of
risk attitudes and charging inertia in relation to socioeconomic and travel-related characteristics. ICLV (Integrated choice and
latent variable) models are adopted to estimate the latent variables and the charging choice behavior simultaneously. Specifcally,
uncertainty in energy consumption is frst considered in the ICLV model, which is represented by the available range (AR)
uncertainty. Multinomial logit (MNL) models directly incorporating socioeconomic attributes are employed as a reference for
comparison with ICLVmodels. Results illustrate that risk attitudes and charging inertia both play signifcant roles in modeling en
route charging choice behavior. Risk-averse users and users having charging inertia value AR uncertainty more. Battery range,
charging frequency, and income emerge as the most crucial factors infuencing users’ intention to charge en route. Te results
show signifcant heterogeneity of BEV users in attitudes and charging choice behavior, underscoring the importance of accounting
for the heterogeneity in en route charging demand estimation and deployment optimization of public charging stations,
particularly for medium-to long-distance trips.

1. Introduction

Due to fewer greenhouse gas emissions, less dependence on
petroleum, and higher energy efciency, battery electric
vehicles (BEVs) have attracted more and more attention
from governments, enterprises, and researchers [1, 2].
Meanwhile, the long charging time and short battery en-
durance of BEVs also cause range anxiety in travelers and
hinder the development of the BEV market [3, 4]. A variety
of policies on the construction of charging infrastructure
have been proposed and implemented to support the
growth of the BEV market. However, the underutilization
of public charging stations is still prevalent in China. Take
Shanghai as an example, by November 2023, there are
87,100 public chargers, which are not sufcient to support

the daily trips of about 1.31 million electric vehicles [5].
Nevertheless, public charging infrastructure faces signif-
cant underutilization, with a low utilization rate of 7.5% for
DC chargers and 1.6% for AC chargers [6]. Due to limited
private parking spaces, private chargers are not available for
all BEV users and most of them entirely rely on public
chargers. It is expected to have a high utilization rate of
public chargers. However, the opposite is found in fact.Tis
highlights a paradox between high charging demand and
low utilization rates of chargers. A likely explanation for
this phenomenon could be inaccurate estimation of
charging demand, and inadequate planning of public
charging facilities. It is crucial to analyze BEV users’
charging behavior, to facilitate better charging demand
estimations and public charging facility deployment.
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Many studies have investigated BEV users’ charging
choice behavior, most of which can be divided into after-trip
and en route charging choice behavior [7–10]. After-trip
charging behavior investigations assume that BEV users
have access to chargers at the destination, such as home,
workplaces, entertainment areas, and shopping areas. In
these situations, slow chargers are suitable for users as they
have a relatively long time to charge. In reality, the state of
charge (SOC) of BEV is not always full when starting a trip,
as they might not own private chargers at home and not have
access to chargers at workplaces. Users sometimes have to
recharge during the trip, especially when long-distance
travel is involved. Diferent from after-trip charging, en
route charging choices and charging route choices are in-
volved in these situations, in which fast chargers allocated in
public charging stations are more suitable to save charging
time.Tere are several research studies on en route charging
choice behavior. For instance, Ashkrof et al. [11] found that
the classic route attributes (travel time and travel cost),
vehicle-related variables (SOC at the origin and destination),
and charging characteristics (fast-charging duration and
waiting time) can infuence the BEV drivers’ route choice
and charging behavior signifcantly. Moreover, young fe-
male drivers with a higher income and education level are
more likely to select routes with fast charging. Sun et al. [12]
estimated the charging station choice during a trip and
found that the fast-charging station choice behavior is
heterogeneous among users. Te mixed logit models were
used in result estimation and a heterogeneity in choosing
fast-charging stations is revealed among users as indicated
by the likelihood ratio test.

To our best knowledge, there are few studies exploring
BEV users’ attitudes and their impacts on en route charging
choice behavior. Exploring the attitudinal factors could help
further investigate the heterogeneity of users in charging
choice behavior [11]. Previous studies have evidenced that
incorporating attitudinal variables into choice models could
explain the behavior better and lead to better goodness-of-ft
[9, 13]. In these studies, the hybrid choice model (HCM)
framework is a common method to incorporate the atti-
tudinal factors as latent variables and estimate their infu-
ence on choice behaviors [14]. Pan et al. [9] developed
a latent class model based on the HCM framework to ex-
amine the impacts of risk attitudes on charging choice
behavior. Teir results showed that the risk-averse class
focuses primarily on the available range for the next trip and
the risk-seeking class balances the price against their current
SOC. Wang et al. [13] proposed latent class models to
distinguish two types of BEV users, service concerned class
and pragmatic concerned class. Te former takes service as
the most important indicator, such as SOC, queue, and
satisfaction. While the latter is much more realistic, caring
about charging fees and parking time. Tese studies all
evidenced that travelers have diferent characteristics and
exhibit heterogeneity when making choices. Teir attitudes
are closely tied to their sociodemographic characteristics and
are important to explain the choice behavior. Terefore,
exploring the efects of BEV users’ attitudes on en route
choice is really needed and meaningful for more precise

demand estimations for public charging stations and poli-
cymaking to improve users’ intention to use public chargers.

Tis paper specifcally investigates the impact of BEV
users’ risk attitudes and charging inertia on en route
charging and charging route decisions, using integrated
choice and latent variable (ICLV) models. Te main con-
tributions are threefold: (1) BEV users’ risk attitudes and
charging inertia are investigated andmodeled by conducting
an attitudinal survey. SEM is employed to quantify the at-
titude variables in relation to sociodemographic factors; (2)
risk attitudes and charging inertia examined as latent var-
iables are incorporated into the en route charging behavior
using the ICLVmodel; and (3) heterogeneity of BEV users in
en route charging behavior is explored by investigating
sociodemographic and travel-related characteristics. Tis
study flls a research gap by incorporating attitudes into the
investigation of en route charging behavior. Te results
reveal that individual risk attitudes and charging inertia are
crucial for understanding and explaining en route charging
choice behavior.

Te remaining part of this paper is structured as follows.
Section 2 provides a review of relevant literature. Te ex-
perimental design, survey, and data collection process are
outlined in Section 3. Te modeling methodologies and
specifcations are detailed in Section 4. Te results of model
estimations are presented in Section 5, followed by dis-
cussions on practical implications in Section 6. Te con-
clusion summarizes the research fndings and outlines plans
for future research.

2. Literature Review

Previous studies have made signifcant eforts to explore the
infuencing factors of charging choice behavior. Tese fac-
tors are mainly divided into scenario factors and socio-
demographic factors. Te scenario factors are constructed
according to the alternatives related to travel or vehicle state,
such as the battery’s state of charge, charging time, and travel
distance. Xu et al. [15] suggested that the battery capacity,
SOC, and a number of past fast-charging events are the
major afecting factors of charging mode and location
choice. As for charging time, Acheampong and Cugurullo
[16] suggest that fast-charging duration and waiting time in
the queue of a fast-charging station can infuence the BEV
drivers’ route choice and charging behavior signifcantly.
Charging cost, duration, and location are also key elements
to drivers’ charging choices, given assumptions that they are
planning a trip for their next working day [7]. Te range
anxiety also inevitably afects BEV users’ charging choices.
Te research has found drivers are accustomed to choosing
closer charging stations to decrease the probability of
running out of batteries [17]. In addition, sociodemographic
factors, such as age or gender can also signifcantly afect
charging behaviors and capture the preference diference
among individuals. Wen et al. [8] developed a latent class
logit model to model BEV users’ charging choices. Te
results showed that three major classes of users can be sorted
on the basis of socioeconomic characteristics. Recently,
studies also considered the heterogeneity of individuals and
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explored the efects of attitudinal variables on charging
behavior, such as risk attitudes. Pan et al. [9] considered risk
attitude and the attribute nonattendance in charging choice
behavior in terms of whether or not to charge at a desti-
nation. Te results indicated that EV drivers could be di-
vided into two classes, risk-averse class and risk-seeking
class, to explain individuals’ diferent charging preferences.
However, there is still a lack of studies considering attitu-
dinal variables in en route charging choice behavior.

Most studies on BEV users’ charging choice behavior
adopted discrete choice models. Te forms of discrete choice
models include the binary logit (BL) model, multinomial
logit (MNL) model, and nested-logit (NL) model, etc. Jabeen
et al. [7] developed a multinomial logit (MNL) model to
explore BEV users’ charging location preferences. It was
found that people preferred to charge EVs at home or at
work rather than at a public charging station. Daina et al.
[18] presented an ordered probit model to investigate the
factors stimulating users’ charging demand. Results showed
that lower cost, shorter battery range, and daily recharging
habits would signifcantly increase their charging demand.
Yang et al. [19] proposed two MNL models and two nested-
logit (NL) models to analyze the fexible charging behaviors,
which include the charging decision and the route choices
corresponding to the charging and no-charging situations,
respectively. It was observed that the initial SOC of BEV at
origin is the most important factor to consider when making
the en route charging decision. Te charging station attri-
butes such as charging time and charging station’s location
greatly afected BEV users’ route choice behavior.

Besides BL models and MNL models, mixed logit (ML)
models and the latent class logit (LCL) models are developed
to explore the heterogeneity of BEV users in charging choice
behavior. Zoepf et al. [20] estimated a ML model for
charging or not at the end of each trip and the results
suggested that signifcant heterogeneity exists among
drivers. Sun et al. [21] investigated charging time choices by
using a ML model with unobserved heterogeneity. Esti-
mation results showed that the same variables are valued
diferently in models for commercial and private vehicles.
Wang et al. [13] proposed latent class models to further
examine the efects of satisfaction of charging facilities and
drivers’ risk attitudes on charging choice preference. Te
results revealed the heterogeneity of EV drivers’ in charging
decision strategies. In addition to the LCL model, studies
also proposed ICLV models based on the HCM framework
to investigate the heterogeneity. Daina [22] constructed an
ICLVmodel framework for the joint analysis of EV charging
and travel behavior. Tey found that socioeconomic attri-
butes such as age and gender would signifcantly infuence
individual attitudes towards BEV range anxiety. Compared
with other models, Vij and Walker [23] stated that the ICLV
model can identify structural relationships between ob-
servable and latent variables, providing more insights into
the decision-making process, which would not be possible
using the reduced from the choice model. In other felds, Al-
Garawi and Kamargianni [24] proposed an ICLV model to
explore the factors afecting women’s intention to drive,
compared with a multinomial logit model. Torhauge et al.

[25] aimed to explicitly account for the impact of inertia on
departure time decisions using an ICLV model, with
a comparison of the mixed logit model. All their studies
showed that the ICLV model has better goodness-of-ft than
the traditional logit models.

In conclusion, although some studies have illuminated
the heterogeneity in charging choice behavior in light of ML,
LCL, or ICLV models, few studies to date have explored the
heterogeneity in en route charging and charging route
choice behavior, especially the impact of risk attitudes and
charging inertia on the en route charging choices. Terefore,
this research explores BEV users’ en route charging and
charging route choice behavior considering two latent
variables, risk attitude and charging inertia, which are in-
directly related to BEV users’ socioeconomic and travel-
related characteristics. Te ICLV model is applied to esti-
mate the latent variables and their impacts on the charging
choice behavior.

3. SP Survey and Data Collection

Te SP survey is based on our prior research [6] and the
same dataset with attitudinal questions is used in this study
to especially investigate users’ attitudes and their roles in
explaining en route charging and charging route choice
behavior. Te designed questionnaires consist of four parts:
current travel-related questions, attitudinal questions,
charging choice scenarios, and socioeconomic questions. A
web-based survey was conducted to collect the behavioral
data from March 2019 to September 2019. We set a prior
question “Have you ever driven a BEV?” to select re-
spondents having BEV driving experiences. As the BEV
market share is still low, only 2.12% in China, acquiring
a large sample set is not easy. In total, we collected 301 valid
questionnaires, with 1,804 observations. Te methods to
screen out invalid questionnaires are given by authors in
reference [6].

3.1. Socioeconomic Questions. Four sociodemographic fac-
tors were used to investigate their efects on en route
charging choice behavior, including age, income, education,
and gender. Tese variables were commonly taken as sig-
nifcant factors infuencing users’ charging choices [8].
Figure 1 shows the summary statistics of respondents’ so-
cioeconomic variables. Although we do not have in-
formation on the percentage of the population with BEVs,
the sample distributions of age adequately follow the same
proportions of the population owning motor vehicles in
China. According to the statistics data, 70.71% of the drivers
are in the age range between 26 and 50, which is very similar
to the sample distribution. Although the current ratio of
male to female drivers in China is higher than that in the
sample distribution, the proportion of female drivers has
been increasing recently and BEV also has become popular
in the last few years. Terefore, the gender distribution in
this study is broadly acceptable. In addition, people with
higher education or high income are overrepresented than
the average in China, as previous studies reported that most
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users owning BEVs in general have high incomes and high
education levels [26, 27]. In general, sample distributions
appear to be representative of the study area so our results
may be useful for en route charging behavior analysis in
China.

3.2. Travel-Related Questions. Travel-related questions, in-
cluding the battery range, frequent charging locations, daily
vehicle kilometres traveled (DVKT), have been asked to
collect information on individual BEV characteristics and
charging-related characteristics. Tese characteristics might
have impacts on BEV users’ charging decisions which will be
explored later on. Te main characteristics summarized
from the survey comprise battery range, driving experience,
fxed charging location, travel frequency, and charging
frequency (the frequency of using public chargers). Te
summary statistics of the travel-related characteristics are
shown in Figure 2.

Most respondents have a fxed charging location at/near
home or workplace. Te daily travel distances in most cases
are less than 100 km, and the majority of battery ranges are
higher than 150 km. It indicates that most BEVs from our
sample have battery ranges that are sufcient for daily travel
if fully charged when starting the trip.

3.3. Attitudinal Questions. A set of attitudinal questions was
conducted to capture the latent preference information. Te
standard Likert scale from 1 to 5, standing for “strongly
disagree,” “disagree,” “neither disagree nor agree,” “agree,”
and “strongly agree,” respectively, was adopted to indicate
the level of agreement of the respondents on each question
[28]. Previous studies on choice behavior typically used two
approaches to analyze the impact of attitudinal questions

[29]. One involves taking the attitudinal questions directly as
explanatory variables. Te other utilizes a sequential esti-
mation method based on factor analysis to uncover latent
variables and input them into choice models. Moreover, it
has been demonstrated that a simultaneously estimated
ICLV model tends to exhibit superior goodness-of-ft
[23, 30, 31]. Tis approach allows for the simultaneous
estimation of the parameters of the structural equation for
latent variable estimation and the parameters of the discrete
choice model [32]. In addition, Bierlaire [32] pointed out
that the solution of the ICLV would be computationally
intensive and time-consuming when including more than
one latent variable. Terefore, this paper adopted factor
analysis to assist in identifying which questions should be
used to uncover latent variables. Section 4 shows a detailed
framework of this approach.

First, we conducted an initial questionnaire including 14
questions to explore attitudes about risk and charging in-
ertia, as shown in Table 1. According to previous studies
exploring the relation between the number of questionnaires
and questionnaire items, the minimum sample is 140
[35, 36]. After collecting 212 presurvey questionnaires, the
validity and reliability analysis were applied to the ques-
tionnaire data as described in Li et al. [37]. An exploratory
factor analysis was used to analyze the validity. Te results
showed that a total of two common factors were identifed,
with a Kaiser–Meyer–Olkin (KMO) value of 0.620. Te
Bartlett’s spherical test rejected the original hypothesis,
confrming the factorability of the data. In addition, all other
criteria were met. Te reliability analysis yielded a Cron-
bach’s α value of 0.532, meeting the basic requirement [38].
Figure 3 illustrates the attitudinal questions corresponding
to the two latent variables, which were subsequently in-
cluded in the formal questionnaire.

35.0% 42.0%

Income
3,000-6,000 RMB

Age
21-30

5.0% 31-40
41-50

11.0%

60.0%

5.0%
6,000-10,000 RMB
10,000-20,000 RMB
>20,000 RMB

42.0%

53.0%

73.0%
Education

High school and below4.0%
2.0% Bachelor

Master
Doctor

21.0%

Gender
Male
Female

47.0%

Figure 1: Summary statistics of the socioeconomic variables.
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Te frst latent variable is about risk attitude. Evidence
from behavioral and psychological research reveals that risk
attitudes play a key role in decision-making [39]. Some studies

have illustrated the implications of risk attitudes on travel
choices [40, 41]. In these studies, the attitudinal indicators are
refned as questions relating to EV driving and charging, which

48.0%

19.0% Battery range
44.0% <150 km

151-200 km
2.0% 201-300 km

301-400 km
6.0%

401-500 km
>500 km

21.0% 17.0%
27.0%

51.0%

42.0%

77.0%

Driving experience

35.0%

<6 months

6.0% 6 months-1 year 25.0%
1-1.5 years

3.0%
1.5-2 years

5.0% 2-3 years
>3 years

13.0% 24.0%

DVKT
< 50 km

1.0%
6.0%

50-100 km
101-150 km
151-200 km

21.0%

3.0%

Charging location
Home
Near Home
Workplace
Near workplace
Other public charging stations

12.0% Charging frequence
Travel frequence

Every day
Usually (>3 times a week)

75.0%
2.0% 2-3 times a week

Once a week 8.0%

5.0%

Sometimes (2-3 times a week)
Seldom (once a week)
Never

2.0%

Figure 2: Summary statistics of the travel-related characteristics.

Table 1: List of attitudinal questions in the initial scale.

Label Question Reference

Risk attitudes-related

I will choose to travel by BEVs only when the remaining battery is more than
sufcient for this trip

[3, 9, 19, 33]

I will not drive a BEV for a long trip when the distance exceeds the total battery
range

If the remaining battery is lower than expected, I will look for chargers instead of
changing travel strategy to save energy

If the remaining battery is not enough for the next planned trip, I will charge
I don’t like to make risky decisions, even though the decision may bring me great

benefts

Charging inertia-related

I will charge when the battery drops to a specifc level

[18, 25, 34]

I will charge as soon as I return home
I will charge when I approach the charging station that is often used

I will charge when I pass by a charging station
I will charge when daily trip is over

I will charge at a specifc time of the day (e.g., midnight)
After a specifc activity (e.g., working and shopping), I will charge

I will compare the electricity price of each station and choose the cheapest one to
charge

Risk attitudes

Charging inertia

Indicators

R1. I will not drive a BEV for a long trip when the distance
exceeds the total battery range

R2. If the remaining battery is lower than expected, I will
look for chargers instead of changing travel strategy to save
energy

R3. I don't like to make risky decisions, even though
the decision may bring me great benefits

C1. I will charge as soon as I return home

C2. I will charge when daily trip is over

C3. I will charge at a specific time of the day (e.g. midnight)

Completely
disagree Disagree Neutral Agree Completely

agree

21% 39% 21% 14%

14% 37% 16% 24% 10%

7% 33% 40% 15%

13% 21%

14% 37%

42%

33% 19%

19% 33% 23% 21%

19%

Figure 3: Te rating of indicators.
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represent risk-seeking and risk-aversion tendencies [9]. In this
study, the “risk attitude” is defned as the aversion tendency
towards the low remaining battery, i.e., people tend to keep an
adequate battery for subsequent trips.

In addition, this paper also explores the efect of inertia
on en route charging choice behavior. According to the
Oxford Dictionary, habit is defned as “an automatic re-
action to a specifc situation,” while inertia is defned as “a
tendency to remain unchanged.” Although habit and inertia
are sometimes used interchangeably, inertia has a broader
defnition and encompasses habit [25]. In this paper,
charging inertia is defned as a tendency to charge when
a certain condition is activated, such as when the trip is over,
at a specifc time point, and approaching the often-used
charging stations.

Both the risk attitudes and charging inertia are con-
sidered in explaining the en route charging and charging
route choice behavior. Tree statements are selected as the
indicators for “risk attitudes” and the other three are selected
as the indicators for “charging inertia.” We originally pre-
sented all the statements in Chinese, taking the main rules
regarding statement design [42] into consideration. Each
statement adopted the form of a traditional 5-point Likert
scale [28]. Figure 3 shows the rating of indicators as a di-
verging stacked bar chart. Te bars illustrate the percentages
of respondents selecting each level of agreement, for in-
stance, the right bars indicate the percentages of respondents
who agree or completely agree with each statement and the
left represents disagreed respondents. Likewise, the middle
bars show the percentages of respondents holding neutral
attitudes. Te fgure intentionally omits percentages equal to
or less than 5%. Te responses to the frst set of indicators,
related to risk attitude, appeared to be more in the disagree
group. It can be seen that risk-seeking users take a great
portion of the sample and lots of users are not averse to
having long-distance trips by BEVs. For the second set of
indicators, it is obvious to note that “disagree” and “neutral”
dominate the responses, refecting that a small portion
(about 20%) of BEV users in the sample have charging
inertia. Tis is also in line with the previous opinion that
there is a higher possibility of charging during travel to
complete the entire trip because of forgetting to charge [19].

In general, there are two ways to incorporate the latent
variables into choice behavior models, namely, sequential
and simultaneous estimations. Sequential estimation means
frst estimating the latent variables from structural equation
modeling (SEM) and then being embedded in the discrete
choice modeling [43].

Te model framework of simultaneous estimation in-
cludes a latent variable model and a discrete choice model.
Te latent variable model includes a structural equation and
a measurement equation [44]. Te former uncovers the
latent variables and the latter captures the relationship be-
tween the latent variables and attitudinal statements. Te
discrete choice model explores the efects of latent variables
and other explanatory variables by constructing utility
functions. It is generally recommended to simultaneously
estimate the latent variables in the choice behavior and the
ICLV model is preferred as the best available technique [24].

Tus, this study adopts the ICLV model to explore the
impacts of risk attitude and charging inertia on BEV users’
en route charging and charging route choice behavior.

3.4. Charging Choice Scenarios. Te scenarios for in-
vestigating en route charging and charging route choice
behavior are designed using an efcient design approach
[45, 46]. Te same design and the same data as our previous
article [6] are used for this study. However, this paper fo-
cused on the efects of latent variables, specifcally adding
latent variable attitudinal questions to further explain users’
charging scenario choice behavior. We proposed AR to
represent the available range of BEVs [6]. In this study, we
introduce AR uncertainty into behavioral modeling, similar
to the concept of travel time uncertainty. Te energy con-
sumption during a trip is uncertain due to factors such as
trafc conditions, weather conditions, road conditions, and
driving styles. So, AR at the end of the trip will be uncertain
as well. Tis uncertainty extends to the destination or
charging station (CS). For a common travel behavior (e.g.,
from home to work), there are multiple possible charging
situations with diferent ARs. In this paper, the represen-
tation of AR uncertainty refers to Li et al. [6], using an
interval with a minimum and maximum value. AR is as-
sumed within a range following a uniform distribution [47]
to facilitate the following utility model’s estimation. Each
scenario involves two charging choices: (1) whether to
charge en route considering the initial AR, travel distance,
and AR uncertainty at the destination and (2) the choice of
charging route, considering the initial AR, travel time, AR
uncertainty at the CS, and charging duration. Figure 4 il-
lustrates an example scenario as from our previous article
[6]. In each choice scenario, we ensure that the initial AR is
always equal to or greater than the travel distance. Charging
route choice scenarios are provided to respondents who opt
for charging en route in decision 1. Even if a respondent
chooses not to charge en route, we inform them that it is
assumed that they will charge en route and prompt them to
select a charging route.

With a presurvey and actual travel information [6], the
attributes with their levels in the experimental design are
illustrated in Table 2. Decision 1 includes three attributes:
OD distance, initial AR at origin, and AR uncertainty at
destination. Decision 2 includes four attributes: detour
distance, charging duration, distance from the origin to CS,
and AR uncertainty at CS. It should be noted that the detour
distance is defned as the additional distance traveled to
reach a public CS and is factored into the calculation of travel
time. For example, in Figure 4, the OD distance is 30 km and
route A entails a 10 km detour distance.Terefore, the entire
route would be 40 km (30 km+ 10 km). Assuming the av-
erage speed is 60 km/h, route A corresponds to a travel time
of 40minutes (assuming average speed to be 60 km/h).
Similarly, the entire travel distance and travel time of taking
route B are 50 km and 50min, respectively. Tere are two
main reasons for setting the levels of detour distances which
are as follows: (1) ensuring sufcient attribute variation in
the SP survey to facilitate signifcant parameter estimations
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and (2) deviation from the original route to the public CS
can result in substantial changes in route travel time due to
varying trafc conditions. Implicitly, setting larger detour
distances acknowledges the longer travel times resulting
from charging behavior. Terefore, assigning 10-minute
longer travel times corresponding to 10 km detour dis-
tances is deemed reasonable.

For generating the scenarios, we used a D-efcient de-
sign approach [45] with the help of the professional software,
Ngene. It can provide utility-balanced alternatives for each
scenario and avoid the dominating alternative situations
[48]. A total of 18 choice scenarios were created, and or-
ganized into three blocks. Each respondent is required to
make choices for only six scenarios.

4. Methodology

As aforementioned, various BEV users’ socioeconomic and
travel-related attributes are involved in en route charging
and charging route choice behavior. Tese attributes not
only exert direct efects, but also refect respondents’ psy-
chological attitudes.Te ICLV can be adopted to capture this
efect in many felds [24, 34]. It ofers a method to in-
corporate latent variables into choice models, thereby en-
abling a more realistic assessment of individual choice

behavior [30]. Te model comprises three components: (1)
the structural equation model, (2) the measurement equa-
tion model, and (3) the discrete choice model. Te structural
equation studies the construction of latent variables and the
measurement equation analyses of its observed indicators.
Te discrete choice modeling estimates the utilities of each
choice, considering the efect of latent variables and other
explanatory variables. Diferent from traditional logit
models, the ICLV model explicitly models the efects of
latent variables on the choice process. Figure 5 illustrates the
integrated framework of the ICLV model.

4.1. Structural Equation Model. For an individual n, the
latent variable structural equation model is given in the
following form:

Z
∗
n � ARn + εn, (1)

where Z∗n is a L∗ 1 matrix of latent variables, Rn is a M∗ 1
matrix of socioeconomic and travel-related variables, A is
a L∗M matrix of parameters to be estimated, and εn is
a random error term with normal distribution. Te structural
equation model refects the relationship between the latent
variables and respondents’ socioeconomic characteristics.

Origin

-

Decision two: which route if charging en route?

Decision one: charge en route or not?

AR: 60 km 
Distance:30 km 

AR: 16-36 km

Destination

Route A 

Origin
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AR at CS1 

38 48 km

AR at CS2

charging
duration
20 min

charging
duration
30 min
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DestinationCharging Station

travel time:
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16 56 km-

Figure 4: An example of the hypothetical scenarios [6].

Table 2: Attribute levels defned in the experimental design.

Attributes Levels

Decision one: whether or not to charge en route?
OD distance 30, 40, 50 km

Initial AR at the origin 30, 50, 60, 70 km
AR uncertainty (range) at destination 2, 10, 20, 30, 40 km

Decision two: which charging route to choose?

Detour distance 0, 10, 20 km
Charging duration 10, 20, 30, 40min

Distance from the origin to CS in percentile of OD distance 30%, 50%, 70%
AR uncertainty (range) at CS 2, 10, 20, 30, 40 km

Journal of Advanced Transportation 7



4.2. Measurement Equation Model. Latent variables are
difcult to observe directly, but they can be obtained through
measurement indicators. Te type of measurement equa-
tions depends on the nature of themeasurement itself. In our
research, the latent variables are mainly attitudinal. State-
ments are designed and respondents’ attitudes are asked
with a choice of a Likert scale with fve levels. Te mea-
surement indicator of the latent variable can be represented
as a discrete variable and the measurement equation can be
formulated as the ordered probit model as shown in the
following equations:

Ii,n
′ � βi,0 + DZ

∗
i,n + ηi,n, ηi,n ∼ 0, σi,n

􏼐 􏼑, (2)

Ii,n �

Ji,1 if Ii,n
′ < τi,1,

Ji,2 if τi,1 ≤ Ii,n
′ < τi,2,

Ji,3 if τi,2 ≤ Ii,n
′ < τi,3,

Ji,4 if τi,3 ≤ Ii,n
′ < τi,4,

Ji,5 if τi,4 ≤ Ii,n
′ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where Ii,n
′ is an assumed continuous variable about the at-

titudinal statement, βi,0 is an intercept to be estimated, ηi,n is
a random error term following a normal distribution with
mean 0 and variance σi,n, D is a vector of parameters to be
estimated, Ii,n is the answer to the attitudinal question i for
individual n, Ji,k is the measurement of attitudinal question i,
τi,k is the assumed threshold, and k is taken from 1 to 5 due
to the 5-level Likert scale.

Te probability of a given response Ji,k for an individual
n is

Pi,n Ii,n � Ji,k􏼐 􏼑 � P τi,k−1 ≤ Ii,n
′ ≤ τi,k􏼐 􏼑 � Fηn

τi,k􏼐 􏼑 − Fηn
τi,k−1􏼐 􏼑

� Φ
τi,k − βi,0 − DZ

∗
i,n

σi,n
−
τi,k−1 − βi,0 − DZ

∗
i,n

σi,n
􏼠 􏼡,

(4)

where Φ(∙) is the cumulative distribution function of the
standardized normal distribution. Te measurement func-
tion captures the relationship between the latent variables
and the statement indicators.

4.3. Choice Model. Te utility function of the choice model
can be formulated as follows:

Un � BXn + CZ
∗
n + δn, (5)

where Un represents the total utility of each choice, Xn are
the explanatory variables, Z∗n are the latent variables, δn is the
random error term, and both B and C are parameters to be
estimated.

In decision one, in one of the ICLV models, the prob-
ability of individual n choosing not to charge en route can be
formulated as

P
notcharge
n �

e
U

notcharge
n

e
U

notcharge
n + e

U
charge
n􏼒 􏼓

, (6)

where Unotcharge
n is the utility of not charging en route, for

individual n, as formulated in equation (5). Ucharge
n is the

utility of charging en route, which is set to zero as a reference
as given in detail in Section 5.2 with equations (8)–(10).

In decision two, the probability of individual n choosing
route i is

Structural model Measurement model

Explanatory variables
(Socioeconomic &

travel related attributes)

The latent variable
(risk attitudes & charging inertia) Response to indicators

Explanatory variables
(Attributes in choice experiments) Utility function

Choice model

Decision one: charge en-route or not
Decision two: charging route

Figure 5: Te framework of the ICLV model.
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P
routei
n �

e
Uroutei

n

e
Uroutei

n + e
U

routej
n􏼒 􏼓

, (7)

where Uroutei
n and Uroutej

n are the utilities of individual n

choosing route i or j for en route charging, involving the
explanatory variables and the latent variables.

In recent years, the advantages of the ICLV model are
increasingly acknowledged [49]. Vij and Walker [23] un-
dertook a systematic comparison between the ICLVmodel and
a reduced form choicemodel.Tey found that the ICLVmodel
under certain conditions lead to an improvement than the
reduced form choice model. In addition, they synthesized
a general process of evaluation and defned criteria to assess the
application of an ICLV framework. In this study, we will follow
the criteria. In addition, a multinomial logit (MNL) model
without latent attitudes is developed as a benchmark for
comparison, aiming to evidence the benefts of ICLV models.

5. Model Estimation Results

5.1. Structural and Measurement Model Estimations.
With the use of Biogeme, the relationship between the latent
variables and explanatory variables can be derived. Te
upper part of Table 3 presents the results of the structural
models of the two latent variables, and the lower part
presents the estimation results of the measurement models.
Figure 6 illustrates the relationship between the signifcant
explanatory variables and the latent variables, as well as the
relationship between the latent variables and the measure-
ment indicators.

Te parameters of structural equations correspond to the
parameter matrix A in (1) and the parameters of mea-
surement equations correspond to the parameters βi,0 and D

in (2). Te frst latent variable risk attitude seems to be
strongly related to age, battery range, charging frequency,
education, and income. It is observed that respondents older
than 30 years exhibit a risk-averse attitude compared to
younger people. Tis result is in line with other fndings,
which found that attitudes towards risk can be afected by
age. For example, Tsirimpa et al. [50] found that travelers
aged 35–55 are less prone to risk than younger travelers
when they investigated the efect of the travelers’ risk
aversion on travel pattern-switching behavior. Our results
also show that users with lower incomes and lower education
levels show a greater risk-seeking attitude than higher-
income and higher-educated users. Tis observation
aligns with the existing research, which suggests that the
risk-averse attitude normally increases with income and
generally well-educated people earn more [51]. It is also
noticed that users with large battery range vehicles are risk-

seeking as they think they have sufcient energy and are less
worried about the shortage of batteries.

Te second latent variable charging inertia is sub-
stantially related to age, battery range, charging frequency,
driving experience, DVKT, and education. It is found that
age, battery range, and education level all exhibit a negative
efect on charging inertia. Users with a young age, lower
battery range, and lower education level are more prone to
having charging inertia. Charging frequency, driving ex-
perience, and DVKT are found to have a positive efect on
charging inertia, illustrating that BEV users with higher
charging frequency, more driving experience of BEVs, and
longer average DVKT would have a stronger charging in-
ertia. Te fndings are in line with the results from other
research, showing that the elderly dislike charging while
rich-experienced drivers prefer to charge [13].

As for the measurement model, it links the latent var-
iables to the attitudinal statements. It should be noted here
that existing literature has suggested that not all the pa-
rameters in the measurement model can be estimated [52].
Terefore, the unit of the latent variable needs to be set
initially. In this study, the coefcients of the risk attitudes
statement R1 and the charging inertia C1 are set as a ref-
erence by normalizing the intercept to 0 and the factor
loading to 1. As shown in Table 3, except the intercepts of R2
and R3, all other coefcients are signifcant at a 1% sig-
nifcance level and exhibit the expected signs. Te factor
loadings of all the statements for both latent variables are
positive, indicating that risk-aversion users and users having
charging inertia are more likely to agree with the statements.

5.2. Discrete Choice Models. For the en route charging
choices, we developed three models. Te utility of charging
en route is set to zero to be used as a reference. Te utility of
not charging en route is defned as a function of alternative
attributes with parameters to estimate. First, a MNL model
(M1), including the choice scenario variables and socio-
economic and travel-related variables, was estimated as
a benchmark. Second, an ICLV model (M2) incorporating
the latent variables is examined. Socioeconomic and travel-
related variables are incorporated in the MNL choice model,
while the ICLV choice model does not include these vari-
ables directly as they have already been included in the latent
variables indirectly. To examine whether risk attitude and
charging inertia have impacts on the valuation of AR un-
certainty, an ICLV model with interactions (M3) between
the two latent variables and AR uncertainty is examined as
well. Te models have been developed and estimated using
Python Biogeme [32]. Table 4 presents the results of the
MNL and the ICLV model estimations.
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M1
U(charge) � 0,

U(not charge) � cons + βinDin + βavgDavg + βunDun + ε,
⎧⎨

⎩ (8)

M2
U(charge) � 0,

U(not charge) � cons + βinDin + βavgDavg + βunDun + βriskDrisk + βinertiaDinertia + ε,
􏼨 (9)

M3
U(charge) � 0,

U(not charge) � cons + βinDin + βavgDavg

+ βun + βrisk−unDrisk + βinertia−unDinertia( 􏼁Dun + ε,

⎧⎪⎪⎨

⎪⎪⎩
(10)

where ε is the error term, cons represents alternative specifc
constants in each model, Din represents the initial AR at the
departure point, Davg and Dun denote the average AR and
uncertainty in AR at the destination, Drisk is the latent
variable of risk attitudes, Dinertia is the latent variable of
charging inertia, and βin, βavg, βun, βrisk, and βinertia are the
parameters to be estimated for Din, Davg, Dun, Drisk, and
Dinertia, respectively.

Overall, all the estimated parameters have the expected
signs. In general, the average AR at the destination and the
initial AR exhibit a positive efect, while the uncertainty in
AR at the destination has a negative efect. It indicates that
a higher initial AR and an average AR at the destination
correspond to a greater likelihood of choosing not to charge
en route. Conversely, a higher uncertainty in AR at the
destination is associated with a higher probability of

Table 3: Structural and measurement equation results.

Structural equation Value T-test
Latent variable 1: risk attitudes
Constant 0.769∗∗∗ 5.5
Age (more than 30 years old� 1, otherwise� 0) 0.117∗ 1.65
Battery range (more than 300 km� 1, otherwise� 0) −0.128∗ −1.74
Charging frequency (often charge or above� 1, otherwise� 0) 1.09∗∗∗ 10.2
Driving experience (more than 18months� 1, otherwise� 0) 0.0646 0.924
Driving frequency (everyday� 1, otherwise� 0) −0.000869 −0.0109
DVKT (more than 50 km� 1, otherwise� 0) 0.0438 0.653
Education (master or above� 1, otherwise� 0) 0.165∗∗ 2.01
Gender (female� 1, otherwise� 0) 0.0184 0.271
Income (more than 10,000 RMB, otherwise� 0) 0.41∗∗∗ 3.79

Latent variable 2: charging inertia
Constant 0.304∗∗∗ 3.48
Age (more than 30 years old� 1, otherwise� 0) −0.178∗∗∗ −3.93
Battery range (more than 300 km� 1, otherwise� 0) −0.365∗∗∗ −7.53
Charging frequency (usually charge� 1, otherwise� 0) 0.394∗∗∗ 4.97
Driving experience (more than 18months� 1, otherwise� 0) 0.108∗∗ 2.52
Driving frequency (everyday� 1, otherwise� 0) −0.00529 −0.108
DVKT (more than 50 km� 1, otherwise� 0) 0.109∗∗∗ 2.6
Education (master or above� 1, otherwise� 0) −0.178∗∗∗ −3.47
Gender (female� 1, otherwise� 0) 0.0203 0.489
Income (more than 10,000 RMB, otherwise� 0) −0.109 −1.63

Measurement equation Intercept
(βi,0)

Factor
loading (D)

Latent variable 1: risk attitudes
(R1) I will not drive an EV for a long trip when the distance exceeds the total
battery range 0 (fxed) 1 (fxed)

(R2) If the remaining battery is lower than expected, I will look for chargers
instead of changing travel strategy to save energy −0.00862 (−0.151) 0.352∗∗∗ (6.41)

(R3) I don’t like to make risky decisions, even though the decision may bring
greater benefts 0.0869∗ (1.77) 0.452∗∗∗ (7.96)

Latent variable 2: charging inertia
(C1) I will charge as soon as I return home 0 (fxed) 1 (fxed)
(C2) I will charge when I approach a commonly used charging station −0.411∗∗∗ (−11.7) 0.61∗∗∗ (14)
(C3) I will charge when daily trip is over −0.177∗∗∗ (−3.25) 1.64∗∗∗ (14.1)

∗∗∗Signifcance at 1% level; ∗∗signifcance at 5% level; ∗signifcance at 10% level. Te intercept and factor loading of R1 and C1 are preset in advance. Risk
attitudes (+), risk averse; risk attitudes (−), risk seeking.
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charging en route. Tis may be attributed to the fact that
a higher initial AR and an average AR at the destination
would alleviate users’ range anxiety, thereby reducing the
likelihood of en route charging.

As for the latent variables, it is observed that both latent
variables signifcantly afect the en route charging choices.
Risk attitude has a negative efect on not charging en route,
which is logical that risk-averse users are more likely to
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I1. I will not drive an EV for a long trip when the distance
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I2. If the remaining battery is lower than expected, I will look for
chargers instead of changing travel strategy to save energy.

I3. I don't like to make risky decisions, even though the decision
may bring greater benefits.

I4. I will charge as soon as I return home.

I5. I will charge when I approach a commonly used charging
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1 (fixed)
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Figure 6: Structural and measurement equation results.

Table 4: Estimated results for the en route charging choice model (decision 1).

Variables
ICLV (M2) ICLV with

interactions (M3) MNL (M1)

Coefcient t-test Coefcient t-test Coefcient t-test
Choice model
ASC, not charge −3.41∗∗∗ −8.88 −3.29∗∗∗ −8.62 −2.83∗∗∗ −6.36
Average AR at destination (in kilometres) 0.217∗∗∗ 18.9 0.22∗∗∗ 18.8 0.219∗∗∗ 19.1
Initial AR at origin (in kilometres) 0.0169∗∗ 2.34 0.0187∗∗ 2.55 0.0169∗∗ 2.35
AR uncertainty at destination (in kilometres) −0.0484∗∗∗ −7.78 −0.0673∗∗∗ −8.25 −0.0487∗∗∗ −7.83
Risk attitudes −0.286∗∗∗ −2.95
Charging inertia −0.168∗ −1.8
Risk attitudes ∗ uncertainty in AR −0.0218∗∗∗ −3.64
Charging inertia ∗ uncertainty in AR −0.0129∗∗ −2.4
Age (more than 30 years old� 1, otherwise� 0) — —
Battery range (more than 300 km� 1, otherwise� 0) — —
Charging frequency (usually charge� 1, otherwise� 0) −0.936∗∗∗ −4.53
Driving experience (more than 18months� 1, otherwise� 0) — —
Driving frequency (everyday� 1, otherwise� 0) — —
DVKT (more than 50 km� 1, otherwise� 0) — —
Education (master or above� 1, otherwise� 0) — —
Gender (female� 1, otherwise� 0) — —
Income (more than 10,000 RMB, otherwise� 0) — —
Model ftness
#Parameters 42 42 14
Final log-likelihood −590.8914 −580.7882 −751.0192
Adjusted rho-square 0.419 0.419 0.389
No. of observations 1808 1808 1808
∗∗∗Signifcance at 1% level; ∗∗signifcance at 5% level; ∗signifcance at 10% level. DVKT, daily vehicle kilometres traveled; —, the corresponding variable is not
signifcant.
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charge en route to reduce the risk of running out of battery.
Based on the SEM estimation results as discussed in Section
5.1, the elderly, the users with a higher income, a higher
education level, and a lower battery range are more risk
averse and are more prone to charging en route. Likewise,
charging inertia also has a negative infuence on not
charging en route, which is also logical since users who have
a charging inertia are more inclined to choose to charge en
route. Again, based on the SEM estimation results, users
with a lower battery range and more driving experience have
stronger charging inertia and are more prone to charging en
route. With charging inertia, it is noticed that younger users
and users with a lower education level have a stronger
charging inertia and are more prone to charge en route.
Although the efects of age and education level on the in-
tention to charge en route are ofset to a certain degree, their
overall efects could be obtained by analyzing their marginal
efects as discussed in Section 6.Te signifcance of the latent
variables evidences heterogeneity in attitudes which directly
infuences users’ en route charging choices. Te heteroge-
neity is closely related to variables such as age, education,
driving experience, and battery ranges, and should not be
neglected when forecasting BEV charging demand.

If the latent variables are not considered, the en route
charging choice will be simply determined by the observable
attributes including initial AR, average AR, and AR un-
certainty at the destination, leading to biased outcomes.
Capturing users’ psychological attributes such as risk atti-
tude and charging inertia in this study helps better explain
BEV users’ en route charging choice behavior.

Furthermore, it can be seen from Table 4 that with MNL
estimation, only charging frequency is signifcant and has
a negative impact on not charging en route, while with ICLV
models age, income, education level, battery range, driving
experience, and charging frequency are all signifcant. It can
be evidenced that the ICLV model outperforms the MNL

model, especially in uncovering the heterogeneity afected by
socioeconomic and BEV-related attributes.

For ICLV with interactions, it can be seen that the cross-
term between risk attitude and AR uncertainty is signif-
cantly negative at a 95% confdence level, implying that risk-
averse users value AR uncertainty more. With the SEM
results, we can further infer that people with older age,
higher education levels, higher income, frequent public
charging, and lower battery range value AR uncertainty
more as they are more risk averse. In addition, the in-
teraction between charging inertia and AR uncertainty is
also negative, which means that users having a stronger
charging inertia value AR uncertainty more. Users having
stronger charging inertia dislike uncertainty in available
ranges and are more prone to charging when there is
a charging opportunity to guarantee sufcient AR. Two
ICLVmodels exhibit higher adjusted rho-square values than
the MNL model, indicating improved model ftness with the
inclusion of latent variables.

After making the en route charging choices, a BEV user
was asked to decide which charging route to take. We de-
veloped three models to investigate the charging route
choice behavior: (1) a MNL model (M4) directly including
scenario factors such as charging duration and travel time;
(2) a nested-logit model (M5) with the upper level of en
route charging choices and lower level of charging route
choices; and (3) an ICLV model (M6) including the in-
teractions among the latent variables and AR uncertainty.
Considering that the route alternatives are unlabeled, adding
socioeconomic variables such as age, income, education
level, and latent variables directly into the utility function
will make no sense, only if interactions are considered with
these variables. Terefore, we simply consider a MNL model
without socioeconomic variables and an ICLV model
considering the interaction terms. Table 5 illustrates the
estimation results of the three models.

M4
U(route i) � βavgDavgi

+ βunDuni
+ βcdTcdi + βttTTi + εi,

U(route j) � βavgDavgj
+ βunDunj

+ βcdTcdj
+ βttTTj + εj,

⎧⎨

⎩ (11)

M5

U(not charge) � cons + βinDin + βavgDavg + βunDun + ε,
U(route i|charge) � βavgDavgi

+ βunDuni
+ βcdTcdi

+ βttTTi + εi,

U(route | charge) � βavgDavgj
+ βunDunj

+ βcdTcdj
+ βttTTj + εj,

⎧⎪⎪⎨

⎪⎪⎩
(12)

M6

U(not charge) � cons + βinDin + βavgDavg + βunDun + ε,
U(route i|charge) � βavgDavgi + βcdTcdi + βttTTi

+ βun + βrisk−unDrisk + βinertia−unDinertia( 􏼁Duni + εi,

U(route j|charge) � βavgDavgj + βcdTcdj + βttTTj

+ βun + βrisk−unDrisk + βinertia−unDinertia( 􏼁Dunj
+ εj,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where εj denotes the error term for charging route j.
Dunj

, Davgj
, Tcdj

, and TTj represent AR uncertainty at CS,
average AR at CS, charging duration, and travel time,

respectively, for charging route j. βavg, βun, βcd, βtt, βrisk, and
βinertia are the parameters to be estimated for Davg, Dun, Tcd,
TT, Drisk, and Dinertia, respectively.
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On the whole, all the estimated coefcients show the
expected signs and most of them appear statistically sig-
nifcant at a 5% level except for the NL model, as seen in
Table 5. About the model ftness, it is noticed that the ICLV
model and the NL model have a higher adjusted rho-square
than the MNL model. However, since all the variables in the
NL model are insignifcant, we can infer that a nest efect
does not exist and the charging route choice behavior could
be modeled directly by using the MNL model. Te ICLV
model outperforms all other models in explaining route
choice behavior. Te results of both the ICLV and MNL
models show that the average AR at CS, uncertainty in AR at
CS, charging duration, and route travel time are all decisive
attributes infuencing charging route choices. Users prefer
higher average AR and lower uncertainty, as they are afraid
of not being able to reach the charging station with sufcient
power. Charging duration and travel time all have negative
efects as users dislike long travel time and charging dura-
tion. Regarding the latent variable, the interaction between
risk attitude and AR uncertainty is statistically signifcant,
while the charging inertia interaction term is insignifcant.
Te negative interaction term coefcient for risk attitude and
AR uncertainty implies that risk-averse users value AR
uncertainty more and prefer the route with a charging
station where AR uncertainty is lower. Based on the SEM
results, users with a higher income, a higher education level,
a lower battery range, and the elderly value AR uncertainty
more and are more prone to choosing the route with
a charging station at which AR uncertainty is lower. In terms
of the insignifcance of charging inertia, it is reasonable that
both routes have charging opportunities and charging in-
ertia does not play a role in the charging route choices.

6. Further Analyses and Discussions

From Tables 4 and 5, we can fnd the associations between
these latent variables and various sociodemographic and
travel-related factors. Moreover, certain variables such as age
and income infuence both latent variables. Terefore, ex-
ploring the overall efects of each variable on the likelihood of
choosing en route charging became of interest. Inspired by

previous research [53], Figure 7 selects the variables that have
at least a 90% signifcance level in the model.Ten the average
marginal efect of each variable is calculated to illustrate their
overall efects on the probability (percentage change) of
choosing en route charging. Tese marginal efects were
calculated based on the ICLV model (M3) as it has a better
goodness-of-ft in modeling en route charging.We referred to
Anderson and Newell [54] and Aguirregabiria and Carro [55]
to get the calculation functions of the average marginal efect,
and the calculations were conducted using Biogeme [32].

According to the results in Figure 7, it is observed that
battery range, charging frequency, and income are the main
infuencing factors. Te increase in BEV battery range will
reduce users’ intention to charge en route by 2.35%, from
which it can be inferred that it will become less and less
necessary for private BEVs to charge en route in urban
travels with the promotion of high-range BEVs. Moreover,
having a higher income increases the probability of the
intention to charge en route by 2.75%, as they are more risk
averse. Charging en route could reduce the likelihood of
battery depletion. Regarding the charging frequency, users
who often charge in public chargers have a higher proba-
bility of the intention to charge en route by 8.53%. Tis also
verifes that having charging inertia can contribute to the
utilization rate of public chargers in the country. As for other
variables such as education, DVKT, and driving experience,
the probabilities of en route charging changes are less than
1%. While this percentage may appear modest, it is still
a substantial increase given the large population in Shanghai.
Te marginal efects of age seem to be very low, it can be
explained by that age has opposite efects on the two latent
variables and the en route charging intention and overall its
efects are ofset. Although as aforementioned, education
level also has opposite efects on the two latent variables and
the en route charging intention, its overall efect on the en
route charging intention is positive and nonneglectable.

In terms of the goodness of ICLV models, it should be
noted that an ICLV model does not necessarily lead to
a signifcant improvement in the goodness-of-ft [23, 24].
Te result of en route charging modeling in this study also
verifes this point, as it is seen that the ICLV model only has

Table 5: Estimated results for the charging route choice model (decision 2).

Parameters
ICLV with interactions

(M6) NL (M5) MNL (M4)

Estimate t-test Estimate t-test Estimate t-test
Average AR at CS (in kilometres) 0.0304∗∗∗ 3.33 0.00195 0.443 0.0296∗∗∗ 3.26
Charging duration (in minutes) −0.0398∗∗∗ −5.49 −0.0021 −0.436 −0.0396∗∗∗ −5.48
Travel time (in minutes) −0.0734∗∗∗ −11.5 −0.00513 −0.435 −0.0729∗∗∗ −11.4
AR uncertainty at CS (in kilometres) −0.0127∗∗∗ −2.92 −0.000625 −0.447 −0.00683∗∗ −2.13
Risk attitudes ∗ AR uncertainty at CS −0.0064∗ −1.91
Charging inertia ∗ AR uncertainty at CS −0.0035 −0.98
Model ftness
#Parameters 42 9 4
Final log-likelihood −1142.725 −1375.113 −1151.049
Adjusted rho-square 0.396 0.302 0.0773
No. of observations 1808 1808 1808
∗∗∗Signifcance at 1% level; ∗∗signifcance at 5% level; ∗signifcance at 10% level.
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a trivial improvement in the adjusted rho-square compared
to the MNL model. We should refer to the proposed criteria
to evaluate the ICLV model [23]. One criterion involves
assessing whether the ICLV model could provide deeper
insights into the decision-making process by breaking down
the infuence of explanatory variables into various parts,
thereby aiding policymaking. Tis is what we have found in
this study that the ICLV models could explain the charging
choice behavior better and explore the heterogeneity in
a more comprehensive manner. Identifying the constituent
efects of the socioeconomic and travel-related attributes
through the latent variables can provide valuable insights to
policymakers.

Some policy insights from the ICLV analyses are dis-
cussed herein. First, BEV users’ risk attitudes and charging
inertia, strongly related to socioeconomic and travel-related
variables, are of crucial importance to be considered in the
charging demand estimations for public charging stations. It
implies that the heterogeneity caused by age, income, ed-
ucation level, battery range, and driving experience cannot
be ignored when estimating the charging demand. Precise
charging demand estimation is fundamental for better
planning of public charging stations. Second, fast chargers
should be installed at public CS to reduce the charging
duration and advertisements and campaigns could be
launched to encourage users to charge en route and use
public chargers. If users have more frequent charging ac-
tivities at public chargers, they might get used to charging en
route and will have a stronger charging inertia, which has
a strong positive infuence on charging en route and will
contribute to increasing the utilization of public CS. Tird,
with the structural equation results, it also becomes clearer
that advertisements and campaigns could target special
segments of the population. For instance, the campaigns
could target at the risk-seeking users, i.e., those who are
young, poorly educated, and poor in China. Finally,
emergency chargers especially on the main roads with heavy
trafc in urban areas should be allocated. As congestion

often occurs on these roads, the energy consumption of
BEVs fuctuates greatly leading to higher uncertainty in the
AR. Emergency chargers would help release the range
anxiety.

It should be mentioned that for daily inner-city trips and
with the increasing vehicle battery range, in most time the
battery is sufcient and en route charging is not really
necessary. Public CSs in urban areas should be deployed
especially considering the charging demand of BEV taxi
drivers and buses with long daily travel distances. Tis study
is particularly important for estimating en route charging
demand for medium to long-distance trips, and therefore
important for public CSs deployment along highways.

7. Conclusions

Tis study in particular explores users’ risk attitudes and
charging inertia and their impacts on en route charging and
charging route choice behavior. We developed ICLVmodels
to examine the two latent variables in relation to socio-
economic and travel-related characteristics. Te MNL
models incorporating socioeconomic and travel-related at-
tributes were also estimated as a benchmark model. Te
main fndings and conclusions are summarized as follows:

(a) In addition to observable variables such as AR-related
attributes and travel time, risk attitude and charging
inertia are crucial and signifcant factors infuencing
BEV users’ en route charging choice behavior.

(b) A risk-averse attitude and charging inertia both have
a positive efect on users’ intention to charge en route.

(c) Users with old age, short battery range, high
charging frequency, higher education level, and high
income tend to exhibit a more risk-averse attitude.

(d) Users with young age, short battery range, high
charging frequency, more driving experience, lower
education level, and long DVKTare more inclined to
have charging inertia.

-2.35%

0.08%

0.41%

0.43%

0.43%

2.75%

8.53%

Battery range (more than 300 km)

Age (more than 30 years old)

Education (master or above)

DVKT (more than 50 km)

Driving experience (more than 18 months)

Income (more than 10,000 RMB)

Charging frequency (Ofen charge or above)

-4 -2 2 60 4 8 10
Marginal Effect (%)

Figure 7: Marginal efects of variables on the probability of intention to charge en route.
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(e) Users having a risk-averse attitude value AR un-
certainty more in both en route charging and
charging route choices.

(f ) Users having charging inertia value AR uncertainty
more when making en route charging choices.

(g) Risk-averse attitude has a negative efect on choosing
the route with higher AR uncertainty, and charging
inertia does not play a role in choosing the
charging route.

(h) Age and education level exhibit opposite efects on
en route charging choices. Older users and users
with higher education levels are more risk-averse
and more prone to charge en route. While younger
users and users with lower education levels have
stronger charging inertia and are more prone to
charge en route. An overall efect can be derived
from the marginal efect analyses.

(i) Battery range, charging frequency, and income are
the most crucial factors infuencing users’ intention
to charge en route.

(j) Capturing users’ psychological attributes such as risk
attitude and charging inertia in this study helps
explain BEV users’ en route charging choice be-
havior better.

(k) Te ICLV model outperforms other logit models in
exploring the heterogeneity afected by socioeco-
nomic and BEV-related attributes and provides
deeper insights into the heterogeneity of BEV users.

From all the fndings, it is evident that there is a sig-
nifcant heterogeneity in BEV users’ en route charging
choice behavior. Te heterogeneity, infuenced directly or
indirectly by the socioeconomic attributes and travel-
related attributes, is of crucial importance and should
be considered in improving public CS utilization rates. Te
utility function proposed in this paper can be used for
trafc assignment with a mixture of BEVs and fuel vehi-
cles, to estimate the route fows and charging fows at
public CS. Furthermore, considering the heterogeneity
across BEV users, advertisements and campaigns could be
launched to encourage users to charge en route and use
public chargers. Special segments of the population could
be targeted, for instance young, poorly educated, and poor
users in China.

In future work, varied charging cost rates and their
impacts on the en route charging and charging route choice
behavior could be investigated as an extension to facilitate
the optimization of charging pricing strategy at public CS.
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