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Tis paper proposes modifed model predictive control (MMPC) for coordinated signals, aiming to enhance a model’s fdelity to
the realistic trafc environment by relaxing typical assumptions. We focus on the arterial, where every intersection is equipped
with a dual-ring-barrier signal controller that complies with the standards of the National Electric Manufacturers Association.
MMPC employs the store-and-forward model to describe trafc fow, thereby transforming the signal control problem into
a model-based rolling-horizon optimization problem, in which the prediction horizon is composed of several future sample
intervals, commonly equal to the cycle length. A radar detector is used to collect vehicle data upstream of the stop line at every
sampling instant. Te optimization problem is solved to minimize the number of vehicles within the prediction horizon, and the
next timing plan is determined based on the optimization results. Constraints are added and modifed in order to incorporate the
typical relaxed assumptions in the optimization process. For this purpose, MMPC introduces a transition-free ring-barrier
structure, vehicle distribution ratio, and percent arrival before the end of green. Simulation results indicate that coordination can
be maintained by MMPC without the need for transitions, and the estimation of current and future trafc states can be improved
with the assistance of modifed constraints. Compared with benchmark techniques, MMPC ofers superior vehicle progression for
coordinated movement and signifcant improvements in delays, number of stops, and total travel time from a system-wide
perspective, with an acceptable small increase in runtime.

1. Introduction

Te arterial serves as a major roadway that connects adjacent
urban functional areas. Signals are operated as a group to
provide a good progression in the high-priority direction,
known as the coordinated direction. Although the arterial is
part of the trafc network, arterial coordinated signal control
and regional signal control are two distinct techniques, with
the most signifcant diference being that coordinated signal
control along the arterial not only considers overall per-
formance but also emphasizes coordination progression.

Arterial coordinated signal control techniques can be
classifed into fxed-time, actuated, and adaptive control. In
fxed-time control, a fxed green time is unable to accom-
modate demand fuctuations and to create a timing plan
involves substantial investment and engineering judgment.
Actuated control is an extension of fxed-time control that

incorporates actuated logic, thus relying heavily on the
quality of the timing plan. Furthermore, the issue of early
return to green inevitably disrupts vehicle movement in the
coordinated direction [1, 2]. In contrast to the aforemen-
tioned techniques, adaptive control typically involves the
defnition of control objectives and objective functions,
treating the adjustment of signal timing to real-time trafc
states as an optimization problem. Adaptive control, as an
advanced technology for arterial coordinated signal control,
signifcantly reduces the need for engineering judgment in
the control process.

Model predictive control (MPC) is an advanced process
control method that has demonstrated its superiority
through numerous industrial applications [3]. Many at-
tempts have been made to apply MPC to signal control,
which falls within the scope of adaptive control by defnition
[4]. Te three fundamental elements of MPC are the
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predictive model, objective function, and rolling optimiza-
tion [5]. Te signal control problem can be transformed into
a model-based rolling-horizon optimization problem [6, 7],
where the prediction horizon is composed of several future
sample intervals, commonly the cycle length. Te prediction
model, based on a macroscopic trafc fow model, deduces
future trafc states from the current states and the future
timing plan. Te objective function is constructed based on
the trafc states within the prediction horizon. At every
sampling instant, the optimization problem is solved online
to generate a sequence of timing plans corresponding to the
predicted horizon, and the frst timing plan in the sequence
is executed, in a process referred to as rolling optimization.
Te MPC provides a robust framework for signal control,
allowing cycle-by-cycle adjustments to varying trafc states.

Traditional MPC primarily targets the network level,
relying on strong assumptions about the research envi-
ronment, including one-way streets, disregarded pedestrian
demand, and the absence of complex phase structures, which
can enable easier and faster solutions. However, the resulting
prediction models can signifcantly deviate from the realistic
trafc environment, leading to inaccurate predictions of
future trafc states, irrational timing plans, and potential
implementation obstacles. For this purpose, this paper re-
laxes the assumptions and proposes a modifed model
predictive control (MMPC) for coordinated signals along an
arterial. Te main contributions are as follows:

(1) By analyzing the typical assumptions in traditional
MPC, this study proposes relaxed assumptions ap-
proximating the realistic trafc environment,
addressing problem in the traditional MPC.

(2) Te introduction of the transition-free ring-barrier
structure makes the MMPC can maintain the ofset
of the coordinated phases without transition, which
provides a great vehicle progression for the co-
ordinated movement.

(3) A mechanism for estimating the number of vehicles
for a phase is introduced, and this estimation is
minimally infuenced by the timing plan. Tis
modifcation allows the MMPC to more accurately
perceive the trafc state.

(4) Te introduction of the percent arrival before the
end of green in MMPC prevents the wastage of green
time caused by the inability of the infow to arrive,
and eliminates the disturbance of this phenomenon
on the estimation of the number of vehicles.

(5) Te results of simulation experiments show that the
MMPC method signifcantly improves the delay,
number of stops, and total travel time while main-
taining coordination compared to the traditional
MPC method as well as other benchmark methods.

2. Literature Review

Numerous studies have been conducted on the application of
MPC to trafc signal control, with a particular focus on the
network level. Researchers have attempted to increase the

operational efciency of MPC by investigating control archi-
tectures, macroscopic trafc fow models, and assumptions, to
make it applicable to larger andmore complex trafc networks.

MPC can be categorized into distributed and centralized
architectures, depending on the control architecture. Te
advantage of centralized architecture is that the control
center can optimize the problem globally to fnd the global
optimal solution, and determine the timing plans for all of
the intersections. However, faced with large-scale trafc
networks, the computational complexity of centralized ar-
chitectures increases dramatically, resulting in unacceptable
runtimes. Conversely, distributed architectures can signif-
cantly decrease the overall runtime by decomposing the
problem into multiple subproblems and allocating the
computations to the signal controllers, thereby reducing the
communication load and computational complexity of the
key nodes [8, 9]. However, its performance is inferior to that
of the centralized architecture [10–13]. Each architecture has
its own specifc focus and suitable applications.Te adoption
of a centralized architecture in arterial trafc systems is
common, feasible, and necessary [13, 14].

Te macroscopic trafc fow model encompasses the
researchers’ understanding of the realistic trafc environ-
ment. It plays a crucial role in the prediction model, directly
impacting the performance and computational complexity of
MPC. Among such models, MPC commonly employs the
store-and-forward model (SFM) and cellular transport model
(CTM) [14]. A key characteristic of SFM is its ability to model
trafc fows using a simplifed mathematical description,
eliminating the need for discrete variables during optimiza-
tion.Tismodel has paved the way for optimization problems
with polynomial complexity and has found practical appli-
cations in realistic networks [15, 16]. In contrast to SFM, CTM
divides links into smaller segments, enabling a more precise
representation of non-uniform trafc states within every
segment. Smaller segments necessitate shorter sampling in-
tervals, which have minimal impact in trafc networks, but
increase model complexity [17].Terefore, SFM is considered
more suitable than CTM for trafc networks.

Assumptions are employed to simplify and abstract the
complex nature of the realistic trafc environment, aiming
to facilitate the solution of MPC. Te assumptions that
follow are common in MPC in the feld of signal control,
either explicit or implicit, as shown in Table 1. However,
these assumptions are excessively strong, and they signif-
cantly increase the deviation of the model from realistic
trafc. Although some assumptions can be relaxed through
simple extensions based on existing research, it should be
noted that to achieve complex phase structures and ofset
transitions in existing studies, it inevitably requires struc-
tural modifcations. Te purpose of these assumptions is to
eliminate nonessential confounding factors from the re-
search, enabling a more focused investigation of the core
problem. However, in the case of network-level MPC,
current research places a greater emphasis on the meth-
odology, often customizing assumptions to conform to it.
Terefore, the objective of this paper is to reassess the role of
assumptions in signal control and restore a realistic trafc
environment for arterials.
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To summarize, traditional network-level MPC methods
are deemed unsuitable for arterials. Due to the key char-
acteristics of arterials, i.e., a limited number of intersections
and simple relationships, they have low requirements for
control architectures and macroscopic trafc fow models.
Hence, the increase in computational complexity resulting
from the relaxation of typical assumptions is acceptable. We
aim to restore the realistic trafc environment of arterials by
relaxing typical assumptions, thereby facilitating the
implementation of MPC.

3. Assumptions

Te assumptions proposed in this paper, along with the
diferences from typical assumptions, are presented in Ta-
ble 2. Assumptions 1–3 each play a role in approximating the
trafc environment, corresponding to trafc channelization,
trafc demand, and signal controller types, respectively.
Assumptions 4–6 represent the fundamental understanding
of the realistic trafc environment by MMPC control
techniques, corresponding respectively to ofset confgura-
tion, turning ratio, and vehicle passage conditions.

For convenience, in this paper, the coordination di-
rection is set from west to east.

4. Base Traffic Predictive Model

Te trafc fow prediction model, which encompasses
various constraints and trafc fow models, serves as a key
component of MPC. Under typical assumptions, signal
controllers operate in a stage-based manner, accommo-
dating only two or four phases. Te link is chosen as the
control object, and the number of vehicles (referred to as
queues in some studies) within the link is considered the
state variable. Te prediction of the number of vehicles
within the link is then conducted using the time constraints
of every stage, the storage capacity constraints of the link,
and the trafc fow model. Because the stage-based structure
is not compatible with the NEMA standard, Wang and
Abbas proposed an MPC method for NEMA-compliant
signal controllers [27]. A trafc fow prediction model is
established in this method, with phase as the control object,
by introducing the concept of virtual phase links. By
modifying this model, we create the basic trafc fow pre-
diction model of this paper, which incorporates constraints

related to green time, the number of vehicles, and the store-
and-forward model. Table 3 summarizes the important
variables used in this paper.

4.1. Green Time Constraints. Te NEMA standard defnes
the organization of phases using rings and barriers [33],
which also impose green time constraints. In the ring-barrier
phase structure, a ring represents a sequence of conficting
phases, while a barrier indicates the point at which the
phases in each ring must end simultaneously. For example,
in a conventional four-leg intersection, there are four
through phases and four protected left-turn phases, which
are numbered as depicted in Figure 1. Moreover, according
to NEMA standards, right-turn movements are typically
permitted and are combined with through movements [33].
Te ring-and-barrier diagram, as illustrated in Figure 2,
imposes the following constraints on Si,Kj(n):

Si,K1(n) + Si,K2(n) � Si,K5(n) + Si,K6(n) � Ci,ma(n), (1)

Si,K3(n) + Si,K4(n) � Si,K7(n) + Si,K8(n) � Ci,mi(n), (2)

Ci,ma(n) + Ci,mi(n) � C(n), (3)

where
Si,Kj(n) � Gi,Kj(n) + R + Y. (4)

Te start time of a timing plan is introduced and defned
as the start of the frst phase in the phase sequence. As the
cycle length represents the duration of a complete phase
sequence, a recursive relationship arises:

STPi(n + 1) � STPi(n) + C(n). (5)

Te ofset reference point is utilized to establish the
relationship between the coordinated phases along the ar-
terial. Te ofset reference selected in this paper is the be-
ginning of the frst coordinated phase green, as defned
ofcially in NTCIP 1202 [33]. ORi(n) is given by

ORi(n) �
STPi(n), K2  is  leading,

STPi(n) + Si,K1(n), K2  is  lagging.
􏼨 (6)

Te minimum green and maximum green constraints
are applied to Gi,Kj(n) as follows:

Table 1: Typical assumptions.

ID Typical assumptions Literature number

1 All of the streets are one-way, intersections are abstracted as nodes, and trafc
channelization is not taken into account [18–22]

2 Vehicle demand is the sole consideration in trafc demand, and pedestrian crossing
demand is not taken into account [6, 15–30]

3 Trafc signal controllers can only accommodate two or four phases and do not
support complex phase structures (e.g., phase overlap) [28–32]

4 Te ofset of every intersection is set to 0, and the ofset transition is not taken into
account [20, 21, 23, 28, 31]

5 Te turning ratio at every approach remains constant and known, with turning
vehicles uniformly distributed over the link [6, 17, 20, 27]

6 Vehicles entering the link can pass the stop line during the current cycle [6, 16, 17, 26, 27]
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MinGi,Kj ≤Gi,Kj(n)≤MaxGi,Kj. (7)

4.2. Constraints on Number of Vehicles. Te number of ve-
hicles for a phase serves as the state variable of MPC,
refecting the trafc state of that phase, and is subject to
a constraint:

0≤Xi,Kj(n)≤ SCi,Kj. (8)

Because vehicles occupy similar lengths in every lane, the
storage capacity of the phases depends on their corre-
sponding zones, which include the approach lanes and
upstream links. In contrast to the approach lanes, an up-
stream link serves as a shared zone for all of the phases in the
approach. Te storage capacity is commonly allocated as

SCi,Kj � N
app
i,Kj ×

L
app
i,Kj

Lcar
+ ri,Kj × N

link
i,Kj ×

L
link
i,Kj

Lcar
, (9)

where ri,Kj is replaced by the given turning rate for phase Kj

at the ith intersection; Li,Kj and Ni,Kj, respectively, represent
the length and number of lanes of the designated zones for
phase Kj at the ith intersection; superscripts (·)app and (·)link

indicate that a designated zone corresponds to an approach
lane or upstream link, respectively; and Lcar is the average
length of a vehicle.

Similar to (9), Xi,Kj(n), the initial number of vehicles for
a phase, is calculated based on ri,Kj and the number of
vehicles detected in the approach lanes and upstream links.

4.3. Store-and-Forward Model. Te key idea of the store-
and-forward model is vehicle conservation; this means that
the future state is determined by both the current state and
the change of state. Tus, the dynamics of phase Kj is given
by the conservation equation:

Xi,Kj(n + 1) � Xi,Kj(n) + V
in
i,Kj(n) − V

out
i,Kj(n). (10)

Table 3: Variables and their descriptions.

Variable Description

αi,Kj(n)
Percent arrival before the end of green of the nth cycle for phase Kj at the ith

intersection
C(n) Cycle length of the nth cycle along the arterial

Ci,ma(n), Ci,mi(n)
Cycle length of the nth cycle for the major and minor street phases at the ith

intersection
EGi,Kj(n) Efcient green time of the nth cycle for phase Kj at the ith intersection
Gi,Kj(n) Green time of the nth cycle for phase Kj at the ith intersection
MinGi,Kj, MaxGi,Kj Minimum and maximum green, respectively, for phase Kj at the ith intersection
Nh, Np Historical and predictive horizon, respectively
ORi(n) Ofset reference point of the nth cycle for the ith intersection
QSi,Kj Queue service time for phase Kj at the ith intersection
ri,Kj Vehicle distribution ratio for phase Kj at the ith intersection
R, Y Red clearance interval and yellow change interval, respectively
Si,Kj(n) Split time of the nth cycle for phase Kj at the ith intersection
SCi,Kj Storage capacity for phase Kj at the ith intersection
SFRi,Kj Saturation fow rate for phase Kj at the ith intersection
STPi(n) Start time of the timing plan of the nth cycle for the ith intersection
Vin

i,Kj(n), Vout
i,Kj(n) Infow and outfow of the nth cycle for phase Kj at the ith intersection

Xi,Kj(n) Number of vehicles of the nth cycle for phase Kj at the ith intersection

Intersection 1 Intersection 2

N

S

EW

∙ ∙ ∙ Intersection I
K5
K2

K6
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K4 K7
K3 K8
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K6
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K3 K8

Minor street
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Minor street Minor street
K1 Vehicle phase number
F1 Pedestrian phase number

F6

F2

F4 F8

F6

F2

F4 F8

F6

F2

F4 F8
Figure 1: MMPC-enabled arterial and intersections illustrated.
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Te green time and saturation fow rate are commonly
used to simplify the calculation of the outfow for the phase
in order to avoid exponential growth in computational
complexity. However, maintaining the saturation fow rate
for the entire green time period is challenging.Terefore, the
independent variable EGi,Kj(n) is introduced to represent
the efcient green time [17, 27], such that

V
out
i,Kj(n) � EGi,Kj(n) × SFRi,Kj, (11)

0≤EGi,Kj(n)≤Gi,Kj(n). (12)

Te infow is classifed into diferent cases depending on
the presence or absence of upstream signals within the study
area. Vin

i,Kj(n) is given by

V
in
i,Kj(n)

�

ri,Kj × 􏽘

n

(x,Ky)∈PSini,Kj

tx,Ky,i × V
out
x,Ky(n)􏼐 􏼑, PSini,Kj ≠∅,

C(n) × ARi,Kj, PSini,Kj � ∅,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

where PSini,Kj is the set of intersections and phases fromwhich
the outfows directly enter phase Kj at the ith intersection;
tx,Ky,i is the turning rate from phase Ky from the xth to ith

intersection; and ARi,Kj is the rate of vehicles entering phase
Kj at the ith intersection.

5. Transition-Free Ring-Barrier Structure

Te transition is a necessary process of changing from one
timing plan to another in the arterial [33–35]. It plays
a key role in maintaining progression opportunities to the
coordinated movement. Te transition is commonly
completed within one to fve cycles, and frequent ad-
justments of the timing plan may result in a situation
where the negative impacts of the transition outweigh the
benefts of the new timing plan [33, 34].

Te cycle length is consistent among all of the in-
tersections in the arterial. Terefore, according to the
conventional defnition of cycle length, the start time of the
timing plan at every intersection remains constant, and the
ofset reference points are determined through equations (5)
and (6). Transition is required to adjust the start time of the
timing plan and thereby maintain the relative relationship
between the ofset reference points along the arterial.

K8

Coordinated phase

K2 K1 K4K3

K6K5 K7

C (n)C (n-1) C (n+1)
STPi (n) STPi (n+1)

ORi (n+1)ORi (n)
Ci,mi (n)Ci,ma (n)

K2 K1

K6K5

K4K3

K8K7

(a)

Coordinated phase

C (n)C (n-1) C (n+1)
STPi (n) STPi (n+1)

ORi (n+1)ORi (n)
Ci,mi (n)Ci,ma (n)

K2K1 K4K3

K6K5 K8K7

K2K1

K6K5

K4K3

K8K7

(b)

Figure 2: Ring-and-barrier diagram. (a) K2 is leading. (b) K2 is lagging.
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However, in the transition-free structure, the cycle length is
redefned as the duration between two ofset reference
points, thereby preserving the relative relationship. Te
ofset reference points exhibit a recursive relationship:

ORi(n + 1) � ORi(n) + C(n). (14)

For simplicity, the phases within the nth cycle are
denoted as light parts, as illustrated in Figure 3.Tis includes
the phase between the ofset reference points on the ring
with the coordinated phase and between the start time of the
timing plan on the other ring. When the coordinated phase
is leading, the start time of the timing plan aligns with the

ofset reference point. Terefore, the distinction from
existing research lies in the case where the coordinated phase
lags behind.

STPi(n) is given by

STPi(n) �
ORi(n), K2  is  leading,

ORi(n) − Si,K1(n − 1), K2  is  lagging.
􏼨 (15)

Te original cycle length constraints for major streets
and intersections, i.e., (1) and (3), require respective mod-
ifcations as follows:

Ci,ma(n) � Si,K5(n) + Si,K6(n)

�
Si,K1(n) + Si,K2(n), K2  is  leading,

Si,K1(n − 1) + Si,K2(n), K2  is  lagging,
􏼨

(16)

C(n) �
Ci,ma(n) + Ci,mi(n), K2  is  leading,

Si,K2(n) + Ci,mi(n) + Si,K1(n), K2  is  lagging.
􏼨 (17)

6. Vehicle Distribution Ratio

Being a shared zone for all of the phases in the approach,
the storage capacity, vehicles, and infow should be dis-
tributed to these phases from the upstream link. Cur-
rently, there are two common ways to obtain the vehicle
distribution ratio. One is to directly utilize the given
turning rate, such as in typical assumption 5, but this
ignores the stochastic nature of trafc demand. Te other
uses the number of departing vehicles, but this ignores the
infuence of timing plans.

For the real-time detection of phase demand, the phase
vehicle weight Wi,Kj(n) is constructed based on the number
of departing and queued vehicles. Tis considers both the
undersupply and oversupply of green time, thereby making
trafc demand estimation nearly independent of timing
plans. Te phase vehicle weight is

Wi,Kj(n) � max
NDi,Kj STPi(n), STPi(n + 1)( 􏼁,

NQi,Kj(n),

⎧⎨

⎩ (18)

where NDi,Kj(t1, t2) is the number of departing vehicles
during time period [t1, t2] for phase Kj at the ith intersection
and NQi,Kj(n) is the maximum number of queuing vehicles
during the nth cycle for phase Kj at the ith intersection, which
can be obtained from detectors. Note that when calculating

Wi,Kj(n), if STPi(n + 1) has not been reached, the current
system clock can be used as a substitute.

Te expressions for ri,Kj(n) and its estimator r̂i,Kj are

ri,Kj(n) �
Wi,Kj(n)

􏽐Ky∈PSapp
i,Kj

Wi,Ky(n)
, (19)

r̂i,Kj �
1

Nh

􏽘

nc

n�nc−Nh+1
ri,Kj(n), (20)

where PSappi,Kj is the set of phases in the same approach at
phase Kj and nc is the current cycle number.

7. Percent Arrival before End of Green

In the store-and-forward model, the green time directly im-
pacts the outfow, which is determined by the current number
of vehicles and the infow, with a theoretical upper limit.

Current research usually assumes that all of the infow
will be able to pass the stop line within the cycle, i.e., typical
assumption 6. When the phase will display green or when
the infow will arrive within the cycle is not taken into
account. Tis assumption contradicts reality and is replaced
by assumption 6.

Te percent arrival before the end of green (αi,Kj(n))

represents the partial infow that can pass the stop line
before the end of green in the nth cycle for phase Kj,
expressed as a percentage of the total infow. It assumes
that the infow can travel at the speed limit without being
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afected by other vehicles. Tis variable can precisely
constrain the number of vehicles, but it requires much
data, such as timing plans of the current and adjacent
intersections, which signifcantly increases the complexity
of the solution. To simplify the calculation, the future
percentage is predicted by utilizing the percent arrival of
the past Nh cycles:

αi,Kj(n) �
NVi,Kj n, min AEGi,Kj(n) − tt, STPi(n + 1)􏼐 􏼑􏼐 􏼑

NVi,Kj n, STPi(n + 1)( 􏼁
,

(21)

α̂i,Kj �
1

Nh
􏽘

nc

n�nc−Nh+1
αi,Kj(n), (22)

where NVi,Kj(n, t) is the cumulative number of vehicles
passing in the upstream section for phase Kj at the ith

intersection from STPi(n) to time t; AEGi,Kj(n) is the
actual end of green for phase Kj at the ith intersection; tt is
the travel time of vehicles from the upstream section to the
stop line at the speed limit; and nc is the current cycle
number.

Hence, the original constraint (8) on the number of
vehicles must be modifed to

1 − α̂i,Kj􏼐 􏼑V
in
i,Kj(n)≤Xi,Kj(n + 1)≤ SCi,Kj. (23)

8. Simulation Experiments

An idealized arterial, consisting of three four-leg intersections,
was simulated using Vissim 6.00-19. Two experiments were
conducted to compare the MMPC with benchmark control
techniques in terms of control objectives and operational
performance. Te benchmark control techniques include
fxed-time control (FTC), semi-actuated control (SAC), and
base model predictive control (BMPC). Te control tech-
niques in this paper were implemented using Python and the
Vissim COM interface. For a more detailed description of the
simulation experiment confguration, see reference [36].

8.1.RoadGeometry. In Figure 1, intersections 1–3 are closely
spaced, from west to east. Except for these intersections,
there are no entrances and exits along the arterial. Te
posted speed limit remains at 50 km/h, while the desired
free-fow speed follows a uniform distribution ranging from
48 to 58 km/h.

Coordinated phase

K2 K1 K4K3

K6K5 K8K7

C (n)C (n-1) C (n+1)

STPi (n) STPi (n+1)

ORi (n+1)ORi (n)

Ci,mi (n)Ci,ma (n)

K2 K1

K6K5

K4K3

K8K7

(a)

C (n)C (n-1) C (n+1)
ORi (n+1)ORi (n)

STPi (n) STPi (n+1)
Ci,mi (n)Ci,ma (n)

Coordinated phase

K2K1 K4K3

K6K5 K8K7

K2K1

K6K5

K4K3

K8K7

(b)

Figure 3: Ring-and-barrier diagram for MMPC. (a) K2 is leading. (b) K2 is lagging.
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Te intersections, as shown in Figure 4, share identical
geometric designs and trafc control devices. Radar sensors
are installed on the roadside to collect raw data (position and
speed) from the stop line up to 130m upstream [37–39].
Variables such as the number of queued vehicles and the
number of vehicles in the approach lanes can be derived
from the raw data. In addition, virtual loop detectors can be
created from the raw data, positioned 40m upstream of the
stop lines for SAC [40].

8.2. Trafc Demand. To replicate the demand patterns
during the heavy load scenarios of the day, the total sim-
ulation period (11700 s) was divided into three demand
loading periods: 0–2700, 2700–9900, and 9900–11700 s. For
every simulation run, a random sample of the trafc demand
was taken at the start of the demand loading period. Te
sampling ranges are shown in Tables 4 and 5. Vehicle inputs
contained only passenger cars.

8.3. Signal Timing Values. Te cycle length was calculated
using the Webster model, and the green time of phases for
FTC was calculated based on the critical fow ratio of phases,
as presented in Table 6. Te result was also used as the
background green time for the SAC and as the initial green
time for BMPC and MMPC.

Te other shared parameters are as follows:

(1) FTC, SAC, BMPC, and MMPC: C(n)= 101 s; Y= 3 s;
R= 2 s; and MinGi,Kj = 10 s (K2 and K6), 14 s (K4
and K8), and 8 s (K1, K3, K5, and K7).

(2) BMPC and MMPC: MaxGi,Kj = 40 s (K2 and K6),
44 s (K4 and K8), and 38 s (K1, K3, K5, and K7);
SFRi,Kj = 1900 pcu/h; Nh = 5; Np = 5; and Lcar = 5m.

Te lag-lag left-turn sequence was employed on the
minor streets for all of the control techniques. Unless
specifed otherwise, the major street at intersection 1 set
phases K2 and K5 as leading phases, intersection 2 set phases
K1 and K5, and intersection 3 set phases K1 and K6. Two
benchmark control techniques were employed using BMPC,
referred to as BMPC-A and BMPC-B. BMPC-A defnes the
leading phases as described above, while BMPC-B modifes
the leading phases of all of the major streets to phases K2 and
K5. BMPC-B was exclusively employed for experiment 2 to
free the transition by modifying the phase sequence.

Ofsets were chosen as the subject to optimize for both
FTC and SAC using the signal timing tool Vistro 2020 [41].
For BMPC and MMPC, the ofset was calculated based on
a time-space diagram that considers the distance and speed
between adjacent intersections, as well as the queue service
time of the downstream intersection (QS2,K2 = 3 s and
QS3,K2 = 5 s). A gap time of 3 s was utilized for SAC.

8.4. Optimization Problem Solving. Te optimal prediction
model was solved using Pyomo [42] and IPOPT [43].

(1) BMPC: Te objective function was defned as
􏽐

nc+Np−1
n�nc

􏽐∀i,Kj(Xi,Kj(n)/SCi,Kj)
2, and constraints

(1)–(13) were applied. Given that the results were real
numbers, the fnal green time was determined by
rounding. Furthermore, ri,Kj was calculated as the
median value of the sampling ranges of the per-
centage of turning vehicles.

(2) MMPC: Te objective function was defned as
􏽐

nc+Np−1
n�nc

􏽐∀i,KjXi,Kj(n), and constraints (2), (4), (7),
and (9)–(23) were applied. Te remaining steps were
the same as for BMPC, the only diference being the
use of r̂i,Kj in the calculation instead of ri,Kj.

8.5. Simulation Modeling. Te parameters of the Wiede-
mann 74 model, which allow the HCM2010 method [44] to
calculate a base saturated fow rate of 1900 veh/h/lane, were
chosen. For every control technique, 50 simulation runs
were conducted, each consisting of a 900 s warm-up period
followed by a 10800 s data analysis period.

8.6. Simulation Results

8.6.1. Experiment 1. In this experiment, the control objec-
tives of MMPC in Sections 5–7 were verifed using the mean
absolute error (MAE) of the number of vehicles and the
actual ofset deviation. Tese performance measures were
calculated based on the actual number of vehicles and ofset
for every cycle. BMPC-A, which shared the same phase
sequence as MMPC, was chosen as the benchmark control
technique.

Te absolute error in the number of vehicles was cal-
culated by comparing the actual and estimated values. Te
MAE values were averaged for every cycle in the arterial, as
presented in Table 7, which demonstrates the efectiveness of
MMPC in reducing the MAE compared with BMPC-A,
which can be attributed to the introduction of a real-time
vehicle distribution ratio and the percent arrival before the
end of green. Te accurate vehicle distribution ratio facili-
tated the precise estimation of the number of vehicles for the
current cycle, while the constraint modifed by the percent
arrival before the end of green enhanced the model’s con-
sistency with the realistic trafc environment.

Te ofset of intersection 1 is set to 0. Figure 5 shows the
deviation of the actual ofset from the initial ofset for in-
tersections 2 and 3. Due to the absence of transition, BMPC-
A exhibited varying degrees of early return to the green
problem there. Te transition-free structure in MMPC
played a crucial role in maintaining a constant actual ofset
throughout the control process.

MMPC demonstrated exceptional capabilities in accu-
rately estimating and predicting the trafc state while ef-
fectively maintaining the ofset at every intersection.
Consequently, it was justifable to anticipate that these
distinct advantages of MMPC would yield signifcant per-
formance enhancements.

Journal of Advanced Transportation 9



8.6.2. Experiment 2. Te performance measures employed
in this experiment comprised: (1) high-priority path travel
speed; (2) average vehicle delay; (3) total travel time (TTT);
and (4) average number of stops. With the exception of the
high-priority path travel speed, all of the performance

measures for a given period were averaged across 50
simulation runs.

Te travel speed was measured from the stop lines of
Phase K2 at intersection 1 to those at intersection 3, fol-
lowing the coordinated direction.

50 m

N

S

EW

Vehicle signal
Pedestrian signal

Minor street

M
aj

or
 st

re
et

5 m

Figure 4: Layout of the test-bed intersection.

Table 4: Sampling ranges of the trafc demand.

Sampling item Intersections Approaches
Demand loading period

0–2700 s 2700–9900 s 9900–11700 s

Vehicle input (veh/h)
1 West 1100–1300 1700–1900 1100–1300
3 East 1100–1300 1500–1700 1100–1300

1, 2, and 3 North and south 400–600 800–1000 400–600
Unidirectional pedestrian input (ped/h) 1, 2, and 3 — 100–200 200–400 100–200

Table 5: Sampling ranges of the percentage of turning vehicles (%).

Movement Approaches Sampling points

Left-turn East and west 10.0, 10.1, . . ., 20.0
North and south 15.0, 15.1, . . ., 25.0

Right-turn East and west 5.0, 5.1, . . ., 10.0
North and south 10.0, 10.1, . . ., 15.0

Table 6: Green time of phases for FTC (s).

Intersection
Phases

K1 K2 K3 K4 K5 K6 K7 K8
1 15 33 12 21 19 29 11 22
2 16 31 12 22 17 30 12 22
3 17 30 12 22 16 31 11 23
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Figure 6 shows the summary statistics and probability
density of the travel speed in a high-priority path. Te MPC
techniques (BMPC-A, BMPC-B, and MMPC) outperformed
the conventional control techniques (FTC and SAC) in
terms of the mean travel speed. For the conventional control
techniques, the majority of vehicles traveled at speeds less
than 30 km/h. MMPC performed better than BMPC-A and
BMPC-B in terms of the mean, median, and 15th and 85th
percentiles of the travel speeds. Moreover, MMPC had
nearly half of the vehicles traveling at speeds greater than
40 km/h.

Te measurement zone, which extended from a signif-
cant distance away from the stop lines to the beginning of the
intersection exit, was used to measure the number of stops
and vehicle delay for every vehicle movement. TTT was
calculated as the cumulative travel time of all of the vehicles
in the arterial.

Tables 8 and 9 demonstrate that the MMPC-enabled ar-
terial outperforms the arterial utilizing other benchmark
techniques in terms of system average vehicle delay, TTT, and
system average number of stops. Tis is attributed to MMPC’s
ability to maintain the performance of major streets at a sub-
optimal level, while simultaneously optimizing the perfor-
mance of minor streets to nearly optimal levels.

Te computation efciency of the control techniques was
evaluated using the runtime per cycle. In this experiment,

BMPC-A, BMPC-B, and MMPC have average runtimes per
cycle of 0.25, 0.25, and 0.35 s, with maximum runtimes per
cycle reaching 1.87, 0.91, and 1.22 s, respectively. Compared
to BMPC, the average runtime for MMPC increased by 0.1 s.
However, it is more important, from the perspective of
implementation, whether themaximum runtimes exceed the

Table 7: Mean absolute error of number of vehicles (veh).

BMPC-A MMPC
Current cycle 0.82 0.63 (−22.58%)
Next cycle 4.22 3.29 (−21.88%)
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Figure 5: Cumulative frequency distributions of the actual ofset deviation.
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threshold value. In trafc signal control, the green time of the
phase needs to satisfy the minimum green. Terefore, the
signal controller does not need to determine the timing plan
at the beginning of the cycle; instead, it should be de-
termined at the latest when the minimum green is frst
satisfed. According to the defnition of the minimum green,
this threshold is at least 5 s. Tis ensures that the signal
controller employing the mentioned techniques can obtain
the timing plan in a timely manner while satisfying all the
basic conditions for implementation.

9. Conclusions

Tis paper proposes modifed model predictive control
(MMPC) for coordinated signals along an arterial, with the
aim of approximating the realistic trafc environment. Te
modifcations proposed in this paper, namely, the
transition-free ring-barrier structure, vehicle distribution
ratio, and percent arrival before the end of green; collectively
contribute to the distinctive characteristics of MMPC. Te
simulation results demonstrate that MMPC efectively
maintains coordination without the need for transition and
accurately estimates current and future trafc states by
employing modifed constraints. Tese fndings highlight
MMPC’s ability to closely approximate real-world trafc
environments. MMPC outperforms the benchmark tech-
niques in terms of vehicle progression for coordinated
movement, resulting in signifcant system-wide improve-
ments in delays, number of stops, and TTT, with only
a minor and acceptable increase in runtime.

Certainly, there is still signifcant potential for improving
the performance of MMPC. Future research should focus on
integrating real-time percent arrivals before the end of green
into the optimization problem. Strictly speaking, MMPC

only accomplishes a part of the signal control process, i.e.,
splits, because the ofset and cycle length are still to be
determined using other techniques. Hence, future research
should also explore the utilization of reinforcement learning
to generate signal cycle lengths, where MMPC can con-
tribute as prior knowledge to expedite the training process.
Signifcantly, this research transcends the confnes of typical
assumptions and large-scale trafc networks, exploring
a new avenue to drive the implementation of MPC in signal
control.
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