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Photodynamic therapy (PDT) has been recognized as a promising treatment for cancers and tumors, in which photosensitizer is
one of the most important issues. As a class of excellent fluorescent dyes, boron-fluorine derivatives (typically 4,4-difluoro-4-bora-
3a,4a-diaza-s-indacene, BODIPY) have preferable ability of generating singlet oxygen and have been under extensive study for PDT
sensitizers. In this review, we summarize the recent progress of design and applications of boron-fluorine-based photosensitizers
for PDT.

1. Introduction

Cancer is the most deadly killer in the world over the past
decade, and almost all of the developed countries spend
millions of dollars for research and treatment of cancer every
year. Photodynamic therapy (PDT) is an evolving new field
of study in the treatment of malignant tumors. Compared to
traditional tumor therapy such as surgery, chemotherapy, and
radiotherapy, PDT has its unique advantages as follows:

(1) can be applied to the site which surgery cannot touch;
(2) can be applied to people who are not suitable for

surgery, chemotherapy, and radiotherapy (such as the
infirm, the elderly, etc.);

(3) can be reused safely and effectively;
(4) does not produce immunosuppression;
(5) can be used after surgery, chemotherapy, and radio-

therapy or used at the same time, with a synergistic
effect [1–8].

The mechanism of photodynamic therapy includes a
variety of photophysical and photochemical processes [9–12].
Figure 1 depicts the photophysical processes before and after
typical photosensitizer molecules were excited. Photosensi-
tizer absorbs light to be excited into the first excited state
and then intersystem crossing to excited triplet state. In this
process, fluorescence may be observed during the relaxation

from first excited state to ground state, and the energy
can also be lost through nonirradiative decay. From the
triplet excited state, energy loss through radiation produces
phosphorescence with long life time (microseconds), and
the energy can also be passed to oxygen nearby to produce
reactive oxygen species, including radicals and cytotoxic
singlet oxygen 1O

2
.The reactive oxygen would kill the cancer

cells that photosensitizers accumulated in.
Currently, most studied photosensitizers in the photo-

dynamic therapy of cancer are porphyrin derivatives [14–
17], such as porfimer sodium (Photofrin), protoporphyrin
IX, and temoporfin. This may be primarily due to the fact
that there are a large number of natural porphyrin-based
compounds. However, porphyrin has its own shortcomings:
first, the molar absorption coefficients of porphyrin deriva-
tives are usually less than 2 × 104 cm−1M−1 in the range
of 650–900 nm; second, because of their planar structures,
porphyrin derivatives tend to aggregate due to strong 𝜋-
𝜋 stacking in concentrated solutions, which can reduce
the quantum yield of singlet oxygen [18]; third, porphyrin
derivatives are synthetically inaccessible, and it takes great
effort to produce large amount of such photosensitizers by
conventional organic synthetic strategy. In addition, por-
phyrin derivatives usually exhibit small stoke shifts, thus
limiting their applications in imaging.Therefore, it is of great
significance to develop photosensitizers with nonporphyrin
chromophore core [19]. Some other chromophores have been
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Figure 1: Photosensitizer absorbance after physical processes ((1)
absorbing light; (2) fluorescence; (3) internal conversion; (4) inter-
system crossing; (5) phosphorescence; (6) generating 1O

2
; (7) proton

or electron transfer).

reported for PDT study, such as phthalocyanine [20–25],
squarine dye [26–31], and perylene diimide [32, 33]; however,
these photosensitizers suffer frompoor chemical stability and
photostability and easily aggregate in a polar environment.

As a class of excellent dyes for applications of sensor
and fluorescent imaging, boron-fluorine derivatives (nor-
mally 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, BODIPY)
have emerged as a new class of PDT agents over the past
decade [34, 35]. Boron-fluorine dyes contain a large number
of advantages over other dyes: first, they usually have a
large molar absorptive coefficient (𝜀 > 8 × 104 cm−1M−1);
second, they have extremely high chemical stability and
photostability; third, they have facile availability and can
be easily structurally modified to modulate their properties.
Therefore, in recent years, the boron-fluorine photosensitiz-
ers aroused wide interest of chemists and pharmacologists
and are considered to become a new generation of anticancer
photosensitizers for clinical use. This review summarizes the
design and applications of boron-fluorine photosensitizers.

2. Boron-Fluorine-Based Photosensitizers

2.1. Halogenated BODIPYs. Introduction of heavy atom is
well known to facilitate intersystem crossing (ISC) with
minimal energy loss from excited states. Then, the lifetime of
the triplet state is increased, and the yield of singlet oxygen
is greatly enhanced as a result. Therefore, this strategy has
been widely adopted for development of highly effective
PDT reagents. BODIPY core chemically reactive, and heavy
atoms can be easily added at all positions without disrupting
the planarity of the dye. Initially, O’shea et al. introduced
bromine atoms at the 2,6-positions of the aza-BODIPY chro-
mophore to produce BODIPY 1-2 (Figure 2) and compared
their photophysical and photochemical properties to their
nonhalogenated analogies A1-A2 [36, 37]. As proved by X-
ray single crystal diffraction, the chromophore core of 1 is still
planar with high conjugation degree. Although two bromine
atoms were introduced, the planarity of chromophore core
was preserved. Their absorption coefficients in visible region

are also nearly consistent before and after introduction of
bromine atoms (1 and A1). However, heavy atoms signifi-
cantly decreased their fluorescent quantum yields, which is
beneficial for ISC to excited triplet states to generate singlet
oxygen.Using 1,3-diphenylisobenzofuran (DPBF) as trapping
reagent, compound 1 is much more effective in generating
singlet oxygen at around a hundredfold lower concentration
than A1. The presence of other functional groups, like
methoxy groups, does not change this tendency. For example,
compound 2 shows an increased efficiency of singlet oxygen
generation even at a 100-fold lower concentration, compared
to A2. It is also the case in cells, and we can ascertain the
cellular localization of these photosensitizers by fluorescent
imaging technique. Fluorescent imaging by confocal laser
scanning microscopy (CLSM) confirmed that the subcellular
localization of A1 was exclusive to the cytoplasm with no
nuclear localization, and cytotoxicity assay withMRC5-SV40
indicates that these compounds show no dark toxicity up to a
concentration of 10−4M,which is essential for PDT.However,
upon irradiation by 8 J cm−2 light dose, significant light-
induced toxicity was observed, with EC

50
values determined

for A1, A2, and 2 as 3.1 × 10−6, 1.1 × 10−4, and 3.7 × 10−8M,
respectively. The exceptional light-induced toxicity of 2 was
ascribed to the presence of the two bromine heavy atoms,
which are directly substituted onto the chromophore core.

Iodine is a heavier atom than bromine and may exert
better heavy atom effect to induce efficient singlet to triplet
transition. In 2005, Yogo et al. [13] synthesized a simple
BODIPY dye A3 and placed two iodine atoms directly on
2,6-positions of the BODIPY core to produce 3 (Figure 3(a)).
Introduction of iodine atoms results in significant red-shift
of the absorption (around 30 nm) and greatly decreases its
fluorescent quantum yield. Compound A3 shows a high
fluorescence quantum efficiency (0.70 in methanol). How-
ever, the quantum yield decreases to 0.02 in methanol for
3, suggesting that ISC efficiency from singlet excited state
to triplet excited state is enhanced by heavy iodine atoms.
This is proved by the study of their ability to generate singlet
oxygen. From the near-infrared emission spectrum of 3 in
methanol, a narrow emissionwas observed at 1268 nm,which
is characteristic of singlet oxygen (Figure 3(b)). Compared to
that of Rose Bengal under the same condition, the efficiency
of singlet oxygen generation of 3 is 1.34 times greater.
Using DPBF as trapping reagent, compound 3 generated
singlet oxygen almost equally in all conventional solvents
except that in methanol, suggesting that it would offer better
flexibility than Rose Bengal because of its poor solubility
in nonpolar solvents. Beside that, compound 3 shows much
better photostability than Rose Bengal. It is not surprising
because typical BODIPY dyes are exceptionally chemically
stable and photostable, but this character is quite essential
for practical application of PDT reagents. Compound 3 was
used for cell photosensitization as shown in Figure 4. HeLa
cells were stained by 1𝜇Mstock solution and then illuminated
with green light (535 ± 25 nm, 5mW/cm2) for 1min. Cell
viability was assayed through the use of the calcein AM
(living cell marker) and EthD-1 (dead cell marker). First,
compound 3 shows no dark toxicity, proving that it is safe
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Figure 2: Structures of BODIPY 1-2 and A1-A2.

(Figures 4(a)–4(c)). Light illumination induces rapid cellular
death (Figures 4(d)–4(f)), suggesting that compound 3 is a
potent PDT reagent for cell photosensitization.

To understand the effects of substitution patterns on
photosensitizing ability of BODIPY, effectiveness of various
iodinated derivatives was investigated to maximize the heavy
atom effect (Figure 5), and the position where halogen is
placed has a marked effect in the photophysical properties
[38].

Successive iodination gives rise to a progressive
bathochromic shift of the absorption bands. The maximum
absorption of compounds 4, 5, 6, and 7 was located at
523, 548, 563, and 581 nm, respectively, with absorption
coefficients increasing (2.2 × 104M−1 cm−1 for 4; 4.3
× 104M−1 cm−1 for 5; 4.8 × 104M−1 cm−1 for 6; 11.6 ×
104M−1 cm−1 for 7) which is advantageous for PDT.
However, their fluorescent quantum yields are measured to
be 0.034, 0.012, 0.060, and 0.099, which are not consistent
with the number of iodine atoms they bear. Using Rose
Bengal as reference with a quantum yield for singlet oxygen
production of 0.71, the values for compounds 5, 6, and 7
are measured to be 0.83 + 7%, 0.86 + 9%, and 0.87 + 6%,
respectively. These results indicates that introduction of
iodine atoms at 3,5-positions does not produce distinct
increase in the efficiency of singlet oxygen generation, which
is in good agreement with their photophysical properties.
Clearly, iodination at 2,6-positions of BODIPY core is
effective in improving their photosensitizing ability. It also
gives a clue that 3,5-positions of BODIPY can be suitably
functionalized to produce expected PDT reagents with
some additional functions, such as extending 𝜋-conjugation
system to produce Near-infrared (NIR) absorption dyes and
introducing affinity groups. Actually, intense absorption in
the body’s therapeutic window (650–900 nm) is requisite
for practical therapy. Increasing the 𝜋-conjugation at 3,5-
positions of BODIPY chromophore core is one efficient and
widely adopted strategy.

Atilgan et al. synthesized a series of BODIPY-based
photosensitizers with extended 𝜋-system at 3,5-positions
(Figure 6) [39]. In consideration of their practical applica-
tion in aqueous condition, water soluble PEG groups were
introduced, which also confer cell permeability and tumor
targeting characteristics on photosensitizer [40, 41]. The
extended conjugation in these dyes moves the absorption to
NIR region (650–680 nm) as expected. UsingDPBF as singlet
oxygen trapping reagent, these compounds can generate

singlet oxygen under very low concentration level of 9 nM.
Among sensitizers 8–10, compound 8 is the most potent
one, because it shows the fastest reaction rate to consume
DPBF. But the structure-property correlation is not discussed
in the context. Evaluation on K562 human erythroleukemia
cells was conducted with sensitizer 10 (considering its better
solubility characteristics), and the EC

50
value was less

than 200 nM. Beside water solubility issue, PEG can also
help to alleviate aggregate formation in aqueous condition.
Aggregate would lead to inefficient formation and potential
quenching of the triplet state and singlet oxygen. Therefore,
compounds 8–13 with multiple PEG units may suppress
aggregate-induced disadvantages.

Study of 11–13 indicates that these compounds are non-
cytotoxic in the absence of light. However, upon illumination
with red light (>610 nm), all the compounds become toxic.
The photocytotoxicity depends greatly on the substituent and
follows the trend 13 (IC

50
= 7 nM) > 12 (IC

50
= 75 nM) > 11

(IC
50
= 330 nM). Compound 13 is the most potent candidate,

and its photocytotoxicity is even much higher than that
of the most used photosensitizer porfimer sodium (IC

50
=

4600 ngmL−1, in comparison, 11 ngmL−1 for that of 13 under
the same condition). Compound 13 contains five triethylene
glycol chains, which should be responsible for this behavior.
To account for the different phototoxicities of 11–13, their
aggregation behavior in Dulbecco’s modified Eagle’s medium
(DMEM) was examined by absorption and fluorescence
spectroscopic methods. It is found that the Q bands of 11–
13 remain sharp and intense, proving that they are free from
aggregation in the culture medium. Investigation of cellular
uptake of the compounds on HT 29 cells indicates that
compound 13 showsmuch stronger intracellular fluorescence
throughout the cytoplasm than other compounds, suggesting
that it has higher cellular uptake and/or efficiency to emit
fluorescence inside the cells.The enhanced uptakemay be due
to the increased number of triethylene glycol chains. Hence,
the highest photocytotoxicity of 13 should be attributed to
its low aggregation tendency and high cellular uptake in the
biological environment.

In order to release singlet oxygen at the targeted region
(e.g., tumor tissue), one possible approach is to deliver the
BODIPY sensitizer to targeted cells [42]. Single wall carbon
nanotube (SWNT) can be internalized by mammalian cells
through endocytosis, while pyrene has strong affinity with
SWNT through 𝜋-𝜋 noncovalent interactions. Compound
14 comprises two pyrene units (Figure 7), which can deliver
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Figure 3: (a) Structures of BODIPY A3 and 3. (b) Near-infrared
singlet oxygen luminescence emission spectrum of 3 and Rose
Bengal inmethanol (5× 10−5M)excited by anAr laser light at 514 nm
with 100mW output power. Reprinted with permission from [13]
Copyright 2005 American Chemical Society.

the BODIPY sensitizer to mammalian cells functionalized by
SWNT. In this way, BODIPY sensitizer can be accumulated
in the targeted tumor cells, and selectively killing tumor cells
may be realized.

Another strategy is to construct controlled singlet oxygen
release by PET (photoinduced electron transfer) modulation
of singlet to triplet conversion. By covalent attaching of
a substrate-specific receptor to BODIPY dye, therapeutic

property (generation of singlet oxygen) may be reversibly
switched off/on. This is realized by introduction of amino
units into the BODIPY structure. The neutral form does not
generate singlet oxygen efficiently due to the PET process.
However, protonation of the amino units can shut down PET,
releasing singlet oxygen rapidly upon light irradiation [43].

In tumor tissues, the pH is quite acidic, and intracellular
sodium ion concentration is also significantly higher (up
to three times) than normal tissues. Therefore, compound
15 is expected to accumulate in tumor cell, because of its
high affinity with Na+ and H+ (Figure 8). Possible logic
system with Na+ and H+ as inputs can be constructed by
introduction ofNa+-sensitive (crown ether) and pH-sensitive
(pyridine) units (compound 15) [44]. Following the principle
of molecular AND logic gates, high concentration of both
Na+ and H+ ions turns on the output, producing singlet
oxygen in significantly high amounts relative to the presence
of zero or only one kind of stimuli (high concentration of
Na+ or H+). As a result, the authors observed cumulative
generation of singlet oxygen upon the presence of both
stimuli. This approach may not be suitable for in vitro
study, because the required concentrations of Na+ or H+ are
much higher than intracellular levels. But it can be realizable
once the sensitizer has extremely high affinity with Na+
and H+. Construction of a polymer bearing a large number
of crown ether and pyridine units may be one promising
strategy.

2.2. BODIPYBearingC
60
. Heavy atoms incorporated into the

structure of the sensitizers can improve spin-orbit coupling
to facilitate intersystem crossing, but they may potentially
arouse increased “dark toxicity.” Beside heavy atoms, efficient
ISC of fullerene C

60
is particularly interesting and more

promising for PDT application. Photoexcitation of C
60
and its

derivatives induces a singlet excited state that is transformed
to the corresponding triplet excited state via intersystem
energy crossing, with nearly quantitative efficiency [45–51].

A few years ago, C
60

has been found to generate singlet
oxygen in biological medium, [52] using hydrophilic molec-
ular micelle-like C

60
derivatives, in the form of nanosphere

structures. C
60

itself is not an ideal triplet photosensitizer
because its absorption in the visible range (at ca. 700 nm)
is extremely weak, manifesting a low-lying singlet excited
state. But this weak absorption can guarantee intramolec-
ular energy transfer in C

60
-organic chromophore dyads.

1,1-Dicyanoethylenyl-diphenylaminofluorene was first cho-
sen for such propose, as it can absorb visible light with
medium absorption coefficient (𝜆abs = 429 nm, 𝜀 = 1.32 ×
104M−1 cm−1). Direct detection of singlet oxygenwas accom-
plished by observing its fluorescence emission at 1270 nm
during the quenching process [53]. However, the absorption
coefficient of 1,1-dicyanoethylenyl-diphenylaminofluorene in
visible region is not satisfying for an ideal photosensitizer.
Instead, BODIPY derivatives are much more promising.
Based on this consideration, Zhao et al. designed a series
of C
60
-based dyads containing BODIPY chromophore (com-

pound 16–20 in Figure 9) [54, 55]. As expected, all these
compounds show strong absorption in the visible region (e.g.,
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compound 16, 𝜆abs = 515 nm, 𝜀 = 7.04 × 104M−1 cm−1). The
BODIPY chromophore absorbs visible light and transfers the
energy to C

60
, and then C

60
acts as intramolecular energy

acceptor and spin convertor. Because of its intrinsic capability
of ISC, the triplet excited state of C

60
can be efficiently popu-

lated (the triplet excited state of C
60
upon photoexcitation is

close to unity). As a result, these compounds fluoresce weakly
with quantum yield 1.0% for 18, and the energy transfer
efficiency is as high as 98.1%. A similar emission property
was observed for 19 and 20. Using 1,5-dihydroxynaphthalene
(DHN) as singlet oxygen trapping reagent, photooxidation of
DHN by these sensitizers indicates that these dyads are even
more potent than traditional organic triplet photosensitizers
tetraphenylporphyrin and methylene blue. The quantum
yield of singlet oxygen is 0.62 for tetraphenylporphyrin and
0.57 for methylene blue. However, these values increase to
0.85, 0.85, and 0.82 for 18, 19, and 20, respectively.This result

indicates that the number of introduced C
60

units does not
arouse much difference in photosensitizing ability.

2.3. BODIPY Dimers. Recently, a new class of BODIPY
dimers bis(BF2)-2,2󸀠-bidipyrrins (BisBODIPYs) have been
synthesized, and their photophysical properties were com-
pared with those of their corresponding monomers (Fig-
ure 10) [56]. The monomers show narrow and intense single
absorption band around 530 nm; but the corresponding
dimers (21–24) exhibit split band maxima at about 490 nm
and 560 nm. In particular, the dimers show large Stokes shifts
(more than 80 nm) and decreased fluorescence quantum
yield. The decreased fluorescence quantum yield is ascribed
to the ISC from singlet to triplet excited state. As a result,
the quantum yield of production of singlet oxygen is 0.4
in toluene and 0.5 in dichloromethane, pointing to a high
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value of triplet yield. In comparison, the values formonomers
are less than 0.1. These data indicate that these dimers can
be potential singlet oxygen photosensitizers. In order to
theoretically explain this behavior, multiconfigurational self-
consistent field (MCSCF) techniques (computational chem-
istry approach) were adopted [57]. The calculations indicate
that BODIPY monomer possesses low triplet quantum yield,
and the excited state possesses two orbitals with single
occupancy. But doubly substituted ones can significantly

enhance S
1
-T
1
coupling.Then, a design principle of orthogo-

nal dimeric chromophorewas proposed based on the calcula-
tions: the BODIPYdimer should be orthogonally placed.This
is proved by the fact that all the dimers synthesized show ideal
quantum yield to generate singlet oxygen. In particular for
dimers 26 and 27, significant fluorescence emission quantum
yields are preserved, opening the possibility for a dual use as
therapeutic and imaging agents. As a sacrifice, their singlet
oxygen quantumyields are lower than other BODIPYdimers.
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2.4. Nonaggregated Boron-Fluorine Dyes. Aggregation due
to strong 𝜋-𝜋 stacking would reduce the quantum yield of
generating singlet oxygen. But typical BODIPY dyes have
highly planar structure, and they usually pack tightly in
concentrated solution, which imposes a limit that current

sensitizers have to be used in dilute solutions. In order
to solve this problem, we proposed to use 2-(2󸀠-pyridyl)
imidazole derivatives as ligands to coordinate with BF

3

to produce a new class of boron-fluorine dyes (BOPIM,
Figure 11) [58]. According to X-ray single crystal diffractions,
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they form a rigid nonplanar structure through noncova-
lent intermolecular interactions (B-F⋅ ⋅ ⋅H, B-F⋅ ⋅ ⋅C, etc.),
which inhibits aggregate formation.Thenonaggregatedmode
makes BOPIM 28–30 show similar photophysical properties
in aqueous conditions as in conventional organic solvents,
and they can generate singlet oxygen under light irradiation.
The heavy atom effect is not significant in this case, mainly
due to that the halogen atoms are not introduced directly on
the chromophore core. The main drawback of this system is
that they show medium absorption around 410 nm (𝜀 < 2 ×
104M−1 cm−1). The following work will focus on tuning their
absorption to visible region and increasing their absorption
coefficients.

3. Outlook

This review summarizes the recent development of boron-
fluorine-based photosensitizers. The design comprises intro-
duction of heavy atoms or C

60
and construction of BODIPY

dimers or intermolecular noncovalent bonds to inhibit aggre-
gation. The future research should be to develop clinically

useful BODIPY dyes, especially controllable generation of
singlet oxygen at the targeted region.
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