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A new well-test model is presented for unsteady flow in multizone with crossflow layers in non-Newtonian polymer flooding
reservoir by utilizing the supposition of semipermeable wall and combining it with the first approximation of layered stable flow
rates, and the effects of wellbore storage and skin were considered in this model and proposed the analytical solutions in Laplace
space for the cases of infinite-acting and bounded systems. Finally, the stable layer flow rates are provided for commingled system
and crossflow system in late-time radial flow periods.

1. Introduction

Many reservoirs are formed from layers of different physical
properties because of the different geological deposition ro-
tary loops. Among them, if these layers do not communicate
in terms of fluid flow through the formation but may be pro-
duced by the samewellbore, these types of reservoir are called
commingled systems; if there exits fluid that connects between
these layers, they are referred to as crossflow systems. The
pressure-transient behavior depends on the comprehensive
properties of these multilayers.

For the unstable flow of Newtonian fluids in a multilay-
ered reservoir, Russell et al. [1, 2] studied pressure behavior of
single-phase fluid in two layers with formation crossflow and
derived the conclusion that it is similar to the flow behavior
of the two layers without formation crossflow in early time.
Raghavan et al. [3] studied the problem of well test in a mul-
tilayered reservoir. Bourdet [4] established using steady state
approximation to the presentation interlayer flowmodel. Gao
and Deans [5] studied the behavior of multilayered reservoir
with formation crossflow. Ehlig-Economides [6] has system-
atically established the combination of commingled system
and crossflow system unsteady flow models and provided

the rule of the pressure and flow for each layer. Bidaux
et al. [7], using layered pressure and flow data, conducted a
study on the theory and practical application of multilayered
reservoir.

For the unsteady flow of non-Newtonian fluids in a mul-
tilayered reservoir, van Poollen and Jargon [8] studied non-
Newtonian power-law fluid unsteady flow in porous media
and showed that the transient pressure response character-
istics are different from that of Newtonian fluid. Ikoku and
Ramey [9] studied non-Newtonian power-law fluid unsteady
flow characteristics in porousmedium, and the consideration
of wellbore storage and skin effect is obtained in homo-
geneous infinite reservoir model in Laplace space solution.
Lund and Ikoku [10, 11] proposed non-Newtonian power-law
fluid (polymer solution) and Newtonian fluid (oil) composite
model of transient well-test analysis method. Xu et al.
[12] proposed the infinite reservoir Laplace space spherical
transient pressure solution and discussed the characteristics
of wellbore pressure at early times and later times. The above
research result is to solve the problem of single layer. Escobar
et al. [13] presented equations to estimate permeability, non-
Newtonian bank radius, and skin factor for the well test
data in reservoirs with non-Newtonian power-law fluids.
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Figure 1: Sketch of a multilayer reservoir.

Martinez et al. [14] studied the transient pressure behaviors
for a Bingham type fluid and the influence of the minimum
pressure gradient. Escobar et al. [15, 16] studied transient
pressure analysis for non-Newtonian fluids in naturally frac-
tured formations modelled as double-porosity model. They
[17] extended TDS technique to injection and fall-off tests
of non-Newtonian pseudoplastic fluids. van den Hoek et al.
[18] presented a simple and practical methodology to infer
the in situ polymer rheology from PFO (Pressure Fall-Off)
tests. To the problem ofmultilayered, Yu et al. [19] established
a well testing model for polymer flooding and presented a
numerical well testing interpretation technique to evaluate
formation in crossflow double-layer reservoirs.

This paper presents a well-test model and the analytical
solution for non-Newtonian polymer-flooding unsteady flow
in multizone with crossflow layers and laid the foundation
theory of field test data interpretation.

2. The Model Description

The reservoir model for the 𝑁-layered system is shown in
Figure 1. Each layer is assumed to be homogeneous and
isotropic, with injected polymer non-Newtonian power-law
fluids.

A symmetrically located well penetrates all the layers, and
each layer has a skin of arbitrary value S

𝑖
, wellbore storage

coefficient 𝐶 is assumed to be constant, and crossflow may
occur in the reservoir between any two adjacent layers.

Assuming that the fluid is slightly compressible, the com-
pression coefficient is constant, the permeability, porosity,
and thickness of each layer can be different, respectively,
𝐶
𝑡𝑗
, 𝑘
𝑗
,B
𝑗
, ℎ
𝑗
to distinguish between layer pairs with forma-

tion crossflow with and noncommunicating layers, and the
reservoir is divided into 𝑁𝑍 (≤N) zones. Between any two
adjacent zones, there is no formation crossflow. Gravity and
capillary forces can be neglected. Assuming weak formation
crossflow, the flow is about interlayer pressure difference and
has nothing to do with the shear rate, crossflow coefficient
𝜒
𝑗
, on behalf of interlayer communicating ability. Formation

crossflow is modeled as in the semipermeable-wall model of

Deans and Gao [7], which assumes that all resistance to verti-
cal flow is concentrated in thewall (layer top, bottom).Hence,
the pressure difference between adjacent layers depends on
only radial position and time, and flow within the layers is
strictly horizontal, and assuming that each layer has the same
initial pressure.

The flow in each layer 𝑗 (𝑗 = 1, 2, . . . , 𝑁) is governed by
the following equation:

𝑘
𝑗
ℎ
𝑗
∇ ⋅ (

1
𝜇
𝑗

∇𝑃
𝑗
) = 𝜙

𝑗
ℎ
𝑗
𝐶
𝑡𝑗

𝜕𝑃
𝑗

𝜕𝑡
+ 𝜒
𝑗−1 (𝑃𝑗 −𝑃

𝑗−1)

− 𝜒
𝑗
(𝑃
𝑗+1 −𝑃

𝑗
) ,

(1)

where 𝜒
𝑗
is given by

𝜒
𝑗
=

2
2 [Δℎ
𝑗
/𝑘V𝑗] + 𝑥

𝑗+1 + 𝑥
𝑗

, 𝑗 = 1, . . . , 𝑁, (2)

where 𝜒0 = 𝜒
𝑛

= 0, Δℎ
𝑗
and 𝑘V𝑗 are thickness and vertical

permeability of a nonperforated zone between layers 𝑗 and
𝑗 + 1, and 𝑥

𝑗
= ℎ
𝑗
/𝑘
𝑧𝑗
, where 𝑘

𝑧𝑗
is the vertical permeability

for layer 𝑗 that is the resistance to flow per unit length at the
𝑗th layer interface. If there is no nonperforated zone between
layers 𝑗 and 𝑗 + 1, then the flow resistance on behalf of a 𝑗

layer interface unit length. If on the 𝑗 layer and the 𝑗 + 1 layer
but perforated belt, then (Δℎ)

𝑗
is zero. If there is no formation

crossflow between layers 𝑗 and 𝑗 + 1, then 𝜒
𝑗
is zero.

The sand surface flow of each layer as a function of time:

𝑞
𝑗 (𝑡) =

−2𝜋𝑘
𝑗
ℎ
𝑗

𝜇
𝑗

𝑟
𝑤

𝜕𝑃
𝑗

𝜕𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟
𝑤

. (3)

Assume that polymer solution viscosity and shear rate of
power-law relations [4] are as follows:

𝜇
𝑖
= 𝐻]
𝑖

𝑛−1
, (4)

where𝐻 is a constant and ]
𝑖
and 𝑛, respectively, represent the

shear rate and power-law index; when 𝑛 tends to one, fluid
showed a Newtonian fluid properties.

Because of the flow in each layer 𝑗 changing over time,
the crossflow rate is much smaller than stable flow rate, so the
flow rate 𝑞

𝑖
can be replaced by steady flow rate to calculate the

shear rate:

]
𝑖
=

𝐷𝑞
𝑖𝑠

𝑟ℎ
𝑖
(𝐾
𝑖
𝜙
𝑖
)
0.5 , (𝑖 = 1, . . . , 𝑁) , (5)

where 𝐷 is a constant and layer stable flow rate 𝑞
𝑖𝑠
can be

obtained by the late-time in unsteady flow.
With the viscosity of polymer solution into (1) for the

shear rate representation, for radial flow, under cylindrical
coordinate, dimensionless forms are obtained by finishing
after

𝜅
𝑗
(

𝜕
2
𝑃
𝑗𝐷

𝜕𝑟
𝐷
2 +

𝑛
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𝑗𝐷
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𝐷

)

= 𝜔
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𝑟
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1−𝑛 𝜕𝑃𝑗𝐷

𝜕𝑡
𝐷

− 𝑟
𝐷

1−𝑛
𝜆
𝑗−1 (𝑃𝑗𝐷 −𝑃

𝑗−1𝐷)

+ 𝑟
𝐷

1−𝑛
𝜆
𝑗
(𝑃
𝑗+1𝐷 −𝑃

𝑗𝐷
) .

(6)
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The boundary condition at the well is given by the fol-
lowing equations, which account for both skin and wellbore
storage:

𝑃
𝑤𝐷

= 𝑃
𝑗𝐷

(1, 𝑡
𝐷
) − 𝑠
𝑗
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=1

,

1 = 𝐶
𝐷
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𝐷

−

𝑁

∑

𝑗=1
𝜅
𝑗
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𝑗𝐷

𝜕𝑟
𝐷
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.

(7)

For infinite-outer-boundary condition,

𝑃
𝑗𝐷

(𝑟
𝐷
, 𝑡
𝐷
) 󳨀→ 0 (𝑟

𝐷
󳨀→ ∞) . (8)

For no-flow outer-boundary condition,

𝜕𝑃
𝑗𝐷

𝜕𝑟
𝐷

= 0 (𝑟
𝐷

= 𝑟
𝑒𝐷

) . (9)

For initial condition,

𝑃
𝑗𝐷

(𝑟
𝐷
, 0) = 0. (10)

For dimensionless layer flow rates,

𝑞
𝑗𝐷

(𝑡
𝐷
) =
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, (11)

where the dimensionless variables are defined by the follow-
ing:

𝑃
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2𝜋𝑟
𝑤
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𝑟
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, (18)

𝑟
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𝑟
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3. The Solution of the Model

The above equation is given by Laplace transform on time.
Set

𝑙 =
2

3 − 𝑛
,

𝑚 =
1 − 𝑛

3 − 𝑛
.

(20)

The basic control equation solution is as follows:

𝑃
𝑗𝐷

=

𝑁

∑

𝑘=1
𝑟
𝐷

(1−𝑛)/2
[𝐴
𝑗

𝑘
𝐾
𝑚

(𝑙𝜎
𝑘
𝑟
𝐷

(3−𝑛)/2
)

+𝐵
𝑗

𝑘
𝐼
𝑚

(𝑙𝜎
𝑘
𝑟
𝐷

(3−𝑛)/2
)] ,

(21)

where the subscript on𝐴 indexes the layer and the superscript
indexes 𝜎,𝐴, and𝐵 are, respectively, the first and the two class
of 𝑚 order modified Bessel function. 𝑘

𝑗
𝜎
2 is eigenvalue of

real symmetric three diagonal positive definitematrices [𝑎󸀠
𝑗𝑘
],

where

𝑎
󸀠

𝑗𝑘
= {−𝜆

𝑗−1, 𝑘 = 𝑗 − 1, 𝑗 > 1; 𝜔
𝑗
𝑧 − 𝜆
𝑗−1 −𝜆

𝑗
, 𝑘 = 𝑗;

− 𝜆
𝑗
, 𝑘 = 𝑗 + 1, 𝑗 <𝑁; 0, 𝑘 ̸= 𝑗 − 1, 𝑗 or 𝑗 + 1} .

(22)

According to the boundary conditions, a function relation-
ship between 𝐴

𝑗

𝑘 and 𝐵
𝑗

𝑘 is as follows:

𝐴2
𝑘
=

−𝑎11
𝑎12

𝐴1
𝑘
= 𝛼2
𝑘
𝐴1
𝑘
,

𝐴3
𝑘
=

− (𝑎21𝐴1
𝑘
+ 𝑎22𝐴2

𝑘
)

𝑎23
= 𝛼3
𝑘
𝐴1
𝑘
,

.

.

.

𝐴
𝑁

𝑘
=

− (𝑎
𝑁−1,𝑁−2𝐴𝑁−2

𝑘
+ 𝑎
𝑁−1,𝑁−1𝐴𝑁−1

𝑘
)

𝑎
𝑁−1,𝑁

= 𝛼
𝑁

𝑘
𝐴1
𝑘
,

𝐵
𝑗

𝑘
= 𝛼
𝑗

𝑘
𝐵1
𝑘
, (𝑗 = 1, . . . , 𝑁) .

(23)

Then,𝑁2 values for𝛼
𝑗

𝑘 can be computed directly from the
above recursion formula. Let zone 𝑖 (𝑖 = 1, . . . , 𝑁𝑍) contain
𝑚
𝑖
layer, the zone 𝑖 with a specific layer 𝑗, dimensionless

pressure:

𝑃
𝑗𝐷

=

𝑚
𝑖

∑

𝑘
𝑖
=1
𝑟
𝐷
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[𝐴
𝑗

𝑘
𝑖𝐾
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
)

+𝐵
𝑗

𝑘
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
)] ,

(24)

where each layer index, 𝑘
𝑖
, in the sum refers to the same zone

𝑖 as Layer 𝑗.
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Finally, the coefficients for each zone can be expressed as
multiples of the coefficients,𝐴1

𝑘
𝑖 ,𝐵1
𝑘
𝑖 , of the uppermost layer

in zone 𝑖 with (12):

𝑃
𝑗𝐷

=

𝑚
𝑖

∑

𝑘
𝑖
=1

𝑟
𝐷

(1−𝑛)/2
[𝐴1
𝑘
𝑖𝛼
𝑗

𝑘
𝑖𝐾
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
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+𝐵1
𝑘
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𝑗

𝑘
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
)] .

(25)

External boundary condition implies the relationship
between 𝐴1

𝑘
𝑖 and 𝐵1

𝑘
𝑖 is as follows:

𝐵1
𝑘
𝑖 = 𝑏
𝑘
𝑖𝐴1
𝑘
𝑖 . (26)

For infinite-outer-boundary condition,

𝑏
𝑘
𝑖 = 0. (27)

For no-flow outer-boundary conditions,

𝑏
𝑘
𝑖 =

𝐾
𝑙
(𝑙𝜎
𝑘
𝑖

𝑟
𝑒𝐷

(3−𝑛)/2
)

𝐼
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(𝑙𝜎
𝑘
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𝑟
𝑒𝐷
(3−𝑛)/2)

. (28)

According to the boundary conditions, the layer 𝑗 − 1 and
layer 𝑗 which in the same zone have the following relations:

𝑚
𝑖

∑

𝑘
𝑖
=1
𝐴1
𝑘
𝑖 (𝛼
𝑗−1
𝑘
𝑖 {𝐾
𝑚

(𝑙𝜎
𝑘
𝑖
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𝑘
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

)

+ 𝑠
𝑗−1𝜎𝑘

𝑖

[(𝑙𝜎
𝑘
𝑖

) − 𝑏
𝑘
𝑖𝐼
−𝑙

(𝑙𝜎
𝑘
𝑖

)]}

− 𝛼
𝑗

𝑘
𝑖 {𝐾
𝑚

(𝑙𝜎
𝑘
𝑖

) + 𝑏
𝜅
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

)

+ 𝑠
𝑗
𝜎
𝑘
𝑖

[𝐾
𝑙
(𝑙𝜎
𝑘
𝑖

) − 𝑏
𝜅
𝑖𝐼
−𝑙

(𝑙𝜎
𝑘
𝑖

)]}) = 0.

(29)

The layer 𝑗 − 1 of zone 𝑖 − 1 and the layer 𝑗 of zone 𝑖 − 1 have
the following relations:

𝑚
𝑖−1

∑

𝑘
𝑖−1=1

(𝐴1
𝑘
𝑖−1𝛼
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𝑘
𝑖−1 {𝐾
𝑚

(𝑙𝜎
𝑘
𝑖−1

) + 𝑏
𝑘
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𝑘
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−

𝑚
𝑖

∑

𝑘
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𝑘
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𝜅
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𝑘
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𝑗
𝜎
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(𝑙𝜎
𝑘
𝑖
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(30)

The wellbore pressure is as follows:

𝑃
𝑤𝐷

=
1

(𝐶
𝐷
𝑧2 + 1/𝑃

𝑤𝐷𝐶
𝐷
=0)

. (31)

Equation (31) is a general solution, and it is by no wellbore
storage pressure solution conversion into thewellbore storage
pressure solutions. Therefore, we will solve the 𝐶

𝐷
= 0 cases

of equations.
Equations (29)-(30) are linear equations with coefficient

𝐴1
𝑘
𝑖 which can be solved by numerical method.The wellbore

pressure without wellbore storage is given as

𝑃
𝑤𝐷𝐶
𝐷
=0 =

𝑚
𝑖

∑

𝑘
𝑖
=1

(𝐴1
𝑘
𝑖𝛼1
𝑘
𝑖 {𝐾
𝑚

(𝑙𝜎
𝑘
𝑖

) + 𝑏
𝑘
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

)

+ 𝑠1𝜎𝑘
𝑖

[𝐾
𝑙
(𝑙𝜎
𝑘
𝑖

) − 𝑏
𝑘
𝑖𝐼
−𝑙

(𝑙𝜎
𝑘
𝑖

)]}) .

(32)

In addition, layer flow rate is given as follows:

𝑞
𝑗𝐷

= (1−𝐶
𝐷
𝑃
𝑤𝐷

𝑧
2
)

⋅ 𝜅
𝑗

𝑚
𝑖

∑

𝑘
𝑖
=1

𝐴1
𝑘
𝑖𝛼
𝑗

𝑘
𝑖𝜎
𝑘
𝑖

{𝐾
𝑙
(𝑙𝜎
𝑘
𝑖

) − 𝑏
𝑘
𝑖𝐼
−𝑙

(𝑙𝜎
𝑘
𝑖

)} .

(33)

Distribution of radial pressure on each layer becomes

𝑃
𝑗𝐷

= (1−𝐶
𝐷
𝑃
𝑤𝐷

𝑧
2
) 𝑃
𝑗𝐷𝐶
𝐷
=0 = (1−𝐶

𝐷
𝑃
𝑤𝐷

𝑧
2
)

⋅

𝑚
𝑖

∑

𝑘
𝑖
=1

(𝐴1
𝑘
𝑖𝛼
𝑗

𝑘
𝑖 {𝐾
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
)

+ 𝑏
𝑘
𝑖𝐼
𝑚

(𝑙𝜎
𝑘
𝑖

𝑟
𝐷

(3−𝑛)/2
)}) .

(34)

For the case of double-layer reservoirs with formation cross-
flow, assume that choosing parameters is as follows.

𝐶
𝐷

= 1, 𝑠1 = 𝑠2 = 1, 𝜆 = 1𝑒 − 5, 𝜅 = 0.95,
𝜔 = 0.1, and 𝑛 = 0.1, 0.3, 0.5, 0.7, 0.9, through the numerical
inversion of the Laplace transform of Stehfest [20]. Pressure
and flow in the real space are obtained.The wellbore pressure
curve is shown in Figure 1. The wellbore pressure curve is
shown in Figure 2. It can be seen that the pressure derivative
curve is unit slope straight line in the early-time; namely,
linear unit slope represents pure effect of wellbore storage;
in the medium term, the curve is concave interporosity
flow transition characteristics; in the late stage, the pressure
derivative curve is approximately straight line up, and the
slope is related to the power law index. The slope is 𝑚

𝐿
=

(1−𝑛)/(3−𝑛). And it can be seen that the pressure derivative
rises and increases with the reduction of power-law index 𝑛

steepened.
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Figure 2: Dimensionless pressure for two-layer system.
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Figure 3: Dimensionless flow-rate for the first layer.

In Figures 3 and 4 flow curve can be seen; for the first
layer with high quasi capacity coefficient, the dimensionless
flow rate increases with the time increasing and finally tends
to be stable flow rate 𝜅; for the second layer with low quasi
capacity coefficient, the dimensionless flow rate increases
with the time increasing. In a certain period, due to high
permeability layer crossflow, pressure tends to be balanced,
and the crossflow that is more and more weak, finally, tends
to be stable flow rate 1 − 𝜅.

4. The Late Stable Flow Model

For both cases stable layer flow-rates were discussed, includ-
ing (1) without formation crossflow and (2) with formation
crossflow. We only discussed the behavior in late time, so
ignore the effect of wellbore storage effect.
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Figure 4: Dimensionless flow-rate for the second layer.

(1) Without Formation Crossflow.

for the infinite-out-boundary, the stable flow rate, for
layer 𝑗, is as follows:

𝑞
𝑗𝑠

=

𝑞𝜅
𝑗

𝑙
𝜔
𝑗

𝑚

∑
𝑁

𝑘=1 𝜅𝑘
𝑙𝜔
𝑘
𝑚
. (35)

For the no-flow-boundary, the stable flow rate, for
layer 𝑗, is as follows:

𝑞
𝑗𝑠

=

𝑞𝜙
𝑗
ℎ
𝑗
𝐶
𝑡𝑗

∑
𝑁

𝑗=1 𝜙𝑗ℎ𝑗𝐶𝑡𝑗
. (36)

(2) With Formation Crossflow.

Regarding the eigenvalues of matrix {𝑎
󸀠

𝑗𝑘
}, there is a

value to meet 𝜎
2

= 𝑧, and the rest is independent
of 𝑧 and 𝜔

𝑗
and depends only on 𝜅1, 𝜅2, . . . , 𝜅𝑛 and

𝜆1, 𝜆2, . . . , 𝜆𝑛. Assume that 𝜎1
2
= 𝑧. Stable layer flow

rate through the determinant value can be expressed
as

𝑞
𝑗𝑠

= 𝑞𝜅
𝑗
lim
𝑧→ 0

[

[

det {𝐶
𝑗𝑘
}1,1

det {𝐶
𝑗𝑘
}

𝛼
𝑗

1
𝜎1 {𝐾𝑙 (𝑙𝜎1)

− 𝑏
1
𝐼
−𝑙

(𝑙𝜎1)}]

]

+ 𝑞𝜅
𝑗

𝑁

∑

𝑘
𝑖
=2
lim
𝑧→ 0

[

det {𝐶
𝑖𝑘
}
𝑘
𝑖
,𝑘
𝑖

det {𝐶
𝑖𝑘
}

⋅ 𝛼
𝑗

𝑘
𝑖𝜎
𝑘
𝑖

{𝐾
𝑙
(𝑙𝜎
𝑘
) − 𝑏
𝑘
𝑖𝐼
−𝑙

(𝑙𝜎
𝑘
)}] ,

(37)

where det{𝐶
𝑗𝑘
} is determinant of matrix {𝐶

𝑗𝑘
}.
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The matrix element is as follows:

𝐶
𝑗𝑘

= 𝛼
𝑗

𝑘
{𝐾
𝑚

(𝑙𝜎
𝑘
) + 𝑏
𝑘
𝐼
𝑚

(𝑙𝜎
𝑘
)

+ 𝑠
𝑘
𝜎
𝑘
[𝐾
𝑙
(𝑙𝜎
𝑘
) − 𝑏
𝑘
𝐼
−𝑙

(𝑙𝜎
𝑘
)]}

− 𝛼
𝑗+1
𝑘
{𝐾
𝑚

(𝑙𝜎
𝑘+1) + 𝑏

𝑘
𝐼
𝑚

(𝑙𝜎
𝑘+1)

+ 𝑠
𝑘+1𝜎𝑘+1 [𝐾

𝑙
(𝑙𝜎
𝑘+1) − 𝑏

𝑘
𝐼
−𝑙

(𝑙𝜎
𝑘+1)]} .

(38)

Thematrix {𝐶
𝑗𝑘
}
𝑖,𝑖
is used in matrix in {𝐶

𝑗𝑘
} column 𝑖

replacement for (0, 0, . . . , 𝐴, 1/𝑧)
𝑇, where superscript

𝑇 is the vector transpose.

5. Conclusions

Establishing the multilayer reservoir well-test model for
polymer flooding gives the formation and wellbore transient
pressure and the layer flow-rate finally.The expressions of late
time stable flow rate in each layer are given.

The unsteady well-test model provides theoretical
method for polymer flooding well test analysis of multilayer
reservoir; the experimental data and the theoretical curve
fitting can be used to determine the permeability, skin factor
and effective interlayer vertical permeability, and other
important parameters.

Nomenclature

𝑎
󸀠

𝑗𝑘
: Matrix elements defined in (22)

𝐴
𝑗

𝑘
, 𝐵
𝑗

𝑘: Coefficient for 𝑗th layer, 𝑘th root defined in
(23)

𝐴1
𝑘
𝑖 ,𝐵1
𝑘
𝑖 : Coefficient for 𝑗th layer, 𝑘th root, in zone 𝐼,

defined in (25)
𝑏
𝑘
𝑖 : Coefficient for outer boundary condition

defined in (27) or (28)
𝐶: Wellbore-storage coefficient (cm3/kPa)
𝐶
𝑡𝑗
: Total compressibility in layer 𝐼 (kPa−1)

𝐶
𝑗𝑘
: Matrix elements defined in (38)

𝐷: Constant defined in (5)
ℎ
𝑗
: Formation thickness in layer 𝑗 (cm)

𝐻 : Constant defined in (4)
𝐼
𝑚
(⋅), 𝐾
𝑚
(⋅): Modified 𝑚 order Bessel function of the first

and second kind
Δℎ
𝑗
: Thickness of a nonperforated zone between

layers 𝑗 and 𝑗 + 1 (cm)
𝐾
𝑗
: Horizontal permeability in layer 𝑗, 𝜇m2

𝐾V𝑗: Vertical permeability of a tight zone between
Layers 𝑗 and 𝑗 − 1 (𝜇m2)

𝐾
𝑧𝑗
: Vertical permeability in Layer 𝑗 (𝜇m2)

𝑙, 𝑚: Constant defined in (20)
𝑚
𝑖
: Number of layers in Zone 𝑖

𝑛: Power-law index
𝑁: Number of layers in reservoir system
𝑁𝑍: Number of Zones in reservoir system
𝑃
𝑖
: Reservoir pressure in layer 𝐼 (kPa)

𝑃
𝑗

𝑖: Reservoir pressure in layer 𝑗 in Zone 𝑖

(kPa)
𝑃
𝑗𝐷
: Dimensionless reservoir pressure in

layer 𝑗 defined in (12)
𝑃
0
: Initial reservoir pressure (kPa)

𝑃
𝑤𝐷

: Dimensionless bottomhole pressure in
Laplace space

𝑃
𝑤𝐷𝐶
𝐷
=0: Dimensionless bottomhole pressure

without wellbore storage in Laplace
space

𝑄: Surface production rate (cm3/s)
𝑞
𝑗
: Flow rate for layer 𝑗 (cm3/s)

𝑞
𝑗𝑠
: Stable flow rate for layer 𝑗 (cm3/s)

𝑟: Radial distance (cm)
𝑟
𝐷
: Dimensionless radius, defined in (18)

𝑟
𝑒
: Reservoir outer radius (cm)

𝑟
𝑒𝐷
: Dimensionless outer reservoir radius,

defined in (19)
𝑟
𝑤
: Wellbore radius (cm)

𝑆
𝑗
: Wellbore skin factor for layer 𝑗

𝑡: Time (s)
Δ𝑡: Elapsed time after rate change (s)
𝑡
𝐷
: Dimensionless time referenced to

producing layer
]
𝑖
: Shear rate in layer 𝐼 (s−1)

𝜒
𝑗
: Crossflow coefficient between layers 𝑗

and 𝑗 + 1 defined in (2)
𝑥
𝑗
: Resistance to flow per unit length at the

𝑗th layer interface
𝑍: Laplace space variable 𝑖

𝛼
𝑗

𝑘: Coefficient for layer 𝑗, Root 𝑘, defined
in (23)

𝛼
𝑗

𝑘
𝑖 : Coefficient for layer 𝑗, Root 𝑘, defined

in Zone 𝐼, defined in (25)
𝜅
𝑗
: Coefficient for layer 𝑗, defined in (14)

𝜆
𝑗
: Dimensionless semipermeability

between layers 𝑗 and 𝑗 + 1, defined in
(16)

𝑀: Dynamic viscosity (mpa⋅s)
Φ
𝑗
: Porosity fraction for layer 𝑗

𝜔
𝑗
: Coefficient for layer 𝑗, defined in (15)

]
𝑗
: Shear rate for layer 𝑗 defined in (5)

det{𝐶
𝑗𝑘
}: Determinant of matrix {𝐶

𝑗𝑘
}.
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