Structural, vibrational and electronic properties of the glucoalkaloid strictosidine: a combined experimental and theoretical study

Renyer A. Costa^a, Maria Lucia B. Pinheiro^a, Kelson M.T. Oliveira^{a*}, Andersson Barison^b, Kahlil S. Salomé^b, Julio Rodolfo Iank^a, Noam Gadelha da Silva^a, Tiara S. Cabral^c and Emmanoel C. Vilaça^a

- ^a Department of Chemistry Federal University of Amazonas, Manaus, Amazonas, Brazil; E-Mails: renyer.costa@gmail.com, lbelem@ufam.edu.br, kelsonmota@ufam.edu.br
- ^b NMR Laboratory Department of Chemistry Federal University of Paraná, Paraná, Curitiba, Brazil
- ^c National Research Institute of Amazonas INPA, Manaus, Amazonas, Brazil

Position	δ _c , type	δ_H (<i>J</i> in Hz)	HMBC
1	-	-	-
2	130.4	-	-
3	53.4	4.68 (d,J=11.4Hz, 1H)	2, 15
4	-	-	-
5	42.3	3.74(d, J=6Hz, 1H) e 3,1 (m, 1H)	3, 6, 7
6	23.2	3.4(t,J= 4.8Hz, 1H) e 3.0(d, J= 6.6 Hz, 1H)	7, 2
7	108.0	-	-
8	127.2	-	-
9	119.1	7.47	7, 11, 13
10	120.2	7.04	8, 12
11	123.3	7.13	9, 13
12	112.2	7.33	8, 10
13	137.8	-	-
14	34.7	2.3 (ddd,J=1.8; 11.4; 13.2, 1H) e 2.2(ddd,J=3.6; 12; 13 2Hz 1H)	16
15	32.5	3.12 (d, J=4.8Hz, 1H)	3, 16, 21
16	108.6	-	-
17	156.6	7.8(s, 1H)	15, 16, 21, 22
18	119.4	5.2 e 5.3 (m, 2H)	19, 20
19	134	5.851 (dd, J= 3:12 Hz, 1H)	15, 21
20	45.3	2.7(dd, J= 3;8.4 Hz, 1H)	14, 16, 18, 21,C1'
21	97.5	5.853(d, J= 8.4Hz, 1H)	15, 19, 20, 1'
22	171.3	-	-
1'	100.1	4.82(m, 1H)	3'

 Table S1. 1D and 2D
 NMR
 signals of strictosidine

2'	74	3.6(m, 1H)	4'
3'	78	3.5(m, 1H)	2', 4', 5'
4'	73	3.6(m, 1H)	2'
5'	71	3.2(m, 1H)	3', 1'
6'	62.7	3.6 e 3.5(m, 1H)	4'
CH ₃ O-	52.7	3.8(s,3H)	22

Figure S1. H¹ NMR spectrum of strictosidine

Figure S2. HSQC spectrum of strictosidine

Figure S3. HMBC spectrum of strictosidine

Figure S4. ESI-IT-MS spectra of strictosidine. Ms^2 spectrum of ion peak m/z 531 (top) ms³ of ion peak m/z 514.

Atom	Natural	Natural					
	Charge	Populatio	Population				
	U	Core	Valence	Rydberg	Total		
C11	-0.257	1.999	4.244	0.0140	6.257		
C10	-0.272	1.999	4.258	0.0139	6.271		
C9	-0.232	1.999	4.258	0.0139	6.272		
C8	-0.094	1.999	4.080	0.0146	6.094		
C13	0.156	1.999	3.826	0.0186	5.844		
C12	-0.271	1.999	4.259	0.0129	6.271		
N1	-0.558	1.999	5.549	0.0101	7.558		
C7	-0.115	1.999	4.101	0.0150	6.115		
C2	0.167	1.999	3.812	0.0206	5.832		
C6	-0.485	1.999	4.476	0.0102	6.485		
C5	-0.260	1.999	4.243	0.0175	6.260		
N4	-0.706	1.999	5.691	0.0158	7.706		
C14	-0.457	1.999	4.444	0.0140	6.457		
C15	-0.263	1.999	4.246	0.0173	6.263		
C20	-0.323	1.999	4.307	0.0169	6.323		
C19	-0.224	1.999	4.208	0.0173	6.224		
C18	-0.433	1.999	4.422	0.0112	6.433		
C16	-0.259	1.999	4.243	0.0175	6.259		
C17	0.222	1.999	3.755	0.0228	5.777		
03	-0.537	1.999	6.525	0.0128	8.537		
C21	0.411	1.999	3.560	0.0228	5.588		
C22	0.812	1.999	3.145	0.0429	5.187		
04	-0.578	1.999	6.565	0.0131	8.578		
C1'	0.397	1.999	3.572	0.0314	5.602		
C5'	0.029	1.999	3.949	0.0225	5.970		
C3'	0.048	1.999	3.927	0.0246	5.951		
C4'	0.045	1.999	3.932	0.0235	5.955		
H11	0.240	0.000	0.759	0.0007	0.760		
H10	0.238	0.000	0.761	0.0009	0.762		
H9	0.240	0.000	0.759	0.0009	0.760		
H12	0.244	0.000	0.754	0.0094	0.755		
H1	0.446	0.000	0.552	0.0015	0.553		
H6b	0.245	0.000	0.752	0.0017	0.754		
H6s	0.237	0.000	0.761	0.0019	0.763		
H5b	0.224	0.000	0.773	0.0017	0.775		
H5a	0.239	0.000	0.759	0.0012	0.761		
H7	0.392	0.000	0.605	0.0021	0.607		
H14S	0.237	0.000	0.761	0.0012	0.762		
H14R	0.243	0.000	0.755	0.0017	0.757		
H15	0.281	0.000	0.715	0.0028	0.718		
H20	0.277	0.000	0.720	0.0024	0.722		
H19	0.237	0.000	0.760	0.0014	0.762		

 Table S2. Natural population analysis

	ô ô ô 7	0.000	a 1	a a a a -	a -
H18	0.225	0.000	0.774	0.0007	0.775
H18	0.224	0.000	0.774	0.0023	0.776
H17	0.244	0.000	0.754	0.0012	0.755
H21	0.225	0.000	0.771	0.0031	0.774
H1'	0.213	0.000	0.783	0.0035	0.786
H3'	0.225	0.000	0.772	0.0034	0.775
O2	-0.649	1.999	6.631	0.0176	8.649
01	-0.557	1.999	6.547	0.0103	8.557
CH3	-0.322	1.999	4.308	0.0142	6.322
H(CH3)	0.229	0.000	0.769	0.0005	0.770
H(CH3)	0.219	0.000	0.778	0.0015	0.780
H(CH3)	0.219	0.000	0.779	0.0015	0.781
05	-0.626	1.999	6.613	0.0133	8.626
C2'	0.046	1.999	3.929	0.0250	5.953
07	-0.777	1.999	6.765	0.0124	8.777
Н3"	0.501	0.000	0.496	0.0025	0.498
08	-0.777	1.999	6.765	0.0127	8.777
H4"	0.504	0.000	0.494	0.0009	0.495
H4'	0.233	0.000	0.764	0.0003	0.767
06	-0.768	1.999	6.756	0.0127	8.768
H2"	0.497	0.000	0.500	0.0021	0.502
H2'	0.228	0.000	0.767	0.0037	0.771
C6'	-0.111	1.999	4.092	0.0201	6.111
H6'b	0.206	0.000	0.791	0.0023	0.793
H6'a	0.232	0.000	0.766	0.0017	0.768
09	-0.765	1.999	6.753	0.0125	8.765
Н6"	0.487	0.000	0.510	0.0024	0.513
H5'	0.229	0.000	0.767	0.0037	0.771
C2	-0.088	1.999	4.070	0.0197	6.088
H3	0.265	0.000	0.732	0.0024	0.734

Cycle	Occupation	Occupancies		Dev
	Threshold	lewis	Non-	
			lewis	
1	1.90	273.8	8.13	0.68
2	1.90	273.8	8.13	0.68
3	1.90	275.9	6.05	0.49
4	1.80	275.9	6.05	0.49
5	1.80	277.3	4.67	0.37
6	1.70	277.3	4.67	0.37
7	1.70	277.4	4.52	0.49
8	1.60	277.1	4.91	0.37
9	1.60	277.4	4.52	0.49
10	1.60	277.1	4.91	0.37
11	1.60	277.4	4.52	0.49
12	1.60	277.1	4.91	0.37
13	1.60	277.4	4.52	0.49
14	1.60	277.1	4.91	0.37
15	1.60	277.4	4.52	0.49
16	1.50	275.2	6.76	0.91
17	1.50	276.5	5.50	0.73
18	1.50	276.5	5.50	0.73
19	1.60	277.4	4.52	0.49

Table S3.	Natural	bond	orbital	analysis
-----------	---------	------	---------	----------

Figure S5. Most contributive electronic transition for 265 nm in B3LYP 6-31G(d)

Figure S6. Most contributive electronic transition for 278 nm in B3LYP 6-311++G(2d,p)