SUPPORTING INFORMATION

Synthesis, X-Ray Crystal Structures, Biological Evaluation and Molecular docking Studies of a Series of Barbiturate Derivatives

Assem Barakat ${ }^{1,2, *, \dagger}$, Hazem A. Ghabbour ${ }^{3,4 \dagger}$, Abdullah Mohammed Al-Majid ${ }^{1, \dagger}$, Qurat-ul-ain ${ }^{5, \dagger}$, Rehan Imad ${ }^{5, \dagger}$, Kulsoom Javaid ${ }^{5, \dagger}$, Nimra Naveed Shaikh ${ }^{5, \dagger}$, Sammer Yousuf ${ }^{5, \dagger}$, M. Iqbal Choudhary ${ }^{1,5, \dagger}$ and Abdul Wadood ${ }^{6, \dagger}$
${ }^{1}$ Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
${ }^{2}$ Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426-Ibrahimia, Alexandria 21321, Egypt.
${ }^{3}$ Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
${ }_{5}^{4}$ Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
5 H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
6 Department of Biochemistry, Abdul Wali Khan University, Mardan-23200, Pakistan; email: awadood@awkum.edu.pk (A.W)

${ }^{\dagger}$ Equal contributors.

* Author to whom correspondence should be addressed; E-Mail: ambarakat@ksu.edu.sa; Tel.: +966-11467-5884; Fax: +966-11467-5992.

Contents:

Experimental section	$2-25$
Table 1. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$ of compound 5a	26
Table 2. Hydrogen bonding data for compound 5a	26
Table 3. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ of compound 5d	27
Table 4. Hydrogen bonding data for compound 5d	27
Table 5. Selected geometric parameters $\left(\AA,^{\circ}\right)$ of compound 5f	28
Table 6. Hydrogen bonding data for compound $\mathbf{5 f}$	28

5. Experimental section

5.1. General Procedure for Aldol Condensation Michael Addition for the Synthesis of $\mathbf{4}$ and 5. (GP1)

A mixture of aldehyde $\mathbf{3}(1.5 \mathrm{mmol}), \mathbf{1}$ and $\mathbf{2}(3 \mathrm{mmol})$ as well as $\mathrm{Et}_{2} \mathrm{NH}(1.5 \mathrm{mmol}$, $155 \mu \mathrm{~L}$) in 3 mL of degassed $\mathrm{H}_{2} \mathrm{O}$ (bubbling nitrogen through the water) was stirred at room temperature for $1-5 \mathrm{~h}$ until TLC showed complete disappearance of the reactants. The precipitate was removed by filtration and washed with ether $(3 \times 20 \mathrm{~mL})$. The solid was dried to afford pure products 4 and 5. 4-(bis(6-Hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5yl)methyl)benzaldehyde Diethylaminium Salt (4a)

Pure product 4a was obtained according to GP1 as colorless crystal ($1.5 \mathrm{~g}, 2.76 \mathrm{mmol}$, $92 \%) . \quad$ IR $\left(\mathrm{cm}^{-1}\right): 3450,3000,2872,1670,1582,1510,1466,1384,1339 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 17.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.73(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph})$, 7.29 (d, 2H, J = 8.0 Hz, Ph), 5.93 (s, 1H, benzyl-H), 3.33 (s, 12H, 4CH3), 3.06 (q, 4H, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.27\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=192.2,165.3,164.4,151.7,150.3,134.3,129.9,127.3,91.7,42.2,35.1,29.0,28.7$, 11.5; LC/MS (ESI): $501.53[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{7}$; Calcd: C, 57.48; H, 6.23; N, 13.96; Found: C, 57.50; H, 6.25; N, 14.00.

5,5'-(3-Tolylmethylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)

Diethylaminium Salt (4b)

4b was prepared from 1,3-dimethylbarbituric acid 1a, and m-tolualdehyde according to the general procedure (GP1) yielding rose-colored crystalline materials. (1.41 g, 2.91
mmol, 97%). m.p.: $135^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3455,3201,2988,1693,1667,1611,1573$, 1443; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.10(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph})$, $6.92(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 5.82(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $3.32(\mathrm{~s}$, $\left.12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.01\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26(\mathrm{t}, 6 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.3,164.4,151.8,141.7,137.4$, $127.9,127.1,126.4,123.6,92.1,42.0,34.4,28.9,28.6,21.8,11.4 ;$ LC/MS (ESI): 487[M] ${ }^{+}$; Anal. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}$; Calcd: C, 59.12; H, 6.82; N, 14.36; Found: C, 59.13; H, 6.81; N, 14.35.

5,5'-((4-Nitrophenyl)methylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)

Diethylaminium Salt (4c)

4c was prepared from 1,3-dimethylbarbutric acid 1a, and p-nitrobenzaldehyde according to the general procedure (GP1) yielding a yellow powder $(1.35 \mathrm{~g}, 2.61 \mathrm{mmol}$, 87%); m.p.: $195^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3453, 3205, 2987, 2904, 1675, 1608, 1576, 1511, $1438,1343,1254 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.08(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{Ph}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 5.95\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.34\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.07$ $\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.29\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=165.2,164.4,151.6,150.8,146.1,127.5,123.5,91.4,42.2,34.9,28.9,28.7$, 11.5; LC/MS (ESI): $518[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{8}$; Calcd: C, $53.28 ; \mathrm{H}, 5.83 ; \mathrm{N}, 16.21$; Found: C, 53.29; H, 5.85; N, 16.23.

The structure of $\mathbf{4 c}$ was confirmed by X-ray crystal structure analysis (Bruker SMART APEXII CCD diffractometer). CCDC-1001798 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A
colorless crystal suitable for X-ray analysis was obtained from recrystallization the compound from $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ at room temperature after 2 days.

5,5'-((4-Methoxyphenyl)methylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)

Diethylaminium Salt (4d)

4d was prepared from 1,3-dimethylbarbutric acid 1a, and p-methoxybenzaldehyde according to the general procedure (GP1) yielding rose-colored crystalline materials $(1.35 \mathrm{~g}, 2.7 \mathrm{mmol}, 90 \%)$. m.p.: $160^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3445, 3195, 2977, 2836, 1689, $1664,1613,1504,1447,1378,1242 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $7.01(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 5.79(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $3.33(\mathrm{~s}$, $\left.12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.99\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=165.3,164.3,157.4,151.7,133.6,132.0,127.4,114.3$, 92.1, 55.6, 42.1, 33.8, 28.9, 11.5; LC/MS (ESI): 503[M] ${ }^{+}$; Anal. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{7}$; Calcd: C, 57.25; H, 6.61; N, 13.91; Found: C, 57.26; H, 6.61; N, 13.90.

5,5'-((3-Bromophenyl)methylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)

Diethylaminium Salt (4e)

4e was prepared from 1,3-dimethylbarbutric acid 1a, and m-bromobenzaldehyde according to the general procedure (GP1) yielding colorless crystalline materials $(1.5 \mathrm{~g}$, $2.76 \mathrm{mmol}, 92 \%$). m.p.: $169^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3450, 3120, 2982, 1694, 1667, 1615, 1577, 1445, 1250; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{Ph}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 5.84$ (s, 1H, benzyl-H), $3.34\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.02(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.2$, 164.4, 151.7, 144.7, 129.7,129.6, 128.7, 125.3, 91.5, 42.1, 34.4, 28.9, 28.7, 11.5; LC/MS
(ESI): $552[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BrN}_{5} \mathrm{O}_{6}$; Calcd: C, $50.01 ; \mathrm{H}, 5.47 ; \mathrm{Br}, 14.46 ; \mathrm{N}, 12.68$; Found: C, 50.03; H, 5.48; Br, 14.47; N, 12.71.

The structure of $\mathbf{4 e}$ was confirmed by X-ray crystal structure analysis (Bruker SMART APEXII CCD diffractometer). CCDC-1001799 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A colorless crystal suitable for X-ray analysis was obtained from recrystallization the compound from $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ at room temperature after 2 days.

5,5'-((4-hydroxyphenyl)methylene)bis(6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)dione) Diethylaminium Salt (4f)

4f was prepared from 1,3-dimethylbarbutric acid 1a, and p-hydroxybenzaldehyde according to the general procedure (GP1) yielding a yellow powder $(1.3 \mathrm{~g}, 2.64 \mathrm{mmol}$, 88%); m.p.: $180^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3458, 3200, 2980, 2904, 1677, 1620, 1572, 1511, 1438, 1343, 1254; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}, \mathrm{Ph}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ph}), 5.79\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.33\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.03$ (q, 4H, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.27\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=165.3,164.4,151.7,141.1,131.2,128.5,119.3,91.7,42.1,34.2,28.9,28.7$, 11.5; LC/MS (ESI): $489.52[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{7}$; Calcd: C, 56.43; H, 6.38; N, 14.31; Found: C, 56.44; H, 6.36; N, 14.30.

5,5'-(p-Tolylmethylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione) Diethylaminium Salt (4g)
$\mathbf{4 g}$ was prepared from 1,3-dimethylbarbituric acid 1a, and p-tolualdehyde according to the general procedure (GP1) yielding colorless needle materials $(1.41 \mathrm{~g}, 2.91 \mathrm{mmol}$, $97 \%)$. m.p.: $152{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3455,3210,2984,2820,1560,1449,1359 ;{ }^{1} \mathrm{H}-$ NMR (400 MHz, CDCl_{3}): $\delta 17.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.99-6.96(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 5.80(\mathrm{~s}, 1 \mathrm{H}$, benzylH), $3.32\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.03\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28(\mathrm{t}$, $6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.3,164.3,151.8$, 138.6, 134.8, 128.9, 126.3, 92.1, 42.0, 34.2, 28.9, 28.6, 21.0, 11.4; LC/MS (ESI): 487[M] ${ }^{+}$; Anal. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{6}$; Calcd: C, 59.12; H, 6.82; N, 14.36; Found: C,59.13; H, 6.81; N, 14.35.

The structure of $\mathbf{4 b}$ was confirmed by X-ray crystal structure analysis (Bruker AXS GmbH). CCDC-957025 contains the supplementary crystallographic data for this compound. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A colorless crystal suitable for Xray analysis was obtained from recrystallization the compound from $\mathrm{DCM} / \mathrm{Et}_{2} \mathrm{O}$ at room temperature after 2 days.

5,5'-(Naphthalen-2-ylmethylene)bis(1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione)

Diethylaminium Salt (4h)

4h was prepared from 1,3-dimethylbarbutric acid 1a, and 2-naphthaldehyde $\mathbf{2 i}$ according to the general procedure (GP1) yielding beige powder $(1.47 \mathrm{~g}, 2.82 \mathrm{mmol}, 94 \%)$. m.p.: $146{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3454,3200,2967,1668,1585,1438,1250 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.10(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl-H), $7.99(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.8 Hz , naphthyl-H), 7.92 (d, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl-H), $7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl-H), $7.84(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl-H), 7.68-7.38 (m, 3H, naphthyl-H), 6.37 (s, 1H, benzyl-H), $3.39\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.01\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.30(\mathrm{t}, 6 \mathrm{H}, J$
$=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=164.9,151.7,136.8,135.3,134.3$, $131.5,129.1,128.5,127.0,125.2124 .9,123.8,93.2,41.8,33.2,28.8,11.4$, LC/MS (ESI): $523[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}$; Calcd: C, 61.94; H, 6.35; N, 13.38; Found: C, 61.95; H, 6.34; N, 13.40.

5,5'-(p-Tolylmethylene)bis(6-hydroxypyrimidine-2,4(1H,3H)-dione) Diethylaminium Salt (4i)
$\mathbf{4 i}$ was prepared from barbituric acid $\mathbf{1 b}$, and p-tolualdehyde according to the general procedure (GP1) yielding white powder ($1.22 \mathrm{~g}, 2.85 \mathrm{mmol}, 95 \%$); m.p.: 205 C ; IR (KBr , cm^{-1}): 3459, 3120, 2978, 2811, 1689, 1612, 1325, 1252; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO$\left.d_{6}\right): \delta 17.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.09(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}), 6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 5.90(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $2.79\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=164.8,164.1,151.3,142.1,133.5,128.5,127.1$, 91.6, 42.6, 30.6, 21.1, 13.0; LC/MS (ESI): $431[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$; Calcd: C, 55.68; H, 5.84; N, 16.23; Found: C, 55.67; H, 5.83; N, 16.22.

5,5'-((4-Chlorophenyl)methylene)bis(6-hydroxypyrimidine-2,4(1H,3H)-dione)

Diethylaminium Salt (4j)

$\mathbf{4 i}$ was prepared from barbituric acid $\mathbf{1 b}$, and p-chlorobenzaldehyde according to the general procedure (GP1) yielding a white powder ($1.28 \mathrm{~g}, 2.85 \mathrm{mmol}, 95 \%$); m.p.: 221 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3435, 3185, 2978, 2830, 1677, 1548, 1448, 1345, 1250; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz, DMSO- d_{6}): $\delta 17.17$ (s, 1H, OH), $10.00(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}), 7.18$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ph}$), 5.93 (s, 1 H , benzyl-H), 2.88 (q, 4H, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.12\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=164.7,164.0,151.2,144.6,133.5,129.9,129.1$,
127.8, 91.3, 42.1, 30.7, 11.8; LC/MS (ESI): $451[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{O}_{6}$; Calcd C, 50.50; H, 4.91; Cl, 7.85; N, 15.50; Found: C, 50.51; H, 4.90; Cl, 7.83; N, 15.51.

5,5'-((4-Methoxyphenyl)methylene)bis(6-hydroxypyrimidine-2,4(1H,3H)-dione)

Diethylaminium Salt (4K)

$\mathbf{4} \mathbf{k}$ was prepared from barbituric acid $\mathbf{1 b}$, and p-methoxybenzaldehyde according to the general procedure (GP1) yielding a beige powder ($1.22 \mathrm{~g}, 2.73 \mathrm{mmol}, 91 \%$); m.p.: $195{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3449,3190,2991,2835,1688,1592,1505,1383,1247 ;{ }^{1} \mathrm{H}-$ NMR (400 MHz, DMSO- d_{6}): $\delta 17.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.99(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}, \mathrm{Ph}), 6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.88(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $2.90(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.14\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=164.6$, 164.0, 157.0, 151.2, 137.2, 132.4, 115.1, 91.7, 55.4, 42.1, 30.7, 11.6; LC/MS (ESI): 447[M] ${ }^{+}$; Anal. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{7}$; Calcd C, 53.69; H, 5.63; N, 15.65; Found: C, 53.69; H, 5.63; N, 15.66.

5,5'-(Naphthalen-2-ylmethylene)bis(6-hydroxypyrimidine-2,4(1H,3H)-dione)

Diethylaminium Salt (4l)

41 was prepared from barbituric acid 1b, and 2-naphthaldehyde according to the general procedure (GP1) yielding a beige powder (1.3 g, $2.79 \mathrm{mmol}, 93 \%$); m.p.: $192{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3459, 3208, 2994, 1677, 1579, 1448, 1386, 1354; ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}): $\delta 16.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 10.41(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl), $7.81(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl), 7.63 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, naphthyl), $7.38-7.32$ (m, 4H, naphthyl), $6.46\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $2.79\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.08(\mathrm{t}, 6 \mathrm{H}, J=7.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=164.9,151.1,141.5,135.8$,
$134.0,132.4,129.3,128.7,126.0,125.8,125.5,125.2,124.9,123.8,92.3,42.5,29.7,12.7$;
LC/MS (ESI): $467[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{6}$; Calcd C, 59.09 ; H, 5.39; N, 14.98; Found: C, 59.12; H, 5.40; N, 15.01.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4m)
$\mathbf{4 m}$ was prepared from 1,3-dimethylbarbituric acid 1a, dimedone 2 and benzaldehyde according to the general procedure (GP1) yielding colorless crystalline material (671 mg , $1.47 \mathrm{mmol}, 98 \%)$. m.p: $159{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3150, 2959, 1667, 1617, 1585, 1422, 1256,$1227 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.17-7.04(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph})$, $5.85\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.29\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.96\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.42(\mathrm{~d}$, $\left.2 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.14(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.05(s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.5,180.8,152.5,142.5$, $128.0,126.7,125.1,116.3,90.9,51.4,45.9,42.2,33.0,31.5,29.6,28.4,27.6,11.4 ;$

LC/MS (ESI): $457[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, 65.62 ; H, 7.71 ; N, 9.18;Found: C, $65.61 ;$ H, 7.73; N, 9.20.

The structure of $\mathbf{4 m}$ was confirmed by X-ray crystal structure analysis. CCDC- 933624 contains the supplementary crystallographic data for this compound. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. A colorless crystal suitable for X-ray analysis was obtained from recrystallization of the compound from $\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}$ at room temperature after 2 days.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(p-tolyl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4n)

4n was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and p-tolualdehyde according to the general procedure (GP1) yielding an oily material ($685 \mathrm{mg}, 1.45 \mathrm{mmol}$, 97%). IR (KBr, cm^{-1}): 3150, 2954, 2867, 1675, 1580, 1508, 1447, 1380, 1256, 1145; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 15.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.00-6.93(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 5.84(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $3.28\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.90\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}) ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=196.5,180.1,152.8,140.5,134.2,129.8,128.7$, $126.8,126.7,115.6,91.0,51.4,45.9,42.5,32.6,31.5,29.6,28.4,27.6,20.9,11.9$; LC/MS (ESI): $471[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, $66.22 ; \mathrm{H}, 7.91$; N, 8.91;Found: C, 66.24; H, 7.92; N, 8.87.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(4-methoxyphenyl)methyl)-1,3-

 dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4o)40 was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and anisaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily material ($672 \mathrm{mg}, 1.38 \mathrm{mmol}$, 92%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3047, 2953, 2866, 2499, 1679, 1577, 1510, 1427, 1373, 1255, $1214 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph})$, $6.72(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.69\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.29(\mathrm{~s}, 12 \mathrm{H}$, $\left.4 \mathrm{CH}_{3}\right), 2.87\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.19(\mathrm{t}, 6 \mathrm{H}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 195.1, 187.2, 157.1, 134.5, 133.9, 127.8, 127.6, 115.6, 113.4, 55.2, 42.6, 31.5, 31.1, 27.9,
12.2; LC/MS (ESI): 487 [M] ${ }^{+}$; Anal. for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6}$; calcd: C, 64.05; H, 7.65; N, 8.62;Found: C, 64.11; H, 7.64; N, 8.59.

5-((4-Chlorophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4p)

$\mathbf{4 p}$ was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and p chlorobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily material ($715 \mathrm{mg}, 1.45 \mathrm{mmol}, 97 \%$). IR (KBr, cm^{-1}): 3151, 2955, 2868, 2497, 1675, 1580, 1481, 1444, 1379, 1258, 1206; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.12-6.95(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ph}), 5.87\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.30\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.90\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.38\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.20\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=198.1,181.0,152.5,141.5,130.6,128.3,128.2,128.0$, $127.9,115.2,90.7,65.9,49.8,42.3,32.4,31.5,31.2,29.6,28.4,27.6,15.3,11.4$, LC/MS (ESI): $492[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{34 \mathrm{Cl}} \mathrm{N}_{3} \mathrm{O}_{5}$; calcd: $\mathrm{C}, 61.03 ; \mathrm{H}, 6.97 ; \mathrm{Cl}, 7.21 ; \mathrm{N}$, 8.54;Found: C, 61.06; H, 7.00; Cl, 7.18; N, 8.57.

5-((4-Bromophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4q)
$\mathbf{4 q}$ was prepared from 1,3-dimethylbarbituric acid $\mathbf{1 a}$, dimedone $\mathbf{2}$ and p bromobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily material ($761 \mathrm{mg}, 1.42 \mathrm{mmol}, 95 \%$). IR (KBr, cm^{-1}): 3155, 2955, 2867, 2500, 1674, 1579, 1430, 1376,$1204 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{Ph}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.79\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.27\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.99(\mathrm{q}, 4 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.29(\mathrm{t}, 6 \mathrm{H}, J=$
$\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 199.1, 191.2, 164.8, 152.4, 142.8, 132.5, 131.0, 129.9, 128.7, 128.6, 118.9, 115.9, 90.6, 51.2, 45.8, 42.3, 32.7, 31.5, 29.5, 28.5, 28.3, 27.6, 11.4; LC/MS (ESI): 536 [M] ${ }^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{5}$; calcd: C, 55.97; H, 6.39; Br, 14.89; N, 7.83;Found: C, 56.00; H, 6.40; Br, 14.86; N, 7.82.

5-((3-Bromophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4r)

$4 \mathbf{r}$ was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and m bromobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily material ($745 \mathrm{mg}, 1.39 \mathrm{mmol}, 93 \%$). IR (KBr, cm^{-1}): 3050, 2955, 2868, 2500, 1675, 1581, 1444, $1378,1255,1205 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}, \mathrm{Ph}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph})$, $5.84\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), 3.34(s, $\left.6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.98(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.12(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.03(s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.8,186.4,165.2,164.4$, 151.7, 144.7, 129.7,129.6, 128.7, 125.3, 91.5, 42.1, 34.4, 28.9, 28.7, 11.5; LC/MS (ESI): $536[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{O}_{5}$; calcd: C, 55.97; H, 6.39; Br, 14.89; N, 7.83;Found: C, 56.01; H, 6.41; Br, 14.86; N, 7.84.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(1-nitrophenyl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4s)

4s was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and o nitrobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a beige material ($690 \mathrm{mg}, 1.37 \mathrm{mmol}, 92 \%$). m.p: $146^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3054, 2953, 2865, 2500, 1673,
$1580,1510,1427,1373,1255,1214 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.01-7.35 (m, 3H, Ph), $5.65\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.70\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.89(\mathrm{q}, 4 \mathrm{H}, J=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~d}, 4 \mathrm{H}, J=14.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.00($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.6,153.2,145.5$, $141.6,129.1,128.2,127.8,125.8,88.5,49.1,41.9,27.5,11.5 ;$ LC/MS (ESI): 502[M] ${ }^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{7}$; calcd: C, 59.75; H, 6.82; N, 11.15; Found: C, 59.72; H, 6.80; N, 11.17.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(4-(dimethylamino)phenyl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4olate (4t)

4t was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and p (dimethylamino)benzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a beige material ($550 \mathrm{mg}, 1.1 \mathrm{mmol}, 73 \%$). m.p: $165^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3055, 2950, 2865, $2500,1669,1580,1510,1427,1373,1255,1214 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.33$ (s, $1 \mathrm{H}, \mathrm{OH}), 7.02(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{Ph}), 5.69(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $3.70\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.01\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.89\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31(\mathrm{~d}, 4 \mathrm{H}$, $\left.J=14.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;$
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=161.6,153.2,145.5,141.6,129.1,128.2,127.8,125.8$, 88.5, 49.1, 41.9, 41.8, 27.5, 11.5; LC/MS (ESI): $499.29[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{5}$; calcd: C, 64.91; H, 7.87; N, 11.21 ;Found: C, 64.90; H, 7.87; N, 11.23.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(4-hydroxyphenyl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4v)

4v was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and p hydroxybenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a white solid
material ($645 \mathrm{mg}, 1.36 \mathrm{mmol}, 91 \%$). m.p: $162{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 23097, 2939, 2884, $2828,2498,1747,1574,1530,1506,1466,1384,1241 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 14.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.50(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 6.76(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 6.50(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}, \mathrm{Ph}), 6.04\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.07\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.14\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $2.92\left(\mathrm{q}, 4 \mathrm{H}, J=13.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 206\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.12\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=198.0,188.5,154.1,136.6,128.3,115.3$, 114.3, 90.1, 50.9, 45.5, 42.1, 31.6, 30.7, 29.7, 11.7; LC/MS (ESI): 473 [M] ${ }^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$; calcd: C, 63.41; H, 7.45; N, 8.87;Found: C, 63.40; H, 7.43; N, 8.85.

4-((6-hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)benzaldehyde Diethylaminium Salt (4x)

Pure product $\mathbf{4 x}$ was obtained according to GP1 as solid (1.26 g, 90\%). IR $\left(\mathrm{cm}^{-1}\right)$: 3156, 2950, 2872, 1678, 1590, 1508, 1375, 1256, 1232, 1167; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): 14.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.01$ (brs, $2 \mathrm{H}, \mathrm{NH}$), $6.98(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{Ph}), 6.75(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{Ph}), 5.61\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.92(\mathrm{q}, 4 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.26\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.00(s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.0,188.1,165.0,157.2$, $127.8,115.7,113.8,91.6,55.2,48.8,48.6,42.4,31.5,29.4,27.7,11.7$, LC/MS (ESI): $485.57[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$; Calcd: C, 64.31; H, 7.27; N, 8.65; Found: C, 64.30; H, 7.26; N, 8.63.

5-((2,4-Dichlorophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4w)

4w was prepared from 1,3-dimethylbarbituric acid 1a, dimedone 2 and 2,4dichlorobenzaldehyde according to the general procedure (GP1) yielding a beige solid material ($710 \mathrm{mg}, 1.35 \mathrm{mmol}, 90 \%$). m.p: $164{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-l}\right): 3059,2995,2867$, 2114, 1741, 1658, 1591, 1463, 1429, 1370, 1341, 1256, $1201^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 14.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 7.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.76\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.28\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.07(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.27\left(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.34(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.1$, $165.4,164.4,152.5,139.8,133.6,131.7,131.2,129.3,126.4,115.7,89.8,51.2,45.7$, 41.9, 32.4, 31.2, 28.3, 28.2, 11.3; LC/MS (ESI): $526[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, 57.04; H, 6.32; Cl, 13.47; N, 7.98;Found: C, 57.09; H, 6.31; Cl, 13.44; N, 8.01.

5-((2,6-Dichlorophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4y)

4y was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and 2,6dichlorobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily material ($702 \mathrm{mg}, 1.33 \mathrm{mmol}, 89 \%$). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3048, 2955, 2869, 2728, 2494, $1676,1575,1428,1372,1238,1196 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.36 (d, 2H, $J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 7.29(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.98$ (s, 1 H , benzyl-H), $3.26\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.92\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.37(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.27\left(\mathrm{~d}, 2 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.094\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.04(s, 3H, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=192.8,188.9,165.3,164.3,152.5$,
$149.7,137.4,131.5,129.8,126.5,124.2,115.5,114.7,89.9,53.5,41.4,31.9,28.7,28.2$, 11.4 ; LC/MS (ESI): $526[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, $57.04 ; \mathrm{H}, 6.32$; Cl , 13.47; N, 7.98; Found: C, 57.08; H, 6.30; Cl, 13.45; N, 8.00.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(naphthalen-2-yl)methyl)-1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (4z)

$\mathbf{4 z}$ was prepared from 1,3-dimethylbarbituric acid 1a, dimedone $\mathbf{2}$ and 2-naphthaldehyde 3 according to the general procedure (GP1) yielding a white solid material ($715 \mathrm{mg}, 1.41$ mmol, 94%). m.p: $170{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2994, 2948, 2866, 2506, 1742, 1651, 1603, $1570,1526,1473,1431,1362,1245 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.46-7.22(m, 7H, naphthyl), 6.20 (s, 1H, benzyl-H), 3.26 (s, $6 \mathrm{H}, 2 \mathrm{CH}_{3}$), 3.23 (s, 6 H , $\left.2 \mathrm{CH}_{3}\right), 3.14\left(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.41\left(\mathrm{q}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.37\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=199.0,180.5,165.3,164.3,152.5,149.7,136.8,131.5,129.9,126.5$, $124.2,115.5,114.7,89.9,50.9,45.5,41.7,31.3,30.7,28.2,11.1 ;$ LC/MS (ESI): 507 $[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, 68.62; H, 7.35; N, 8.28; Found: C, 68.65; H, 7.34; N, 8.30.

Diethylammonium-2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5a

Pure product 5a was obtained according to GP1 as solid (1.26 g, 95\%). IR (cm^{-} ${ }^{1}$): 2955 (s), 1586 (s), 1382 (s), 776 (s), 576 (s), $480(\mathrm{~s}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.95-1.14\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t}, J=6.60 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\right.$ $\left.\mathrm{COCH}_{2}\right), 2.84\left(\mathrm{q}, J=6.60 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 5.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 7.01-7.21(\mathrm{~m}$,

5H. ArH), $8.25\left(\mathrm{bs}, 1 \mathrm{H} . \mathrm{NH}_{2}\right), 13.91(\mathrm{~s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.4$ $\left(\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 31.5\left(\mathrm{CH}_{3}\right)_{2}, 32.0\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 34.2(\mathrm{Ph}-\mathbf{C}), 42.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 45.9,50.6$, 115.5, 125.2 (PhC4), 126.8 ($\mathrm{PhC2}$), 128.0 ($\mathrm{PhC3}$), 142.4 ($\mathrm{PhC1}$), 179.3 ($\mathbf{C - O H}$), 199.1 $(\mathbf{C}=\mathrm{O})$;Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{4}$: C, $73.36 ; \mathrm{H}, 8.98$; $\mathrm{N}, 3.07$; O, 14.57; Found: C, 73.43; H, 8.90; N, 3.17; O, 14.49;: LC/MS (ESI): $m / z=441.29[\mathrm{M}]^{+}$.

Diethylammonium 2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(p-tolyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5b

Pure product 5b was obtained according to GP1 as solid (1.2 g, 93\%). IR (cm^{-1}): 2957 (s), 1571 (s), 1483 (s), 1383 (s), 1267 (s), 739 (s), 488 (s); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 0.94-1.16\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.18\left(\mathrm{t}, J=7.32 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{PhCH}_{3}\right), 2.31\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.84\left(\mathrm{q}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 5.73$ (s, $1 \mathrm{H}, \mathrm{PhCH}), 6.91-7.05(\mathrm{~m}, 4 \mathrm{H} . \mathrm{ArH}), 7.83\left(\mathrm{bs}, 2 \mathrm{H} . \mathrm{NH}_{2}\right), 13.73$ (s, OH); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 12.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 20.9\left(\mathrm{PhCH}_{3}\right), 31.4\left(\mathrm{CH}_{3}\right)_{2}, 32.7\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}$, 34.9 ($\mathrm{Ph}-\mathbf{C}$), $42.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 46.1,51.8,115.6,126.8$ ($\mathrm{PhC4}$), 128.6 ($\mathrm{PhC2}$), 134.0 (PhC3), 144.4 (PhC1), 187.3 (C-OH), 195.8 (C=O);Anal. Calcd. forC ${ }_{28} \mathrm{H}_{41} \mathrm{NO}_{4}$: C, 73.79; H, 9.14; N, 3.09; O, 13.91; Found: C, 73.81; H, 9.07; N, 3.07; O, 14.05: LC/MS $(\mathrm{ESI}): m / z=455.30[\mathrm{M}]^{+}$.

Diethylammonium 2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(m-tolyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5c

Pure product $5 \mathbf{c}$ was obtained according to GP1 as solid (1.24 g,91\%). IR $\left(\mathrm{cm}^{-1}\right)$: 2952 (s), 1572 (s), 1483 (s), 1381 (s), 1227 (s), 1143 (s), 787 (s), 463 (s); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.91-1.12\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{t}, J=7.36 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 2.28 (s, 3H, PhCH_{3}), $2.38\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.91\left(\mathrm{q}, J=7.36 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right.$
), $5.71(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 6.88-7.03(\mathrm{~m}, 4 \mathrm{H} . \mathrm{ArH}), 7.85\left(\mathrm{bs}, 2 \mathrm{H} . \mathrm{NH}_{2}\right), 13.78(\mathrm{~s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 12.3\left(\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 20.6\left(\mathrm{PhCH}_{3}\right), 31.2\left(\mathrm{CH}_{3}\right)_{2}, 32.8$ $\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 34.8(\mathrm{Ph}-\mathbf{C}), 42.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 46.3,51.9,115.8,126.9(\mathrm{PhC4}), 128.4$ (PhC2), 134.1 ($\mathrm{PhC3}$), 144.7 (PhC1), 187.5 (C-OH), 195.9 (C=O); Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{4}: \mathrm{C}, 73.85 ; \mathrm{H}, 9.09$; N, 3.13; O, 13.79; Found: C, $73.81 ; \mathrm{H}, 9.07$; N, 3.07; O, 14.05: LC/MS (ESI): $m / z=455.30[\mathrm{M}]^{+}$.

Diethylammonium 2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(4-methoxyphenyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5d

Pure product 5d was obtained according to GP1 as solid (1.26 g, 89\%). IR (cm ${ }^{1}$): 3121 (s), 1668 (s), 1614 (s), 1578 (s), 1446 (s), 778 (s), 608 (s), 457 (s); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.96-1.16\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20(\mathrm{t}, J=7.36 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.85\left(\mathrm{q}, J=7.36 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 3.72$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 6.72(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~d}, J=7.40 \mathrm{~Hz}$, $2 \mathrm{H} . \mathrm{ArH}), 8.22\left(\mathrm{bs}, 2 \mathrm{H} . \mathrm{NH}_{2}\right), 14.67(\mathrm{~s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.9$ $\left(\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 31.1\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 31.5\left(\mathrm{CH}_{3}\right)_{2}, 34.1(\mathrm{Ph}-\mathbf{C}), 42.5\left(\mathrm{CH}_{3} \mathbf{C H}_{2} \mathrm{NH}\right), 45.3$, 50.7, $55.2\left(\mathrm{PhOCH}_{3}\right), 113.4,115.7$ (PhC3), 127.8 (PhC2), 133.1 (PhC1), 157.6 (PhC4), 187.5 $(\mathbf{C}-\mathrm{OH}), 194.1(\mathbf{C}=\mathrm{O})$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{NO}_{5}: \mathrm{C}, 71.19 ; \mathrm{H}, 8.79$; N, 3.05; O, 17.11; Found: C, 71.31; H, 8.76; N, 2.97; O, 16.96: LC/MS (ESI): $m / z=471.30[\mathrm{M}]^{+}$.

Diethylammonium 2-((2,6-dichlorophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5e

Pure product 5e was obtained according to GP1 as solid (1.39 g, 91\%). IR (cm^{-} ${ }^{1}$): 2953 (s), 2869 (s), 1711 (s), 1575 (s), 1497 (s), 1367 (s), 1220 (s), 776 (s), 448 (s); ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.88-1.03\left(\mathrm{bs}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.17(\mathrm{t}, J=7.36 \mathrm{~Hz}, 6 \mathrm{H}$,
$\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.19\left(\mathrm{bs}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.90\left(\mathrm{q}, J=7.36 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right)$, $5.89(\mathrm{~s}, 1 \mathrm{H}, \operatorname{PhCH}), 6.95(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~s}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 8.71 (bs, $2 \mathrm{H} . \mathrm{NH}_{2}$), $14.78(\mathrm{~s}, \mathrm{OH}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 11.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 30.3\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 31.8\left(\mathrm{CH}_{3}\right)_{2}, 34.3(\mathrm{Ph}-\mathbf{C}), 42.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 47.6$, 51.1, 114.2, 125.9 (PhC3), 128.2 (PhC4), 134.9 (PhC2), 139.1 (PhC1), 189.1 (C-OH), 198.3 (C=O); Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{NO}_{4}$: C, 63.46; H, 7.55; N, 2.43; O, 12.91; Found: C, 63.52; H, 7.31; N, 2.74; O, 12.54; LC/MS (ESI): $m / z=509.21[\mathrm{M}]^{+}$.

Diethylammonium 2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(3-nitrophenyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5 f

Pure product $\mathbf{5 f}$ was obtained according to GP1 as solid (1.26 g, 90\%). IR $\left(\mathrm{cm}^{-1}\right)$: 2872 (s), 1582 (s), 1510 (s), 1466 (s), 1384 (s), 1339 (s), 757 (s), 487 (s); ${ }^{1}$ H-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.91-1.06\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, J=7.32 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.94\left(\mathrm{q}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 5.92$ $(\mathrm{s}, 1 \mathrm{H}, \operatorname{PhCH}), 7.21(\mathrm{~d}, J=8.80 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 8.01(\mathrm{~m}, J=8.80 \mathrm{~Hz}$, $2 \mathrm{H} . \mathrm{ArH}), 8.32\left(\mathrm{bs}, 2 \mathrm{H} . \mathrm{NH}_{2}\right), 15.12(\mathrm{~s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 31.6\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 32.2\left(\mathrm{CH}_{3}\right)_{2}, 34.1(\mathrm{Ph}-\mathbf{C}), 42.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 45.2,50.3$, 114.8, 123.2 ($\mathrm{PhC3}$), 127.7 ($\mathrm{PhC2}$), 145.5 ($\mathrm{PhC4}$), 151.9 ($\mathrm{PhC1}$), 186.8 ($\mathbf{C - O H}$), 194.9 $(\mathbf{C}=\mathrm{O})$; Anal. Calcd. forC $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 66.74; H, 7.98; N, 5.55; O, 19.91; Found: C, 66.64; H, 7.87; N, 5.76; O, 19.73: LC/MS (ESI): $m / z=468.27[\mathrm{M}]^{+}$.

Diethylammonium 2-((4-formylphenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate 5g

Pure product 5g was obtained according to GP1 as solid (1.01 g, 75\%). IR (cm^{-} ${ }^{1}$): 3150 (s), 1586 (s), 1519 (s), 1469 (s), 1381 (s), 1339 (s), 779 (s), 495 (s); ${ }^{1} \mathrm{H}-\mathrm{NMR}$
(DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 0.88-1.01\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15(\mathrm{t}, J=7.32 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.10\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.89\left(\mathrm{q}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 3.00$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 6.49(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.78(\mathrm{~m}, J=8.04$ $\mathrm{Hz}, 2 \mathrm{H} . \mathrm{ArH}$), 8.39 (bs, 2H. NH2), 16.45 (s, OH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta$ $11.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right)$, $\left.29.8\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 31.9\left(\mathrm{CH}_{3}\right)_{2}, 34.2(\mathrm{Ph}-\mathbf{C}), 41.7\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right)$, 42.0 $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 45.6,50.9,114.3,115.3$ (PhC3), 128.3 ($\mathrm{PhC2}$), 136.1 ($\mathrm{PhC1}$), 154.1 (PhC4), $183.6(\mathbf{C}-\mathrm{OH}), 196.1(\mathbf{C}=\mathrm{O})$; Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{5}: \mathrm{C}, 71.61 ; \mathrm{H}, 8.37$; N , 2.98; Found: C, 71.61 ; H, 8.37; N, 2.98; LC/MS (ESI): $m / z=69.28[\mathrm{M}]^{+}$.

Diethylammonium 2-((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(4-hydroxyphenyl)methyl)-5,5-dimethyl-3-oxocyclohex-1-enolate $\mathbf{5 h}$

Pure product 5h was obtained according to GP1 as solid (1.01 g, 88\%). IR (cm^{-} ${ }^{1}$): 3157 (s), 1584 (s), 1519 (s), 1469 (s), 1381 (s), 1339 (s), 779 (s), 495 (s); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}\right) \delta 0.85-0.97\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12(\mathrm{t}, J=7.32 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.06\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{COCH}_{2}\right), 2.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhOH}), 2.88(\mathrm{q}, J=7.32 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{3}\right), 6.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}), 6.45(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~m}, J=8.04 \mathrm{~Hz}$, $2 \mathrm{H} . \mathrm{Ar} \mathbf{H}$), 8.32 ($\mathrm{bs}, 2 \mathrm{H} . \mathrm{NH}_{2}$), 16.41 (s, OH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 100 \mathrm{MHz}\right): \delta 11.8$ $\left(\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{NH}\right), 29.8\left\{\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}, 31.9\left(\mathbf{C H}_{3}\right)_{2}, 34.2(\mathrm{Ph}-\mathbf{C}), 42.0\left(\mathrm{CH}_{3} \mathbf{C H}_{2} \mathrm{NH}\right), 45.6,50.9$, 114.3, 115.3 ($\mathrm{PhC3}$), 128.3 ($\mathrm{PhC2}$), 136.1 ($\mathrm{PhC1}$), 154.1 (PhC4), 183.6 ($\mathbf{C - O H}$), 196.1 $(\mathbf{C}=\mathrm{O})$; Anal. Calcd. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{5}$: C, 70.74 ; $\mathrm{H}, 8.89$; N, 3.13; O, 17.61; Found: C, 70.87; H, 8.59; N, 3.06; O, 17.48; LC/MS (ESI): $m / z=383.19[\mathrm{M}]^{+}$. 4-((6-Hydroxy-1,3-dimethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)(6-hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methyl)benzaldehyde Diethylaminium Salt (5i)

Pure product $\mathbf{5 i}$ was obtained according to GP1 as white solid ($1.20 \mathrm{~g}, 88 \%$). IR (cm^{-} $\left.{ }^{1}\right): 3455,3305,3000,2910,1677,1582,1510,1466,1384,1339 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) 17.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.23(\mathrm{brs}, 2 \mathrm{H}, \mathrm{NH}), 7.56(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, $\mathrm{Ph}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.85\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), $3.34\left(\mathrm{~s}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 3.03(\mathrm{q}$, $4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.25\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=192.1,165.2,164.1,151.2,150.0,134.1,129.5,127.5,91.6,42.2,35.1,29.0$, 28.7, 11.5; LC/MS (ESI): 473.48 [M] ${ }^{+}$; Anal. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{7}$; Calcd: C, 55.81; H, 5.75; N, 14.79; Found: C, 55.83; H, 5.76; N, 14.81.

5-((4-Chlorophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (5j)
$\mathbf{5 j}$ was prepared from barbituric acid 1b, dimedone 2 and p-chlorobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding an oily product ($625 \mathrm{mg}, 1.35 \mathrm{mmol}$, 90%). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3049, 2954, 2865, 2499, 1738, 1699, 1590, 1483, 1375, 1292, $1258,1225,1205 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 13.32$ (s, $1 \mathrm{H}, \mathrm{OH}$), 8.83 (brs, 2H, NH), $7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.89$ (s, 1H, benzyl-H), 2.88(q, $\left.4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.19\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.9$, 141.0, $134.8,131.0,129.5,128.3,115.3,91.1,47.1,42.7,31.6,31.5,29.1,28.2,27.8,11.3$; LC/MS (ESI): $463[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}_{5}$; calcd: C, 59.54; H, 6.52; Cl, 7.64; N, 9.06;Found: C, 59.57; H, 6.51; Cl, 7.60; N, 9.02.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-2,6-dioxo-

1,2,3,6-tetrahydropyrimidin-4-olate (5k)

$\mathbf{5 k}$ was prepared from barbituric acid $\mathbf{1 b}$, dimedone $\mathbf{2}$ and benzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a white solid material ($598 \mathrm{mg}, 1.39 \mathrm{mmol}, 93 \%$). m.p: $215{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3027, 2948, 2867, 2156, 1683, 1593, 1451, 1374, 1291, 1257, $1141{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 9.31$ (brs, $2 \mathrm{H}, \mathrm{NH}$), 7.12(m, $5 \mathrm{H}, \mathrm{Ph}), 5.52\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzyl-H), 2.99(q, $\left.4 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.45(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 1.24\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR
(100 MHz, CDCl_{3}): $\delta=198.5,180.8,152.5,142.5,128.0,126.7,125.1,116.3,90.9,51.4$, 45.9, 42.2, 33.0, 28.4, 27.6, 11.3; LC/MS (ESI): 429[M] ${ }^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, 64.32; H, 7.27; N, 9.78;Found: C, 64.29; H, 7.29; N, 9.80.

5-((4-Bromophenyl)(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate (5l)
$5 \mathbf{l}$ was prepared from barbituric acid 1b, dimedone 2 and p-bromobenzaldehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a white solid material ($678 \mathrm{mg}, 1.33$ mmol, 89%). m.p: $208{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3093, 2939, 2885, 2829, 2551, 1746, 1686, $1576,1506,1466,1416,1268,1241 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 8.67 (brs, $2 \mathrm{H}, \mathrm{NH}$), $7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 5.79(\mathrm{~s}, 1 \mathrm{H}$, benzyl-H), $2.79(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.35\left(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.21\left(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.11(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 1.03(s, $3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.5$, 180.1, 152.8, 140.5, 131.4, 130.7, 128.7, 128.6, 118.5, 115.6, 91.0, 50.9, 42.8, 31.6, 31.5, 29.2, 28.3, 27.8, 11.3; LC/MS (ESI): $508[\mathrm{M}]^{+}$; Anal. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{BrN}_{3} \mathrm{O}_{5}$; calcd: C, $54.34 ; \mathrm{H}, 5.95 ; \mathrm{Br}$, 15.72; N, 8.27;Found: C, 54.35; H, 5.96; Br, 15.69; N, 8.30.

5-((2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(p-tolyl)methyl)-2,6-dioxo-

 1,2,3,6-tetrahydropyrimidin-4-olate (5m)$\mathbf{5 m}$ was prepared from barbituric acid 1b, dimedone 2 and tolualdehyde $\mathbf{3}$ according to the general procedure (GP1) yielding a white solid material ($604 \mathrm{mg}, 1.36 \mathrm{mmol}, 91 \%$). m.p: $213{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3150,2955,2867,1690,1592,1508,1375,1256,1232$, $1167 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.31$ (s, 1H, OH), 8.83 (brs, $2 \mathrm{H}, \mathrm{NH}$), $7.27(\mathrm{~d}, 2 \mathrm{H}$, $J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{Ph}), 5.88(\mathrm{~s}, 1 \mathrm{H}$, benzyl -H$), 2.83(\mathrm{q}, 4 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~d}, 4 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{t}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.04(s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.02($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=196.5$, $180.1,152.8,140.5,131.4,130.7,128.7,128.6,118.5,115.6,91.0,50.9,42.8,31.6,31.5$, 29.2, 28.3, 27.8, 20.9, 11.3; LC/MS (ESI): 443 [M] ${ }^{+}$; Anal. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$; calcd: C, 64.99; H, 7.50; N, 9.47;Found: C, 64.95; H, 7.49; N, 9.50.

5.2. Biological activity

5.2.1. Procedure for DPPH Radical Scavenging Assay.

DPPH radical scavenging activities of compounds were determined by using the following method.
All test samples (DMSO solution) were allowed to react with stable free radical, 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH, $300 \mu \mathrm{M}$ in ethanol) via incubation for half an hour at $37{ }^{\circ} \mathrm{C}$. After incubation, decrease in absorption was measured at 515 nm using multiplate reader (Spectra MAX-340). Percent radical scavenging activity by samples was determined in comparison with a DMSO treated control group by using the following formula:

$$
\% R S A=100-\{(\mathrm{OD} \text { test compound } / \mathrm{OD} \text { control }) \times 100\}
$$

Where; RSA is radical scavenging activity and A is absorbance

5.2.2. Procedure for in vitro β-Glucuronidase inhibition assay

β-Glucuronidase activity was performed in 0.1 M acetate buffer pH 7 . The buffer, various concentration of test compounds, and enzyme was incubated at $37{ }^{\circ} \mathrm{C}$ for 30 min . Then the 96-well plates were read on SpectraMax plus 384 (Molecular Devices, CA, USA) at 405 nm after the addition of 0.4 mM p-nitrophenyl- β-D-glucuronide.

5.2.3. Procedure for in vitro thymidine phosphorylase inhibition assay

Thymidine phosphorylase (E. coli) inhibition assay was performed spectrophotometrically by using modified protocol by Bera et al. In brief, total reaction mixture of $200 \mu \mathrm{~L}$ contained $150 \mu \mathrm{~L}$ of potassium phosphate buffer ($\mathrm{pH} 7.0,50 \mathrm{mM}$), 20 $\mu \mathrm{L}$ of enzyme with concentration of 0.058 unit/well and incubated with $10 \mu \mathrm{~L}$ of test compound. The reaction mixture was incubated for 10 min at $30^{\circ} \mathrm{C}$. After incubation, substrate $(20 \mu \mathrm{~L}, 1.5 \mathrm{mM})$ was added and change in absorbance was monitored for 10 minutes at 290 nm in microplate reader (Spectramax, molecular devices, CA, USA). 7Deazaxanthine was used as positive control [Bera et. al., 2013].

5.2.4. Procedure for in vitro alpha- glucosidase inhibition Assay:

$135 \mu \mathrm{~L}$ of 50 mM phosphate saline buffer pH (6.8) was dispend in the 96 -well plate. $20 \mu \mathrm{l}$ of test sample in 70% DMSO dispensed in to the wells. $20 \mu \mathrm{l}$ of the enzyme was added in to the wells, and the plate was incubated for 15 min . After incubation, pre- read of the plate was taken by the Spectra max. After the pre read $25 \mu 1$ of the substrate (PNPG) was added and reading were taken on spectra \max at 400 nm for 30 minutes. In the end, normal read is taken and the percent inhibition was calculated.

6. Molecular docking studies

To understand the binding interactions of these newly synthesized compounds in the active sites α-glucosidase, thymidine phosphorylase and β-glucuronidase molecular docking was performed using MOE-Dock program. The crystal structure of α glucosidase is not available yet, so, we used homology model as described in our previous work [2,3]. The crystal structures of thymidine phosphorylase (PDB: 2wk6), and β-glucuronidase (PDB: ID 1BHG) enzymes were obtained from protein data bank. Before docking the structures were checked for missing atoms, bonds and contacts. The energies of the retrieved protein molecules were minimized after the 3D protonation using the default parameters of MOE energy minimization algorithm (gradient: 0.05, Force Field: MMFF94X).

The three dimensional coordinates of the synthesized compounds were constructed using MOE-Builder tool and hydrogen atoms were added. Then, these molecules were energy minimized using the default parameters of MOE energy minimization algorithm (gradient: 0.05, Force Field: MMFF94X). All the minimized molecules were saved in the mdb file format as input file for MOE-Dock in the next step. To find the correct conformations of the ligands and to obtain minimum energy structures, ligands were allowed to be flexible. The top ranked pose of each compound was selected on the basis of docking score (S) for further analysis. At the end of docking, the best conformations on the basis of docking score were analyzed for binding interactions.

References

1. H. Bera, A.V. Dolzhenko, L. Sun, S.D. Gupta, W. Chui, "Synthesis and in vitro Evaluation of 1, 2, 4-Triazolo [1,5-a][1, 3, 5] triazine Derivatives as Thymidine Phosphorylase Inhibitors," Chem. Biol. Drug Design., vol. 82, pp. 351-360, 2013.
2. F. Rahim, K. Ullah, H. Ullah, A. Wadood, M. Taha, A.U. Rehman, I. uddin, M. Ashraf, A. Shaukat, W. Rehman, S. Hussain, K.M. Khan, "Triazinoindole analogs as potent inhibitors of α-glucosidase: synthesis, biological evaluation and molecular docking studies," Bioorganic Chemistry vol. 58, pp.81-87, 2015.
3. F. Rahim, F. Malik, H. Ullah, A. Wadood, F. Khan, M.T. Javid, M. Taha, W. Rehman, A.U. Rehman, K.M. Khan, "Isatin based Schiff bases as inhibitors of α glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies," Bioorganic Chemistry, vol.60, pp.42-48, 2015.

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ of compound 5a

O1-C1	1.248 (2)	O1-C1-C2	118.2 (2)
O2-C5	1.307 (3)	O1-C1-C6	123.0 (2)
O3-C9	1.235 (3)	O2-C5-C4	116.32 (18)
O4-C13	1.321 (2)	O2-C5-C6	121.3 (2)
O5-N1	1.231 (3)	O3-C9-C8	121.8 (2)
O6-N1	1.224 (3)	O3-C9-C10	118.88 (18)
N1-C15	1.474 (3)	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 12$	112.08 (18)
N2-C26	1.522 (4)	O4-C13-C8	124.64 (19)
N2-C25	1.473 (4)	N1-C15-C16	114.58 (19)
O5-N1-O6	123.8 (2)	N1-C15-C14	121.1 (2)
O6-N1-C15	118.59 (18)	N2-C25-C24	110.8 (3)
O5-N1-C15	117.56 (19)	N2-C26-C27	111.0 (3)
C25-N2-C26	112.7 (2)		

Table 2. Hydrogen bonding data for compound 5a

$\boldsymbol{D}-\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H}$	$\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H} \cdots \mathbf{A}$
O1W—H2OW $\cdots \mathrm{O} 3$	$0.96(3)$	$1.84(3)$	$2.738(2)$	$156(3)$
N2—H1N2 $\cdots \mathrm{O} 1 \mathrm{~W}$	$1.02(3)$	$1.80(3)$	$2.778(3)$	$161(3)$
O4—H1O4 $\cdots \mathrm{O} 2$	$1.03(3)$	$1.46(3)$	$2.470(2)$	$168(3)$
O1W—H1OW $\cdots \mathrm{O} 2 \mathrm{i}$	$0.84(3)$	$1.93(3)$	$2.753(2)$	$166(3)$
N2—H2N2 $\cdots \mathrm{O} 1$	$0.92(3)$	$1.88(3)$	$2.732(3)$	$153(2)$
C17—H17A $\cdots \mathrm{O} 4 \mathrm{ii}$	0.95	2.52	$3.194(3)$	128
C21—H21C $\cdots \mathrm{O} 6$ iii	0.98	2.57	$3.504(3)$	159
C22—H22A $\cdots \mathrm{O} 5 i$	0.98	2.56	$3.518(3)$	165

Symmetry codes: (i) $-\mathrm{x}+1 / 2,-\mathrm{y}+1, \mathrm{z}+1 / 2$; (ii) $-\mathrm{x}, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; (iii) $-\mathrm{x}+1, \mathrm{y}-1 / 2$, $-z+1 / 2$.

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ of compound 5d

O1-C1	1.3235 (16)	O1-C1-C6	124.68 (12)
O2-C5	1.2331 (16)	O2-C5-C4	118.71 (12)
O3-C9	1.2947 (17)	O2-C5-C6	122.43 (12)
O4-C13	1.2443 (16)	O3-C9-C10	115.11 (11)
O5-C17	1.3749 (18)	O3-C9-C8	122.25 (12)
O5-C24	1.421 (2)	O4-C13-C8	123.31 (12)
N1-C26	1.487 (2)	O4-C13-C12	117.50 (12)
N1-C27	1.485 (2)	O5-C17-C16	116.01 (13)
C17-O5-C24	116.81 (12)	O5-C17-C18	124.43 (13)
C26-N1-C27	114.21 (12)	N1-C26-C25	109.41 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	111.20 (11)	N1-C27-C28	110.88 (14)

Table 4. Hydrogen bonding data for compound 5d

$\boldsymbol{D}-\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H}$	$\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H} \cdots \mathbf{A}$
$\mathrm{N} 1 — \mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} 2 \mathrm{i}$	$0.95(2)$	$2.21(2)$	2.7834 (17)	$118.3(15)$
N1—H2N1 $\cdots \mathrm{O} 4 \mathrm{i}$	$0.95(2)$	$1.99(2)$	2.7275 (16)	$134.0(17)$
N1—H1N1 $\cdots \mathrm{O} 3$	$0.891(19)$	$1.909(18)$	2.7202 (16)	$150.6(17)$
O1—H1O1 $\cdots \mathrm{O} 3$	$1.02(2)$	$1.46(2)$	2.4641 (14)	$166(2)$
C26—H26A $\cdots \mathrm{O} 1$	0.99	2.51	3.3374	142
Symmetry code: $(\mathrm{i})-x+3 / 2, y-1 / 2,-z+1 / 2$.				

Table 5. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right.$) of compound $\mathbf{5 f}$

O1-C1	1.290 (2)	O1-C1-C6	122.08 (17)
O2-C5	1.248 (2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	115.39 (14)
O3-C9	1.231 (2)	O2-C5-C4	117.50 (17)
$\mathrm{O} 4-\mathrm{C} 13$	1.334 (2)	O2-C5-C6	123.24 (17)
O5-N1	1.223 (3)	O3-C9-C8	122.20 (17)
O6-N1	1.228 (2)	O3-C9-C10	118.78 (16)
N1-C17	1.467 (3)	O4-C13-C12	111.29 (15)
N2-C25	1.485 (3)	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 8$	124.54 (17)
N2-C26	1.482 (3)	N1-C17-C16	119.27 (17)
O5-N1-O6	123.56 (18)	N2-C25-C24	110.50 (19)
O6-N1-C17	117.96 (18)	N2-C26-C27	110.30 (18)
O5-N1-C17	118.47 (17)	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	117.50 (17)
C25-N2-C26	113.86 (16)	O2-C5-C6	123.24 (17)

Table 6. Hydrogen bonding data for compound $\mathbf{5 f}$

$\boldsymbol{D}-\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H}$	$\mathbf{H} \cdots \mathbf{A}$	$\boldsymbol{D} \cdots \mathbf{A}$	$\boldsymbol{D}-\mathbf{H} \cdots \boldsymbol{A}$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$2.02(2)$	$2.703(2)$	$135.3(19)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} 2 \cdots 3^{\mathrm{i}}$	$0.87(2)$	$2.23(2)$	$2.806(2)$	$124.3(19)$
$\mathrm{N} 2 — \mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 1$	$0.91(3)$	$1.87(3)$	$2.679(2)$	$148(3)$
$\mathrm{O} 4 — \mathrm{H} 1 \mathrm{O} 4 \cdots \mathrm{O} 1$	$0.95(3)$	$1.55(3)$	2.4886	$166(3)$
C10—H10A $\cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.53	$3.402(2)$	146
$\mathrm{C} 16 — \mathrm{H} 16 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iii}}$	0.95	2.57	$3.517(2)$	176
$\mathrm{C} 26 — \mathrm{H} 26 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.99	2.60	$3.539(3)$	159

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+3 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x+1 / 2,-y+3 / 2, z+1 / 2$.

