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This article reports on findings regarding themechanismof chlorination process. In this experiment, propanoic acidwas chlorinated
to 𝛼-chloropropanoic acid in a lab-scale glass tube reactor operating at 130∘C. Propanoic anhydride and concentrated sulfuric
acid were, respectively, used as the catalyst and the promoter. This experiment adopted the DFT method to calculate the
activation energy of routes for the synthesis 𝛼-chloropropanoic acid, 𝛽-chloropropanoic acid, 𝛼,𝛼-dichloropropanoic acid, and 𝛼,𝛽-
dichloropropanoic acid.The results showed that themain route of 𝛼-chloropropanoic acid was formed through an ionicmechanism
when propanoic anhydride was used as the catalytic agent. Activation energy of 1-propen-1-ol,1-chloro, which was formed from 1-
prop-anol,1-chloro-, was the highest in the process of ionic mechanism. In addition, 𝛼,𝛼-dichloropropanoic acid was formed via
a consecutive ionic chlorination path from 𝛼-chloropropanoic acid. 𝛽-Chloropropanoic acid was produced from propanoic acid
through a chlorination radical mechanism. 𝛼,𝛽-Dichloropropanoic acid was formed via a consecutive radical chlorination path.

1. Introduction

𝛼-Chloropropanoic acid, as a kind of active organic chemical,
has been widely used to produce pesticides, dyes, chemicals
of agriculture and forestry, intermediates, and so forth. It
plays an important role in the fine chemical industry. Due
to the existence of a chlorine atom in the 𝛼-chloropropanoic
acid’s molecular structure, its acidic density and reactivity are
stronger than those of propanoic acid, which is more active
in chemical reactions [1–4].

Sioli et al. [5] proposed the acid-catalyzed enolization of
ionic mechanism for the first time to explore the synthesis
of 𝛼-chloropropanoic acid. Paatero et al. [6] found that
acid catalysis was a process of autocatalysis when using
chlorosulfonic acid as an enolizing agent. Salmi et al. [7, 8]
and Mäki-Arvela et al. [9] identified an autocatalysis effect.
They found that the monochloropropanoic acid created in
the reaction was much stronger than the propanoic acid
[10], which led to an increasing rate of acid catalysis and
autocatalysis. The autocatalytic kinetic was explained by a

reaction involving the acid-catalyzed enolization of the key
intermediate, propanoyl chloride, as a rate-determining step.

Ogata et al. [11] and Ham et al. [12] found that the
generation of 𝛽-chloropropanoic acid was by radical
chlorination in the 𝛼-chloropropanoic acid synthesis process.
Paatero et al. [6] identified that the formation route of 𝛼,𝛼-
dichloropropanoic acid was the same as 𝛼-chloropropanoic
acid formation, the parallel acid-catalyzed enolization
mechanism. Mäki-Arvela et al. [10] also found that 𝛼,𝛼-
dichloropropanoic acid generation has two routes: the ionic
mechanism and the radical mechanism. There exists a
competition between these two mechanisms. 𝛼,𝛽-Dichloro-
propanoic acid was formed through further chlorination of
𝛼-chloropropanoic acid.

However, the reaction mechanisms of byproducts, for
instance, the 𝛼,𝛼-dichloropropanoic acid, have received dif-
ferent opinions. Thus, this article aims to report on findings
on the reactionmechanism of chlorination products through
experimenting with propanoic acid chlorinated by using the
density function method with Dmol3 program of Materials
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Studio 5.5. The results could contribute to production opti-
mization of 𝛼-chloropropanoic acid.

2. Experimental and Calculation Section

2.1. Experimental. Propanoic acid chlorination was carried
out in a homemade glass tube equipped with a magnetic
stirring apparatus and an oil bath heater with a temperature
control. Chlorine gas was dispersed into the reactionmixture
which was metered by a rotameter. A reflux condenser
equippedwith low temperature cooling circulating pumpwas
placed on the top of the reactor. The gaseous compounds
passed through water, sodium bicarbonate solution, and con-
centrated sodium hydroxide solution before being released to
the air.

The propanoic acid to be chlorinated was placed in the
reaction vessel. A slightly excess chlorine feed was intro-
duced, and the liquid phased was heated to the desired reac-
tion temperature. A certain amount of propanoic anhydride
was added. Samples of the liquid phase were analyzed with
gas chromatograph after esterification [10].

2.2. Calculation Methods. Density functional theory method
quantum chemistry calculation was adopted and the cal-
culations were performed by using the Dmol3 program
mounted on Materials Studio 5.5 package. All the reactants
and products in the chlorination reactionwere optimized and
their stable structures were obtained at the same time. All
transition states of the reactions were trialed and searched
carefully by using an LST/QST method, getting the primitive
activation energy and the heat of reaction. The nonlocal
exchange and correlation energies were calculated by the
PW91 function of the generalized gradient approximation
(GGA) [13] and a double numerical plus polarization (DNP)
basis set in the level of All Electron. The convergence criteria
included threshold values of 1 × 10−5 Hartree, 0.02 Hartree
per nm, and 0.0005 nm for energy, force, and displace-
ment convergence, respectively, while the self-consistent field
(SCF) density convergence threshold value was specified
as 1 × 10−6 Hartree. Fermi smearing of 0.005 Hartree was
employed to improve the computational performance, and
the solvent effect was also considered during the calculations.
The geometries of all stationary points were optimized at this
level.

3. Results and Discussion

3.1. The Experimental Results. The experiment first investi-
gated the effect of propanoic acid catalytic chlorine (see Fig-
ure 1) in the condition of 15ml propanoic acid, 5ml propanoic
anhydride, 130∘C reaction temperature, and 40ml/min chlo-
rine flow rate with micro excess. The generation of 𝛼-
chloropropanoic acid was little in the first 30min and
increased rapidly during the period from 30min to 150min.
Its generation did not increase obviously thereafter. The gen-
eration of 𝛽-chloropropanoic acid increased steadily in the
first 150min but increased slowly from 150min to 360min.
The generation of𝛼,𝛼-dichloropropanoic acid increased quite
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Figure 1: The reaction products change over time at 130∘C.

slowly before 250min and increased rapidly in the later
reaction.

In order to verify the catalytic principle, 0.4ml con-
centrated sulfuric acid was added to propanoic anhydride
catalytic chlorination to observe the effect of the chlorination
reaction, compared with the control experiment. Chloride
products were analyzed by gas chromatography (Table 1).
It was found that the generation of 𝛼-chloropropanoic
acid increased obviously, while the generation of both
𝛽-chloropropanoic acid and 𝛼,𝛼-dichloropropanoic acid
reduced after concentrated sulfuric acid was added. Also,
the generation of 𝛼-chloropropanoic acid (Table 1, Entry 𝛼-
MCA (%)) increased rapidly in the first 90min, increased
slowly from 90min to 150min, and barely increased from
150min to 180min.Thegeneration of𝛽-chloropropanoic acid
(Table 1, Entry𝛽-MCA (%)) shrankwith time.The generation
of 𝛼,𝛼-dichloropropanoic acid (Table 1, Entry 𝛼,𝛼-DCA (%))
increased in the first 30min but reduced from 30min to
180min.

3.2. SynthesisMechanismof𝛼-ChloropropanoicAcid. In order
to investigate the formation route of 𝛼-chloropropanoic acid,
two possible reaction paths were constructed: the radi-
cal chlorination mechanism and ionic chlorination mech-
anism (Scheme 1). Path 1 is the formation route of 𝛼-
chloropropanoic acid via radical chlorination mechanism
(Scheme 1; see (1)). Path 2 is the formation route of
𝛼-chloropropanoic acid via ionic chlorination mechanism
(Scheme 1; see (2)–(6)).

The configurations of reactants and products were built
and the geometry structure was optimized. Transition states
were investigated and calculated on the basis of reactants
and products. Each reaction transition state was derived
from the potential energy surface at the highest point of
the potential energy corresponding to the configuration.
Frequency analysis showed that these configurations were the
only virtual frequency. Energy of reactants, products, and
transition states to relevant primitives and the correspond-
ing virtual frequency of the transition state are presented
(Table 2). At the same time, energy potential diagrams of the
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Scheme 1: Paths of the generated 𝛼-chloropropanoic acid.

Table 1: Different chloride products change over time without concentrated sulfuric acid and joining concentrated sulfuric acid.

Catalyst T (min) Propanoic acid
(%)

𝛼-MCA
(%)

𝛽-MCA
(%)

𝛼,𝛼-DCA
(%)

20mol%
propanoic anhydride

30 80.05 18.23 1.24 0.47
60 62.56 34.63 1.83 0.98
90 39.74 56.73 2.11 1.42
120 11.13 84.84 2.47 1.56
150 5.80 89.79 2.63 1.78
180 0.51 94.57 2.91 2.01

20mol%
propanoic acid
anhydride +
concentrated sulfuric
acid

30 46.52 52.18 0.59 0.71
60 30.66 67.71 0.82 0.81
90 13.16 85.04 0.93 0.87
120 5.8 92.18 1.04 0.98
150 3.23 94.53 1.18 1.06
180 0.41 97.22 1.24 1.13

primitive reactions with corresponding reactants, transition
states, and products of configuration are shown in Figure 2.

The formation of 𝛼-chloropropanoic acid via ionic chlo-
rination mechanism is as follows. First, propanoic anhy-
dride conducted initiation (Scheme 1; see (2)) and formed
propanoyl chloride. Its reaction activation energy was
12.54 kJ/mol. Propanoyl chloride then conducted enolization
(Scheme 1; see (3)) and formed 1-propen-1-ol,1-chloro, and the
corresponding primitive activation energy was 125.73 kJ/mol.
Since then, the double bond in 1-propen-1-ol, 1-chloro

was apt to react with chlorine (Scheme 1; see (4)) and
formed 𝛼-chloropropanoyl chloride, and the corresponding
primitive activation energy was 20.11 kJ/mol. Finally, the
OH and Cl exchange reaction generated 𝛼-chloropropanoic
acid (Scheme 1; see (5) and (6)) and its activation energy
was 85.61 kJ/mol and 90.48 kJ/mol. Therefore, reaction (2)
was the catalyst initiation reaction among whole reactions
(2)–(6) and propanoic acid anhydride formed a real catalyst,
propanoyl chloride. The whole reaction process became an
acid catalytic reaction once propanoyl chloride was formed.
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Table 2: Possible elementary reactions involved in 𝛼-chloropropanoic acid and byproducts synthesis together with the activation energies
(Ea) and reaction energies (Δ𝐻).

Step Chemical reaction Frequency
(cm−1)

Ea
(kJ⋅mol−1)

Δ𝐻
(kJ⋅mol−1)

(1) C
2
H
5
COOH + ∙Cl →H+ + CH

3
CHClCOOH −237.61 158.37 131.50

(2) (C
2
H
5
CO)
2
O + HCl → C

2
H
5
COOH + C

2
H
5
COCl −118.79 12.54 −9.68

(3) C
2
H
5
COCl + H+ →H+ + CH

3
CHCClOH −117.24 125.73 117.19

(4) CH
3
C
2
HClOH + Cl

2
→HCl + C

2
H
4
ClCOCl −48.63 20.11 −170.74

(5) C
2
H
4
ClCOCl + C

2
H
5
COOH → C

6
H
10
O
3
Cl
2

−161.81 85.61 19.05
(6) C

6
H
10
O
3
Cl
2
→ C

2
H
5
COCl + CH

3
CHClCOOH −138.82 90.48 −116.71

(7) C
2
H
5
COOH + ∙Cl →H+ + CH

2
ClCH

2
COOH −343.25 217.04 146.69

(8) CH
3
C
2
HClOH + Cl

2
→HCl + CH

2
ClCH

2
COCl −294.33 110.27 −187.88

(9) CH
2
ClCH

2
COCl + C

2
H
5
COOH →C

6
H
10
O
3
Cl
2

−121.03 188.14 106.79
(10) C

6
H
10
O
3
Cl
2
→ C

2
H
5
COCl + CH

2
ClCH

2
COOH −208.36 34.54 −122.72

(11) CH
3
CHClCOOH + ∙Cl →H+ + CH

3
CCl
2
COOH −758.10 162.64 134.13

(12) CH
3
CHClCOOH + ∙Cl →H+ + CH

2
ClCHClCOOH −486.96 180.08 138.43

(13) CH
2
ClCH

2
COOH + ∙Cl →H+ + CH

2
ClCHClCOOH −887.32 178.87 153.22

(14) CH
3
CHClCOCl + H+ →H+ + CH

3
CClCClOH −1103.93 130.81 117.22

(15) CH
3
CClCClOH + Cl

2
→HCl + CH

3
CCl
2
COCl −84.36 21.99 −129.19

(16) CH
3
CCl
2
COCl + C

2
H
5
COOH → C

6
H
9
O
3
Cl
3

−69.22 82.61 −168.57
(17) C

6
H
9
O
3
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3
→ CH

3
CCl
2
COOH + C

2
H
5
COCl −365.41 109.73 −95.67
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Figure 2: Potential energy diagram of 𝛼-chloropropanoic acid synthesis together with the initial states, transition states, and final states.
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More importantly, the acidity of 𝛼-chloropropanoic acid was
stronger than that of propanoic acid, so the acid catalytic
reaction was accelerated.

The activation energy 125.73 kJ/mol (Scheme 1; see (3))
was the highest as the rate-determining step after propanoyl
chloride was formed. It is consistent with the results of
Paatero. The results also showed that the formation rate of
𝛼-chloropropanoic acid was slow at the beginning and was
rapid in the middle of the reaction.The reason for it could be
that catalyst initiation reaction was slow, and the activation
energy of the whole process would reduce once propanoyl
chloridewas formed.Meanwhile, the rate of acid catalysis and
autocatalysis (Scheme 1; see (3)) was accelerated due to the
fact that the acidity of 𝛼-chloropropanoic acid was stronger
than that of propanoic acid. Thus, the generation speed
of 𝛼-chloropropanoic acid was accelerated. In addition, the
generation of 𝛼-chloropropanoic acid increased significantly
when concentrated sulfuric acid was added. The added
H+ in the reaction system promoted the progress of acid
catalysis and autocatalysis (Scheme 1; see (3)). In turn, it
led to the result that the reaction was conducted toward
the generation of 𝛼-chloropropanoic acid. Therefore, it can
be drawn from the theoretical calculation and experimental
results that the whole process became an acid catalytic reac-
tion when propanoyl chloride was formed. The generation
of 𝛼-chloropropanoic acid could be accelerated as long as
propanoyl chloride acid-catalyzed enolization (Scheme 1; see
(3)) was expedited. It could also inhibit the generation of 𝛽-
chloropropanoic acid and 𝛼,𝛼-dichloropropanoic acid.

3.3. Synthesis Ionic Chlorination Mechanism of 𝛽-Chloropro-
panoic Acid. In order to investigate the formation route of
𝛽-chloropropanoic acid, two possible reaction paths were
constructed: the radical chlorination mechanism and ionic
chlorination mechanism (Scheme 2, Figure 3). Path 1 is
the formation route of 𝛽-chloropropanoic acid via radical
chlorination mechanism (Scheme 2; see (7)). Path 2 is the
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Figure 3: Potential energy diagram of the radical chlorination
reactions related of byproducts together with the initial states,
transition states, and final states.

formation route of 𝛽-chloropropanoic acid via ionic chlori-
nation mechanism (Scheme 2; see (8)–(10)).

The formation of 𝛽-chloropropanoic acid via ionic chlo-
rination mechanism is as follows. First, propanoyl chloride
conducted enolization (Scheme 1; see (3)) and formed 1-
propen-1-ol,1-chloro, and the corresponding primitive acti-
vation energy was 125.73 kJ/mol. Then, the double bond
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in 1-propen-1-ol, 1-chloro was apt to react with chlorine
(Scheme 2; see (8)) and formed 𝛽-chloropropanoyl chlo-
ride, and the corresponding primitive activation energy
was 110.27 kJ/mol. Finally, the OH and Cl exchange reac-
tion generated 𝛽-chloropropanoic acid (Scheme 2; see (9)
and (10)) and its activation energy was 188.14 kJ/mol and
34.54 kJ/mol. Compared to these two kinds of paths which
generated 𝛽-chloropropanoic acid and 𝛼-chloropropanoic
acid, the activation energy of the formed 𝛽-chloropropanoic
acid (Scheme 2; see (9)) was higher than that of the formed 𝛼-
chloropropanoic acid (Scheme 1; see (6)). Therefore, it is dif-
ficult to form 𝛽-chloropropanoic acid by ionic chlorination.

3.4. Radical Chlorination Mechanism of Byproducts. The
radical chlorination mechanism consists of successive
chlorination steps. Initially, the 𝛼-chloropropanoic acid
and 𝛽-chloropropanoic acid were formed and then further
chlorinated to 𝛼,𝛼-dichloropropanoic acid and 𝛼,𝛽-
dichloropropanoic acid (Scheme 3). The activation energies
(Ea) and reaction energies (Δ𝐻) calculation results are shown
in Table 1. The energy potential diagram of the primitive
reaction and the corresponding reactants, transition states,
and products configuration is presented in Figure 4.

The activation energy of radical chlorination reaction
which generated 𝛽-chloropropanoic acid (Scheme 2;
see (7)) and 𝛼,𝛼-dichloropropanoic acid (Scheme 3; see
(11)) was 171.21 kJ/mol and 162.64 kJ/mol, respectively.
They were lower than the activation energy of generated
𝛼,𝛽-dichloropropanoic acid, which were 180.08 kJ/mol
and 178.87 kJ/mol (Scheme 3; see (12)) and 187.87 kJ/mol
(Scheme 3; see (13)). Therefore, 𝛽-chloropropanoic acid and
𝛼,𝛼-dichloropropanoic acid are the main byproducts.

The activation energy of generated 𝛽-chloropropanoic
acid (Scheme 2; see (7)) was 171.21 kJ/mol, higher than
125.73 kJ/mol (Scheme 1; see (3)), which was the rate-
determining step of generating 𝛼-chloropropanoic acid. The
amount of generated 𝛽-chloropropanoic acid changed with
time which was different from 𝛼-chloropropanoic acid in
this experiment. Thus, the generation of 𝛼-chloropropanoic
acid wasmainly through the acid-catalyzed enolization route,
while𝛽-chloropropanoic acid wasmainly through the radical
chlorination route.

Compared to these two kinds of paths which gener-
ated 𝛼, 𝛽-dichloropropanoic acid, the activation energy of
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Figure 4: Potential energy diagram of the radical chlorination
mechanism of byproducts together with the initial states, transition
states, and final states.

the formed 𝛽-chloropropanoic acid (Scheme 2; see (7))
was higher than that of the formed 𝛼-chloropropanoic
acid (Scheme 1; see (3)). Therefore, the formation of 𝛼,𝛽-
dichloropropanoic acid could be inhibited through inhibiting
the formation of 𝛽-chloropropanoic. But the quantity of 𝛼,𝛽-
dichloropropanoic acid is hardly detected in the experiment.

3.5. Ionic Chlorination Mechanism of 𝛼,𝛼-Dichloropropanoic
Acid. In order to explore whether the formation between
𝛼,𝛼-dichloropropanoic acid and 𝛼-chloropropanoic acid was
a consecutive reaction, the paths in ionic chlorination mech-
anism were designed (Scheme 4). The path (Scheme 4;
see (14)), the intermediate in the process generating 𝛼-
chloropropanoyl chloride, can also generate 1-propenol, 1,2-
dichloro. The consecutive chlorination of 1-propenol, 1,2-
dichloro with chlorine generated 𝛼,𝛼-dichlorine propanoyl
chloride (Scheme 4; see (15)).𝛼,𝛼-Dichlorine propanoyl chlo-
ride with propanoic acid generated 𝛼,𝛼-dichloropropanoic
acid (Scheme 4; see (16) and (17)). The OH-Cl exchange
reaction generated the final product. At the same time, energy
potential diagram of the primitive reaction, the correspond-
ing reactants, transition states, and products of configuration
is shown in Figure 5.

It was observed that activation energy 130.81 kJ/mol
(Scheme 4; see (14)) was higher than 109.73 kJ/mol (Scheme 4;
see (15)) which was the rate-determining step in ionic
chlorinationmechanism. 𝛼,𝛼-Dichloropropanoic acid and 𝛼-
chloropropanoic acid were generated at the same time in
the process of ionic chlorination mechanism. However, fur-
ther comparison showed that radical chlorination activation
energy 162.64 kJ/mol (Scheme 3; see (11)) was higher than
130.81 kJ/mol (Scheme 4; see (14)). This implies that radical
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Figure 5: Potential energy diagram of ionic chlorination of 𝛼,𝛼-
dichloropropanoic acid together with the initial states, transition
states, and final states.

chlorination was not easier to occur than ionic chlorination,
which means that ionic chlorination was the main reaction
path. Although higher temperature was the main cause of
generation of byproducts [10], it was also observed that the
generation of 𝛼,𝛼-dichloropropanoic acid was less before
concentrated sulfuric acid was added. This implies that the
increase of H+ does accelerate the acid-catalyzed path where

the product was 𝛼,𝛼-dichloropropanoic acid. It proved that
the generation path of 𝛼,𝛼-dichloropropanoic acid was ionic
chlorination mechanism which also was the cause of the
phenomenon of the generation of byproducts. The 𝛼,𝛼-
dichloropropanoic acid increased rapidly under the reaction
conditions with higher temperature or excessive chlorine in
intermittent industrial manufacture.

4. Conclusions

Based on the investigation of the mechanism of chlorination
from propanoic acid to 𝛼-chloropropanoic acid, the results
could be summarized as follows:

(1) The activation energy of the ionic mechanism for
𝛼-chloropropanoic acid formation was lower than
that of the radical mechanism. The ionic mechanism
involved four reaction routes and was initiated by
the acid-catalyzed enolization of propanoyl chlo-
ride. Additionally, the activation energy of the rate-
determining step was the process of 1-propanol,1-
chloro formed 1-propen-1-ol,1-chloro.

(2) The formation route of 𝛽-chloropropanoic acid was
mainly through propanoic acid radical chlorination
mechanism. 𝛼,𝛽-Dichloropropanoic acid is formed
via a consecutive radical chlorination mechanism.

(3) The ionic mechanism of 𝛼,𝛼-dichloropropanoic acid
showed that the ionic chlorination was the main
reaction path, and it was not easier for radical chlo-
rination to occur compared with ionic chlorination
for generation of 𝛼,𝛼-dichloropropanoic acid. Hence,
the formation route of 𝛼,𝛼-dichloropropanoic acid
and 𝛼-chloropropanoic acid was consecutive reac-
tion. The formation of 𝛼,𝛼-dichloropropanoic acid
was mainly by 𝛼-chloropropanoic acid consecutive
ionic chlorination mechanism which indicated that
𝛼-chloropropanoic acid is the key intermediate for
𝛼,𝛼-dichloropropanoic acid formation process.
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