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A topological index is a real number associated with chemical constitution purporting for correlation of chemical structure with
various physical properties, chemical reactivity, or biological activity. The concept of hyper Zagreb index, first multiple Zagreb
index, second multiple Zagreb index, and Zagreb polynomials was established in chemical graph theory based on vertex degrees.
It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical networks. In this paper,
we study carbon nanotube networks which are motivated by molecular structure of regular hexagonal lattice and also studied
interconnection networks which are motivated by molecular structure of a chemical compound SiO4. We determine hyper Zagreb
index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for some important class of carbon
nanotube networks, dominating oxide network, dominating silicate network, and regular triangulene oxide network.

1. Introduction

Multiprocessor interconnectionnetworks are regularly required
to associate a huge number of homogeneously repeated
processor-memory matches, each of which is known as
a preparing hub. Rather than utilizing a mutual memory,
all synchronization and communication between processing
nodes for program execution is often done via message
passing. Outline and utilization of multiprocessor intercon-
nection systems have as of late attracted extensive consider-
ation due to the accessibility of modest, capable microchips,
and memory chips. The work systems have been perceived
as adaptable interconnection systems for massively parallel
computing; see [1].Work/torus-like low-dimensional systems
have as of late gotten a considerable measure of consideration
for their better adaptability to bigger systems, rather than
moremind boggling systems, for example, hypercubes.There
is a lot of relevant works on interdependent networks which
can be reviewed. In particular the failure of cooperation on
dependent networks has been studied a lot recently in [2–5].

Particles and subnuclear blends are as often as possible
showed by subnuclear graphs. A subnuclear outline is a graph
in which vertices are particles of a given molecule and edges
are its compound bonds. Since the valency of carbon is four,
it is customary to consider all graphs with most outrageous
degree under 4, as a molecular outline. An outline 𝐺(𝑉, 𝐸)
with vertex set 𝑉 and edge set 𝐸 is related, if there exists a
connection between anymatch of vertices in𝐺.𝐴 framework
is just a connected graph having no various edges and no
circles. All through in this article, the level of vertex V ∈ 𝑉(𝐺)
is implied by deg(V) and is the amount of edges incident to V.

A topological index is a numeric amount connected with
a graph which describes the topology of diagram and is
invariant under chart automorphism. In more exact way, a
topological list Top(𝐺) of graph 𝐺 is a number with the
property that, for each diagram 𝐻 isomorphic to chart 𝐺,
Top(𝐻) = Top(𝐺). The idea of topological list originated
fromwork done byWiener [6] while he was chipping away at
breaking point of paraffin. He named this list as way number.
Later on, the way number was renamed asWiener index. The
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Wiener file is the first and the most concentrated topological
file, both from hypothetical perspective and applications, and
is characterized as the entirety of separation between all sets
of vertices in 𝐺; see for details [7, 8].

One of the oldest topological indices is the first Zagreb
index introduced by Gutman and Trinajstić based on degree
of vertices of𝐺 in 1972 [4].Thefirst and secondZagreb indices
of a graph 𝐺 are defined as

𝑀1 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑀2 (𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) × deg (V)] .
(1)

In 2013, Shirdel et al. [9] introduced a new degree based of
Zagreb index named “hyper Zagreb index” as

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 . (2)

Ghorbani and Azimi defined two new versions of Zagreb
indices of a graph 𝐺 in 2012 [2]. These indices are the
first multiple Zagreb index 𝑃𝑀1(𝐺) and the second multiple
Zagreb index 𝑃𝑀2(𝐺) and these indices are defined as
follows:

𝑃𝑀1 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑃𝑀2 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) × deg (V)] .
(3)

The properties of 𝑃𝑀1(𝐺) and 𝑃𝑀2(𝐺) indices for some
chemical structures have been studied in [2, 10].

The first Zagreb polynomial 𝑀1(𝐺, 𝑥) and the second
Zagreb polynomial𝑀2(𝐺, 𝑥) are defined as follows:

𝑀1 (𝐺, 𝑥) = ∑
𝑢V∈𝐸(𝐺)

𝑥[deg(𝑢)+deg(V)],

𝑀2 (𝐺, 𝑥) = ∑
𝑢V∈𝐸(𝐺)

𝑥[deg(𝑢)×deg(V)].
(4)

The properties of 𝑀1(𝐺, 𝑥) and 𝑀2(𝐺, 𝑥) polynomials for
some chemical structures have been studied in [3].

Nowadays there is an extensive research activity on
𝐻𝑀(𝐺), 𝑃𝑀1(𝐺), and 𝑃𝑀2(𝐺) indices and 𝑀1(𝐺, 𝑥) and
𝑀2(𝐺, 𝑥) polynomials and their variants; see also [2, 4, 9–14].

For further study of topological indices of various graph
families, see [8, 11, 12, 14–27].

2. Carbon Nanotube Networks

The disclosure of the fullerene particles and related types
of carbon structures, for example, nanotubes, has created
an explosion of movement in science, physical science, and
materials science. Traditional fullerene is an all-carbon parti-
cle in which the iotas aremasterminded on a pseudospherical
structure made up altogether of pentagons and hexagons. Its
subatomic diagram is a finite trivalent chart installed on the
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Figure 1: Quadrilateral section 𝑃𝑛𝑚 cuts from the regular hexagonal
lattice.

surface of a spherewith just hexagonal and (precisely 12) pen-
tagonal appearances. Deza et al. [28] considered fullerene’s
augmentation to other shut surfaces and demonstrated that
exclusive four surfaces are conceivable, in particular, circle,
torus, Klein bottle, and projective plane.Not at all like circular
fullerenes, toroidal andKlein container’s fullerenes have been
viewed as decorations of whole hexagons on their surfaces
since they should contain no pentagons; see [17, 18, 28–33].

Carbon nanotubes are allotropes of carbon with a cylin-
drical nanostructure. These round and hollow carbon atoms
have abnormal properties, which are significant for nanotech-
nology, hardware, optics, and different fields of materials
science and innovation. Nanotubes are individuals from the
fullerene auxiliary family. Their name is gotten from their
long, empty structure.

Let us consider the 𝑚 × 𝑛 quadrilateral section 𝑃𝑛𝑚 with
𝑚 ≥ 2 hexagons on the top and bottom sides and 𝑛 ≥ 2
hexagons on the lateral sides cut from the regular hexagonal
lattice 𝐿; see Figure 1.

If we identify two lateral sides of 𝑃𝑛𝑚 such that we identify
vertices 𝑢𝑗0 and 𝑢𝑗𝑚, for 𝑗 = 0, 1, 2, . . . , 𝑛, then we obtain
nanotube NA𝑛𝑚 with 2𝑚(𝑛 + 1) vertices and (3𝑛 + 2)𝑚 edges.

Let 𝑛 be even, 𝑛 ≥ 2, and𝑚 ≥ 2. If we identify the top and
bottom sides of the quadrilateral section 𝑃𝑛𝑚 in such a way
that we identify vertices 𝑢0𝑖 and 𝑢𝑛𝑖 , for 𝑖 = 0, 1, 2, . . . , 𝑚, and
vertices V0𝑖 and V

𝑛
𝑖 , for 𝑖 = 1, 2, . . . , 𝑚, thenwe obtain nanotube

NC𝑛𝑚 of order 𝑛(2𝑚 + 1) and size (3𝑚𝑛 + 𝑛/2).
Recently some well known topological indices, namely,

Randić index, atom-bond connectivity index, and geometric
arithmetic index for nanotubeNA𝑛𝑚 and nanotubeNC

𝑛
𝑚 have

been studied in [17, 18].
Now we compute hyper Zagreb index𝐻𝑀(𝐺), first mul-

tiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb index
𝑃𝑀2(𝐺), and Zagreb polynomials𝑀1(𝐺, 𝑥) and𝑀2(𝐺, 𝑥) for
nanotube NA𝑛𝑚.
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Theorem 1. Consider nanotube NA𝑛𝑚 for𝑚, 𝑛 ≥ 2. Then

𝐻𝑀(NA𝑛𝑚) = 108𝑚𝑛 + 28𝑚,
𝑃𝑀1 (NA𝑛𝑚) = 63𝑚𝑛−2𝑚 × 54𝑚,
𝑃𝑀2 (NA𝑛𝑚) = 93𝑚𝑛−2𝑚 × 64𝑚,
𝑀1 (NA𝑛𝑚, 𝑥) = (3𝑚𝑛 − 2𝑚) 𝑥6 + 4𝑚𝑥5,
𝑀2 (NA𝑛𝑚, 𝑥) = (3𝑚𝑛 − 2𝑚) 𝑥9 + 4𝑚𝑥6.

(5)

Proof. Nanotube NA𝑛𝑚 has 2𝑚 vertices of degree 2 and 2𝑚𝑛
vertices of degree 3. The edge set 𝐸(NA𝑛𝑚) divides into two
edge partitions based on degrees of end vertices. The first
edge partition 𝐸1(NA𝑛𝑚) contains 𝑚(3𝑛 − 2) edges 𝑢V, where
deg(𝑢) = deg(V) = 3. The second edge partition 𝐸2(NA𝑛𝑚)
contains 4𝑚 edges 𝑢V, where deg(𝑢) = 2 and deg(V) = 3. Now
using (2)–(4), we have

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀(NA𝑛𝑚) = ∑
𝑢V∈𝐸1(NA𝑛𝑚)

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸2(NA𝑛𝑚)

[deg (𝑢) + deg (V)]2

= 62 󵄨󵄨󵄨󵄨𝐸1 (NA𝑛𝑚)󵄨󵄨󵄨󵄨 + 52 󵄨󵄨󵄨󵄨𝐸2 (NA𝑛𝑚)󵄨󵄨󵄨󵄨
= 36 (3𝑚𝑛 − 2𝑚) + 25 (4𝑚)
= 108𝑚𝑛 + 28𝑚,

𝑃𝑀1 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑃𝑀1 (NA𝑛𝑚) = ∏
𝑢V∈𝐸1(NA𝑛𝑚)

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸2(NA𝑛𝑚)

[deg (𝑢) + deg (V)]

= 6|𝐸1(NA𝑛𝑚)| × 5|𝐸2(NA𝑛𝑚)|

= 6(3𝑚𝑛−2𝑚) × 54𝑚,
𝑃𝑀2 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) × deg (V)] ,

𝑃𝑀2 (NA𝑛𝑚) = ∏
𝑢V∈𝐸1(NA𝑛𝑚)

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸2(NA𝑛𝑚)

[deg (𝑢) × deg (V)]

= 9|𝐸1(NA𝑛𝑚)| × 6|𝐸2(NA𝑛𝑚)|

= 9(3𝑚𝑛−2𝑚) × 64𝑚,

𝑀1 (𝐺, 𝑥) = ∑
𝑢V∈𝐸(𝐺)

𝑥[deg(𝑢)+deg(V)],

𝑀1 (NA𝑛𝑚, 𝑥) = ∑
𝑢V∈𝐸1(NA𝑛𝑚)

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸2(NA𝑛𝑚)

𝑥[deg(𝑢)+deg(V)]

= ∑
𝑢V∈𝐸1(NA𝑛𝑚)

𝑥6 + ∑
𝑢V∈𝐸2(NA𝑛𝑚)

𝑥5

= 󵄨󵄨󵄨󵄨𝐸1 (NA𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥6 + 󵄨󵄨󵄨󵄨𝐸2 (NA𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥5

= (3𝑚𝑛 − 2𝑚) 𝑥6 + 4𝑚𝑥5,
𝑀2 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)×deg(V)],

𝑀2 (NA𝑛𝑚, 𝑥) = ∑
𝑢V∈𝐸1(NA𝑛𝑚)

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸2(NA𝑛𝑚)

𝑥[deg(𝑢)×deg(V)]

= ∑
𝑢V∈𝐸1(NA𝑛𝑚)

𝑥9 + ∑
𝑢V∈𝐸2(NA𝑛𝑚)

𝑥6

= 󵄨󵄨󵄨󵄨𝐸1 (NA𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥9 + 󵄨󵄨󵄨󵄨𝐸2 (NA𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥6

= (3𝑚𝑛 − 2𝑚) 𝑥9 + 4𝑚𝑥6.
(6)

Now we compute hyper Zagreb index𝐻𝑀(𝐺), first mul-
tiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb index
𝑃𝑀2(𝐺), and Zagreb polynomials𝑀1(𝐺, 𝑥) and𝑀2(𝐺, 𝑥) for
nanotube NC𝑛𝑚.

Theorem 2. Consider nanotube NC𝑛𝑚 for 𝑛 ≥ 2 even and𝑚 ≥
2. Then

𝐻𝑀(NC𝑛𝑚) = 108𝑚𝑛 − 24𝑛,
𝑃𝑀1 (NC𝑛𝑚) = 4𝑛 × 52𝑛 × 6(6𝑚𝑛−5𝑛)/2,
𝑃𝑀2 (NC𝑛𝑚) = 4𝑛 × 62𝑛 × 9(6𝑚𝑛−5𝑛)/2,

𝑀1 (NC𝑛𝑚, 𝑥) = 𝑛𝑥4 + 2𝑛𝑥5 + (6𝑚𝑛 − 5𝑛
2 ) 𝑥6,

𝑀2 (NC𝑛𝑚, 𝑥) = 𝑛𝑥4 + 2𝑛𝑥6 + (6𝑚𝑛 − 5𝑛
2 ) 𝑥9.

(7)

Proof. NanotubeNC𝑛𝑚 has 2𝑛 vertices of degree 2 and 𝑛(2𝑚−
1) vertices of degree 3. There are three types of edges in
𝐸(NC𝑛𝑚) based on degrees of end vertices of each edge; that is,𝐸(NC𝑛𝑚) = 𝐸1(NC𝑛𝑚) ∪ 𝐸2(NC𝑛𝑚) ∪ 𝐸3(NC𝑛𝑚). Edge partition𝐸1(NC𝑛𝑚) contains 𝑛 edges 𝑢V, where deg(𝑢) = deg(V) = 2;
edge partition𝐸2(NC𝑛𝑚) contains 2𝑛 edges 𝑢V, where deg(𝑢) =2 and deg(V) = 3, and edge partition 𝐸3(NC𝑛𝑚) contains
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(6𝑚𝑛 − 5𝑛)/2 edges 𝑢V, where deg(𝑢) = deg(V) = 3. Now
using (2)–(4), we have

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀(NC𝑛𝑚) = ∑
𝑢V∈𝐸1(NC𝑛𝑚)

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸2(NC𝑛𝑚)

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸3(NC𝑛𝑚)

[deg (𝑢) + deg (V)]2

= 42 󵄨󵄨󵄨󵄨𝐸1 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 + 52 󵄨󵄨󵄨󵄨𝐸2 (NC𝑛𝑚)󵄨󵄨󵄨󵄨
+ 62 󵄨󵄨󵄨󵄨𝐸3 (NC𝑛𝑚)󵄨󵄨󵄨󵄨

= 16𝑛 + 25 (2𝑛) + 36 (6𝑚𝑛 − 5𝑛
2 )

= 108𝑚𝑛 − 24𝑛,
𝑃𝑀1 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) + deg (V)] ,

𝑃𝑀1 (NC𝑛𝑚) = ∏
𝑢V∈𝐸1(NC𝑛𝑚)

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸2(NC𝑛𝑚)

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸3(NC𝑛𝑚)

[deg (𝑢) + deg (V)]

= 4|𝐸1(NC𝑛𝑚)| × 5|𝐸2(NC𝑛𝑚)| × 6|𝐸3(NC𝑛𝑚)|

= 4𝑛 × 52𝑛 × 6(6𝑚𝑛−5𝑛)/2,
𝑃𝑀2 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) × deg (V)] ,

𝑃𝑀2 (NC𝑛𝑚) = ∏
𝑢V∈𝐸1(NC𝑛𝑚)

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸2(NC𝑛𝑚)

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸3(NC𝑛𝑚)

[deg (𝑢) × deg (V)]

= 4|𝐸1(NC𝑛𝑚)| × 6|𝐸2(NC𝑛𝑚)| × 9|𝐸3(NC𝑛𝑚)|

= 4𝑛 × 62𝑛 × 9(6𝑚𝑛−5𝑛)/2,
𝑀1 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)+deg(V)],

𝑀1 (NC𝑛𝑚, 𝑥) = ∑
𝑢V∈𝐸1(NC𝑛m)

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸2(NC𝑛𝑚)

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸3(NC𝑛𝑚)

𝑥[deg(𝑢)+deg(V)]

= ∑
𝑢V∈𝐸1(NC𝑛𝑚)

𝑥4 + ∑
𝑢V∈𝐸2(NC𝑛𝑚)

𝑥5

+ ∑
𝑢V∈𝐸3(NC𝑛𝑚)

𝑥6

= 󵄨󵄨󵄨󵄨𝐸1 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥4 + 󵄨󵄨󵄨󵄨𝐸2 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥5

+ 󵄨󵄨󵄨󵄨𝐸3 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥6

= 𝑛𝑥4 + 2𝑛𝑥5 + (6𝑚𝑛 − 5𝑛
2 ) 𝑥6,

𝑀2 (𝐺, 𝑥) = ∑
𝑢V∈𝐸(𝐺)

𝑥[deg(𝑢)×deg(V)],

𝑀2 (NC𝑛𝑚, 𝑥) = ∑
𝑢V∈𝐸1(NC𝑛𝑚)

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸2(NC𝑛𝑚)

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸3(NC𝑛𝑚)

𝑥[deg(𝑢)×deg(V)]

= ∑
𝑢V∈𝐸1(NC𝑛𝑚)

𝑥4 + ∑
𝑢V∈𝐸2(NC𝑛𝑚)

𝑥6

+ ∑
𝑢V∈𝐸3(NC𝑛𝑚)

𝑥9

= 󵄨󵄨󵄨󵄨𝐸1 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥4 + 󵄨󵄨󵄨󵄨𝐸2 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥6

+ 󵄨󵄨󵄨󵄨𝐸3 (NC𝑛𝑚)󵄨󵄨󵄨󵄨 𝑥9

= 𝑛𝑥4 + 2𝑛𝑥6 + (6𝑚𝑛 − 5𝑛
2 ) 𝑥9.

(8)

3. Dominating Oxide Network DOX(𝑛)
In 2015, Baig et al. [34] computed general Randić index,
atom-bond connectivity (ABC) index, and geometric arith-
metic (GA) index of dominating oxide network DOX(𝑛).
In this section, we calculate hyper Zagreb index 𝐻𝑀(𝐺),
first multiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb
index 𝑃𝑀2(𝐺), and Zagreb polynomials 𝑀1(𝐺, 𝑥) and
𝑀2(𝐺, 𝑥) for dominating oxide network DOX(𝑛).
Theorem 3. Consider the dominating oxide network𝐷𝑂𝑋(𝑛)
for 𝑛 ≥ 2. Then

𝐻𝑀(𝐷𝑂𝑋 (𝑛)) = 3456𝑛2 − 4128𝑛 + 1488,
𝑃𝑀1 (𝐷𝑂𝑋 (𝑛)) = 6(24𝑛−12) × 8(54𝑛2−78𝑛+30),
𝑃𝑀2 (𝐷𝑂𝑋 (𝑛)) = 8(24𝑛−12) × 16(54𝑛2−78𝑛+30),
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Figure 2: Dominating oxide network (DOX(2)).

𝑀1 (𝐷𝑂𝑋 (𝑛) , 𝑥) = (24𝑛 − 12) 𝑥6

+ (54𝑛2 − 78𝑛 + 30) 𝑥8,
(9)

𝑀2 (𝐷𝑂𝑋 (𝑛) , 𝑥) = (24𝑛 − 12) 𝑥8

+ (54𝑛2 − 78𝑛 + 30) 𝑥16.
(10)

Proof. Let DOX(𝑛) be the dominating oxide network. The
number of vertices and edges in DOX(𝑛) are 27𝑛2 − 21𝑛 + 6
and 54𝑛2 − 54𝑛 + 18, respectively; see Figure 2. The edge set
𝐸(DOX(𝑛)) divides into two edge partitions based on degrees
of end vertices. The first edge partition 𝐸1(DOX(𝑛)) contains
24𝑛 − 12 edges 𝑢V, where deg(𝑢) = 2, deg(V) = 4. The second
edge partition𝐸2(DOX(𝑛)) contains 54𝑛2−78𝑛+30 edges 𝑢V,
where deg(𝑢) = deg(V) = 4.

Now using (2)–(4), we have

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀 (DOX (𝑛))
= ∑
𝑢V∈𝐸1(DOX(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸2(DOX(𝑛))

[deg (𝑢) + deg (V)]2

= 62 󵄨󵄨󵄨󵄨𝐸1 (DOX (𝑛))󵄨󵄨󵄨󵄨 + 82 󵄨󵄨󵄨󵄨𝐸2 (DOX (𝑛))󵄨󵄨󵄨󵄨
= 3456𝑛2 − 4128𝑛 + 1488,

𝑃𝑀1 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑃𝑀1 (DOX (𝑛))
= ∏
𝑢V∈𝐸1(DOX(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸2(DOX(𝑛))

[deg (𝑢) + deg (V)]

= 6|𝐸1(DOX(𝑛))| × 8|𝐸2(DOX(𝑛))|

= 6(24𝑛−12) × 8(54𝑛2−78𝑛+30),
𝑃𝑀2 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) × deg (V)] ,

𝑃𝑀2 (DOX (𝑛))
= ∏
𝑢V∈𝐸1(DOX(𝑛))

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸2(DOX(𝑛))

[deg (𝑢) × deg (V)]

= 8|𝐸1(DOX(𝑛))| × 16|𝐸2(DOX(𝑛))|

= 8(24𝑛−12) × 16(54𝑛2−78𝑛+30),
𝑀1 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)+deg(V)],

𝑀1 (DOX (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(DOX(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸2(DOX(𝑛))

𝑥[deg(𝑢)+deg(V)]

= ∑
𝑢V∈𝐸1(DOX(𝑛))

𝑥6 + ∑
𝑢V∈𝐸2(DOX(𝑛))

𝑥8

= 󵄨󵄨󵄨󵄨𝐸1 (DOX (𝑛))󵄨󵄨󵄨󵄨 𝑥6 + 󵄨󵄨󵄨󵄨𝐸2 (DOX (𝑛))󵄨󵄨󵄨󵄨 𝑥8

= (24𝑛 − 12) 𝑥6 + (54𝑛2 − 78𝑛 + 30) 𝑥8,
𝑀2 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)×deg(V)],

𝑀2 (𝐷𝑂𝑋 (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(DOX(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸2(DOX(𝑛))

𝑥[deg(𝑢)×deg(V)]

= ∑
𝑢V∈𝐸1(DOX(𝑛))

𝑥8 + ∑
𝑢V∈𝐸2(DOX(𝑛))

𝑥16

= 󵄨󵄨󵄨󵄨𝐸1 (DOX (𝑛))󵄨󵄨󵄨󵄨 𝑥8 + 󵄨󵄨󵄨󵄨𝐸2 (DOX (𝑛))󵄨󵄨󵄨󵄨 𝑥16

= (24𝑛 − 12) 𝑥8 + (54𝑛2 − 78𝑛 + 30) 𝑥16.
(11)

4. Dominating Silicate Network DSL(𝑛)
In 2015, Baig et al. [34] computed general Randić index,
atom-bond connectivity (ABC) index, and geometric arith-
metic (GA) index of dominating silicate network DSL(𝑛).



6 Journal of Chemistry

Figure 3: Dominating silicate network (DSL(2)).

In this section, we calculate hyper Zagreb index 𝐻𝑀(𝐺),
first multiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb
index 𝑃𝑀2(𝐺), and Zagreb polynomials 𝑀1(𝐺, 𝑥) and
𝑀2(𝐺, 𝑥) for dominating silicate network DSL(𝑛).
Theorem 4. Consider the dominating silicate network𝐷𝑆𝐿(𝑛)
for 𝑛 ≥ 2. Then

𝐻𝑀(𝐷𝑆𝐿 (𝑛)) = 11070𝑛2 − 13452𝑛 + 4746,
𝑃𝑀1 (𝐷𝑆𝐿 (𝑛)) = 5(12𝑛−6) × 8(24𝑛−12) × 9(54𝑛2−66𝑛+24)

× 12(54𝑛2−78𝑛+30),
𝑃𝑀2 (𝐷𝑆𝐿 (𝑛)) = 6(12𝑛−6) × 12(24𝑛−12)

× 18(54𝑛2−66𝑛+24)

× 36(54𝑛2−78𝑛+30),
𝑀1 (𝐷𝑆𝐿 (𝑛) , 𝑥) = (12𝑛 − 6) 𝑥5 + (24𝑛 − 12) 𝑥8

+ (54𝑛2 − 66𝑛 + 24) 𝑥9

+ (54𝑛2 − 78𝑛 + 30) 𝑥12,
𝑀2 (𝐷𝑆𝐿 (𝑛) , 𝑥) = (12𝑛 − 6) 𝑥6 + (24𝑛 − 12) 𝑥12

+ (54𝑛2 − 66𝑛 + 24) 𝑥18

+ (54𝑛2 − 78𝑛 + 30) 𝑥36.

(12)

Proof. Let DSL(𝑛) be the dominating silicate network; see
Figure 3. The number of vertices and edges in DSL(𝑛) is
45𝑛2 − 39𝑛 + 12 and 108𝑛2 − 108𝑛 + 36, respectively. The
edge set 𝐸(DSL(𝑛)) divides into four edge partitions based on
degrees of end vertices. The first edge partition 𝐸1(DSL(𝑛))
contains 12𝑛 − 6 edges 𝑢V, where deg(𝑢) = 2, deg(V) = 3. The
second edge partition 𝐸2(DSL(𝑛)) contains 24𝑛 − 12 edges
𝑢V, where deg(𝑢) = 2, deg(V) = 6. The third edge partition

𝐸3(DSL(𝑛)) contains 54𝑛2−66𝑛+24 edges 𝑢V, where deg(𝑢) =3, deg(V) = 6. The fourth edge partition 𝐸4(DSL(𝑛)) contains
54𝑛2 − 78𝑛 + 30 edges 𝑢V, where deg(𝑢) = deg(V) = 6. Now
using (2)–(4), we have

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀 (DSL (𝑛))
= ∑
𝑢V∈𝐸1(DSL(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸2(DSL(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸3(DSL(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸4(DSL(𝑛))

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀 (DSL (𝑛))
= 52 󵄨󵄨󵄨󵄨𝐸1 (DSL (𝑛))󵄨󵄨󵄨󵄨 + 82 󵄨󵄨󵄨󵄨𝐸2 (DSL (𝑛))󵄨󵄨󵄨󵄨

+ 92 󵄨󵄨󵄨󵄨𝐸3 (DSL (𝑛))󵄨󵄨󵄨󵄨 + 122 󵄨󵄨󵄨󵄨𝐸4 (DSL (𝑛))󵄨󵄨󵄨󵄨
= 11070𝑛2 − 13452𝑛 + 4746,

𝑃𝑀1 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑃𝑀1 (DSL (𝑛))
= ∏
𝑢V∈𝐸1(DSL(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸2(DSL(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸3(DSL(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸4(DSL(𝑛))

[deg (𝑢) + deg (V)]

= 5|𝐸1(DSL(𝑛))| × 8|𝐸2(DSL(𝑛))| × 9|𝐸3(DSL(𝑛))|

× 12|𝐸4(DSL(𝑛))|

= 5(12𝑛−6) × 8(24𝑛−12) × 9(54𝑛2−66𝑛+24)

× 12(54𝑛2−78𝑛+30),
𝑃𝑀2 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) × deg (V)] ,

𝑃𝑀2 (DSL (𝑛))
= ∏
𝑢V∈E1(DSL(𝑛))

[deg (𝑢) × deg (V)]
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× ∏
𝑢V∈𝐸2(DSL(𝑛))

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸3(DSL(𝑛))

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸4(DSL(𝑛))

[deg (𝑢) × deg (V)]

= 6|𝐸1(DSL(𝑛))| × 12|𝐸2(DSL(𝑛))| × 18|𝐸3(DSL(𝑛))|

× 36|𝐸4(DSL(𝑛))|

= 6(12𝑛−6) × 12(24𝑛−12) × 18(54𝑛2−66𝑛+24)

× 36(54𝑛2−78𝑛+30),
𝑀1 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)+deg(V)],

𝑀1 (DSL (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(DSL(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸2(DSL(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸3(DSL(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸4(DSL(𝑛))

𝑥[deg(𝑢)+deg(V)]

= ∑
𝑢V∈𝐸1(DSL(𝑛))

𝑥5 + ∑
𝑢V∈𝐸2(DSL(𝑛))

𝑥8 + ∑
𝑢V∈𝐸3(DSL(𝑛))

𝑥9

+ ∑
𝑢V∈𝐸4(DSL(𝑛))

𝑥12

= 󵄨󵄨󵄨󵄨𝐸1 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥5 + 󵄨󵄨󵄨󵄨𝐸2 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥8

+ 󵄨󵄨󵄨󵄨𝐸3 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥9 + 󵄨󵄨󵄨󵄨𝐸4 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥12

= (12𝑛 − 6) 𝑥5 + (24𝑛 − 12) 𝑥8

+ (54𝑛2 − 66𝑛 + 24) 𝑥9

+ (54𝑛2 − 78𝑛 + 30) 𝑥12,
𝑀2 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)×deg(V)],

𝑀2 (DSL (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(DSL(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸2(DSL(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸3(DSL(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸4(DSL(𝑛))

𝑥[deg(𝑢)×deg(V)]

= ∑
𝑢V∈𝐸1(DSL(𝑛))

𝑥6 + ∑
𝑢V∈𝐸2(DSL(𝑛))

𝑥12 + ∑
𝑢V∈𝐸3(DSL(𝑛))

𝑥18

+ ∑
𝑢V∈𝐸4(DSL(𝑛))

𝑥36

= 󵄨󵄨󵄨󵄨𝐸1 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥6 + 󵄨󵄨󵄨󵄨𝐸2 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥12

+ 󵄨󵄨󵄨󵄨𝐸3 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥18 + 󵄨󵄨󵄨󵄨𝐸4 (DSL (𝑛))󵄨󵄨󵄨󵄨 𝑥36

= (12𝑛 − 6) 𝑥6 + (24𝑛 − 12) 𝑥12

+ (54𝑛2 − 66𝑛 + 24) 𝑥18

+ (54𝑛2 − 78𝑛 + 30) 𝑥36.
(13)

5. Regular Triangulene Oxide Network
RTOX(𝑛)

In 2015, Baig et al. [34] computed general Randić index,
atom-bond connectivity (ABC) index, and geometric arith-
metic (GA) index of regular triangulene oxide network
RTOX(𝑛). Now we compute hyper Zagreb index 𝐻𝑀(𝐺),
first multiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb
index 𝑃𝑀2(𝐺), and Zagreb polynomials 𝑀1(𝐺, 𝑥) and
𝑀2(𝐺, 𝑥) for regular triangulene oxide network RTOX(𝑛).
Theorem 5. Consider the regular triangulene oxide network
𝑅𝑇𝑂𝑋(𝑛) for 𝑛 ≥ 2. Then

𝐻𝑀(𝑅𝑇𝑂𝑋 (𝑛)) = 192𝑛2 + 216𝑛 − 96,

𝑃𝑀1 (𝑅𝑇𝑂𝑋 (𝑛)) = 42 × 66𝑛 × 83𝑛2−2,

𝑃𝑀2 (𝑅𝑇𝑂𝑋 (𝑛)) = 42 × 86𝑛 × 163𝑛2−2,

𝑀1 (𝑅𝑇𝑂𝑋 (𝑛) , 𝑥) = 2𝑥4 + 6𝑛𝑥6 + (3𝑛2 − 2) 𝑥8,

𝑀2 (𝑅𝑇𝑂𝑋 (𝑛) , 𝑥) = 2𝑥4 + 6𝑛𝑥8 + (3𝑛2 − 2) 𝑥16.

(14)

Proof. Let RTOX(𝑛) be the regular triangulene oxide net-
work; see Figure 4. The number of vertices and edges in
RTOX(𝑛) is (3𝑛2 + 9𝑛 + 2)/2 and 3𝑛2 + 6𝑛, respectively.
There are three types of edges in 𝐸(RTOX(𝑛)) based on
degrees of end vertices of each edge; that is, 𝐸(RTOX(𝑛)) =
𝐸1(RTOX(𝑛)) ∪ 𝐸2(RTOX(𝑛)) ∪ 𝐸3(RTOX(𝑛)). The edge
partition 𝐸1(RTOX(𝑛)) contains 2 edges 𝑢V, where deg(𝑢) =
deg(V) = 2; the edge partition 𝐸2(RTOX(𝑛)) contains 6𝑛
edges 𝑢V, where deg(𝑢) = 2 and deg(V) = 4, and the edge
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Figure 4: Regular triangulene oxide network (RTOX(5)).

partition 𝐸3(RTOX(𝑛)) contains 3𝑛2 − 2 edges 𝑢V, where
deg(𝑢) = deg(V) = 4.

Now using (2)–(4), we have

𝐻𝑀(𝐺) = ∑
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)]2 ,

𝐻𝑀 (RTOX (𝑛))
= ∑
𝑢V∈𝐸1(RTOX(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸2(RTOX(𝑛))

[deg (𝑢) + deg (V)]2

+ ∑
𝑢V∈𝐸3(RTOX(𝑛))

[deg (𝑢) + deg (V)]2

= 42 󵄨󵄨󵄨󵄨𝐸1 (RTOX (𝑛))󵄨󵄨󵄨󵄨 + 62 󵄨󵄨󵄨󵄨𝐸2 (RTOX (𝑛))󵄨󵄨󵄨󵄨
+ 82 󵄨󵄨󵄨󵄨𝐸3 (RTOX (𝑛))󵄨󵄨󵄨󵄨

= 16 (2) + 36 (6𝑛) + 64 (3𝑛2 − 2)
= 192𝑛2 + 216𝑛 − 96,

𝑃𝑀1 (𝐺) = ∏
𝑢V∈𝐸(𝐺)

[deg (𝑢) + deg (V)] ,

𝑃𝑀1 (RTOX (𝑛))
= ∏
𝑢V∈𝐸1(RTOX(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸2(RTOX(𝑛))

[deg (𝑢) + deg (V)]

× ∏
𝑢V∈𝐸3(RTOX(𝑛))

[deg (𝑢) + deg (V)]

= 4|𝐸1(RTOX(𝑛))| × 6|𝐸2(RTOX(𝑛))| × 8|𝐸3(RTOX(𝑛))|

= 42 × 66𝑛 × 83𝑛2−2,
𝑃𝑀2 (𝐺) = ∏

𝑢V∈𝐸(𝐺)
[deg (𝑢) × deg (V)] ,

𝑃𝑀2 (RTOX (𝑛))
= ∏
𝑢V∈𝐸1(RTOX(𝑛))

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸2(RTOX(𝑛))

[deg (𝑢) × deg (V)]

× ∏
𝑢V∈𝐸3(RTOX(𝑛))

[deg (𝑢) × deg (V)]

= 4|𝐸1(RTOX(𝑛))| × 8|𝐸2(RTOX(𝑛))| × 16|𝐸3(RTOX(𝑛))|

= 42 × 86𝑛 × 163𝑛2−2,
𝑀1 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)+deg(V)],

𝑀1 (RTOX (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(RTOX(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸2(RTOX(𝑛))

𝑥[deg(𝑢)+deg(V)]

+ ∑
𝑢V∈𝐸3(RTOX(𝑛))

𝑥[deg(𝑢)+deg(V)]

= ∑
𝑢V∈𝐸1(RTOX(𝑛))

𝑥4 + ∑
𝑢V∈𝐸2(RTOX(𝑛))

𝑥6

+ ∑
𝑢V∈𝐸3(RTOX(𝑛))

𝑥8

= 󵄨󵄨󵄨󵄨𝐸1 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥4 + 󵄨󵄨󵄨󵄨𝐸2 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥6

+ 󵄨󵄨󵄨󵄨𝐸3 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥8

= 2𝑥4 + 6𝑛𝑥6 + (3𝑛2 − 2) 𝑥8,
𝑀2 (𝐺, 𝑥) = ∑

𝑢V∈𝐸(𝐺)
𝑥[deg(𝑢)×deg(V)],

𝑀2 (RTOX (𝑛) , 𝑥)
= ∑
𝑢V∈𝐸1(RTOX(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸2(RTOX(𝑛))

𝑥[deg(𝑢)×deg(V)]

+ ∑
𝑢V∈𝐸3(RTOX(𝑛))

𝑥[deg(𝑢)×deg(V)]

= ∑
𝑢V∈𝐸1(RTOX(𝑛))

𝑥4 + ∑
𝑢V∈𝐸2(RTOX(𝑛))

𝑥8
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+ ∑
𝑢V∈𝐸3(RTOX(𝑛))

𝑥16

= 󵄨󵄨󵄨󵄨𝐸1 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥4 + 󵄨󵄨󵄨󵄨𝐸2 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥8

+ 󵄨󵄨󵄨󵄨𝐸2 (RTOX (𝑛))󵄨󵄨󵄨󵄨 𝑥16

= 2𝑥4 + 6𝑛𝑥8 + (3𝑛2 − 2) 𝑥16.
(15)

6. Conclusion

In this paper we determined hyper Zagreb index 𝐻𝑀(𝐺),
first multiple Zagreb index 𝑃𝑀1(𝐺), second multiple Zagreb
index 𝑃𝑀2(𝐺), and Zagreb polynomials 𝑀1(𝐺, 𝑥) and
𝑀2(𝐺, 𝑥) for nanotubes NA𝑛𝑚 and NC𝑛𝑚, dominating oxide
network DOX(𝑛), dominating silicate network DSL(𝑛), and
regular triangulene oxide network RTOX(𝑛).

In the future, we are interested in designing some new
architectures/networks and then studying their topological
indices which will be quite helpful to understand their
underlying topologies.
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