
Research Article
Analytical Evaluation for Calculation of Two-Center
Franck–Condon Factor and Matrix Elements
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/e Franck–Condon (FC) factor is defined as squares of the Franck–Condon (FC) overlap integral and represents one of the
principle fundamental factors of molecular physics. /e FC factor is used to determine the transition probabilities in different
vibrational levels of the two electronic states and the spectral line intensities of diatomic and polyatomic molecules. In this study,
new analytical formulas were derived to calculate Franck–Condon integral (FCI) of harmonic oscillators and matrix elements (xη,
e−2cx, and e−cx2 ) including simple finite summations of binomial coefficients. /ese formulas are valid for arbitrary values. /e
results of formulas are in agreement with the results in the literature.

1. Introduction

/e Franck–Condon (FC) principle is used to determine the
transition probabilities between different vibrational levels
of the two electronic states showing the intensity distribu-
tion in the band spectrum [1]. /e FC principle provides
a choice rule for the relative probability of the oscillation
transition. Since the transition probabilities and the spectral
line intensities have been determined by the FC factor, it also
plays an important role in determination of the optical and
radiationless transition rates between vibration levels [1–3].

/e FC factor was first demonstrated in the optical
spectroscopy to provide a quantitative interpretation of the
oscillation transition probability densities. Understanding
the structure of the FC factor is also important for in-
terpretation of multiatom photodissociation, predis-
sociation, and reaction dynamics [4–14].

/e generalized matrix elements of the coordinate op-
erator (i.e., xη, e−2cx, and e−cx2 ) are considered as issues
requiring solution during determination of nonradiative
transition ratios between two vibrational states in quantum
mechanical problems.

Calculations of the FC overlap integral with matrix el-
ements are basic problems in molecular physics [15–21]. /e
FC factor has been studied both experimentally and

theoretically for the solution of the many problems men-
tioned above [22–57].

/e purpose of this study was to present simple and
easily computable analytical formulas by the calculation of
binomial coefficients for Franck–Condon integral (FCI) of
harmonic oscillators and for xη, e−2cx, and e−cx2 matrix el-
ements. /e suggested analytical method was compared to
the results of similar calculations for Franck–Condon in-
tegral and matrix elements.

2. Franck–Condon Overlap Integral Based on
Harmonic Oscillator Wave Function

Two-center Franck–Condon (FC) integral over harmonic
oscillators wave functions have the following form:

I]]′ �〈] ∣ ]′〉 � 
∞

−∞
ψ](α, x)ψ]′ α′, x′( dx, (1)

where ψn is an eigen function of the one-dimensional (1D)
harmonic oscillator. /e Schrödinger equation for this wave
function can be written as

−
Z2

2μ
d2

dx2 +
μω2

2
x
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 ψn(α, x) � Zω n +
1
2

 ψn(α, x), (2)
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where μ is the reduced mass, and the normalized wave
function for harmonic oscillators is defined as

ψn(α, x) � Nn exp −
1
2

 α2x2
 Hn(αx), (3)

where Nn � (α/(
��
π

√
2nn!))1/2 is the normalization constant,

Hn(x) is the Hermite polynomial, and α �
�����
μω/Z


.

/e FC factor is defined as the squares of the FC
integral:

FC ], ]′(  � I
2
]]′ . (4)

In Equation (3), Hermite polynomial Hn(x) is defined as
a final series as follows [2, 47]:

Hn(x) �
2n−1

��
π

√ 

n

m�0
Fm(n)x

n−m
i
m Γ

1 + m

2
  1 +(−1)

m
 ,

(5)
where Fm(n) � n!/[m!(n −m)!] is the binomial coefficient
and i �

���
−1

√
. If the coordinate conversion x′ � x− δ is done,

Equation (1) can be written as

I]]′ � N]N]′ 
∞

−∞
H](αx)H]′ α′(x− δ)( 

exp −
α2 + α′2 x2

2
+ α′2δx−

α′δ( 
2

2
⎛⎝ ⎞⎠dx.

(6)

Substituting (5) into (6), we obtain the following
equation for the FC overlap integral:
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e
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(7)

For the evaluation of Equation (7), we use the fol-
lowing binomial expansion theorem for an arbitrary real n

[58, 59]:

(x ± y)
n

� 
∞

m�0
(± 1)

m
Fm(n)x

n−m
y

m
. (8)

Substituting Equation (8) into (7), we obtain the fol-
lowing series formula for the integral in Equation (7):
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where
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and Kn is the basic integral defined by [60]

Kn(p, q) � 
∞
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(11)

where E[n/2] � (n/2)− (1/4)(1− (−1)n).
Substituting Equation (9) into Equation (7), we obtain

the following formula for the FC overlap integral:

I],]′ � A]]′ α, α′( Q
kjl
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where

A]]′ α, α′(  �
2]+]′e−α2δ

4π
N]N]′ .

(14)

3. Matrix Elements Based on Harmonic
Oscillator Wave Function

Matrix elements over the harmonic oscillator wave function
are defined as follows:

〈] ∣ f(x) ∣ ]′〉 � 
∞

−∞
ψ](α, x)f(x)ψ]′ α′, x′( dx. (15)

In Equation (15), f(x) is the operator and can be
examined in the forms of power of the coordinate (xη),
exponential function (e−2cx), and Gaussian function
(e−cx2

).
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If the method used in determination of the FC over-
lap integral is used for xη, e−2cx, and e−cx2 matrix elements
in Equation (15), the following analytical equations are
obtained.

For power of the coordinate (f(x) � xη):

〈] ∣ xη ∣ ]′〉 � A]]′ α, α′( Q
kjl

]]′ α, α′, δ(  K]+]′−j−k−l+η α1, α2, δ( .

(16)

For exponential function (f(x) � e−2cx):

〈] ∣ e−2cx ∣ ]′〉 � A]]′ α, α′( Q
kjl

]]′ α, α′, δ(  K]+]′−j−k−l α1, α′2, δ( ,

(17)

where

α2′ � α2 − c. (18)

For Gaussian function (f(x) � e−cx2
):

〈] ∣ e−cx2
∣ ]′〉 � A]]′ α, α′( Q

kjl

]]′ α, α′, δ(  K]+]′−j−k−l α′1, α2, δ( ,

(19)

where

α1′ � α1 + c. (20)

4. Numerical Results and Discussion

In this work, new analytical formulas were derived to cal-
culate the FC overlap integral and matrix elements based on
harmonic oscillator functions as an alternative to approaches
in the literature. Suggested formulas include simple finite
sums and can be easily used calculate arbitrary values of ]
and ]′.

Equation (15) was confirmed as reduced analytical ex-
pressions of Equations (16), (17), and (19) where the f(x)

function is specified as Gaussian, exponential, or the power
of x. /e Franck–Condon overlap integral and the analytical
expressions of matrix elements obtained by the use of one-
dimensional harmonic oscillators above can be used for
diatomic molecules.

/e calculation of the FC factor is important to investigate
the vibration transitions in diatomic molecules. Because the
polyatomic molecules have more arbitrary degrees, it will be
necessary to use two-dimensional or multidimensional vi-
brations. /e different methods have been proposed in the
literature to calculate the Franck–Condon Factor in poly-
atomic molecules [45–47]. To study excited molecular states
in accordance with developed experimental data, it is im-
portant to model these excited situations of molecules and the
transitions between them./e general analysis was performed
successfully here because the results obtained for the FC

Table 1: /e values of FC overlap integral over harmonic oscillator wave functions.

] ]′ α α′ δ /is study for Equation
(12)

Reference [16] for Equation
(2.9)

Reference [17] for Equation
(20) Reference [14]

0 2 0.001 3 1.6 1.82573901425398E − 02 1.825739014253E − 02 1.825739014253E − 02 1.825739014253E −
02

7 0 4 0.002 2.1 1.38900458284084E −
07 1.389004582840E − 07 1.389004582840E − 07 1.389004582840E −

07

5 3 0.15 0.13 3 3.55166083044696E − 01 3.551660830446E − 01 3.551660830446E − 01 3.551660830446E −
01

2 10 2 1.3 4 2.36631518707200E − 01 2.366315187072E − 01 2.366315187072E − 01 2.366315187074E −
01

15 2 7 0.003 0.9 −3.0025331631701E − 07 −3.002533163170E − 07 −3.002533163169E − 07 −3.002533163170E −07

20 4 0.9 1.8 3.5 2.82403857199903E − 01 2.824038571999E − 01 2.824038571998E − 01 2.824038713409E −
01

16 1 0.02 0.0003 1.6 −5.1524990060394E −05 −5.152490060393E − 05 −5.152490060394E − 05 −5.152490060391E −05

7 8 3 1 3.2 −2.7755485817384E −02 −2.775548581738E − 02 −2.775548581738E − 02 −2.775548581730E
− 02

1 40 2.7 0.19 0.12 1.98365588817165E − 02 1.983655888171E − 02 1.983655888171E − 02 1.983655888171E −
02

2 0 0.0001 0.003 1 −1.8206779047779E −
01 1.820677904777E − 01 1.820677904777E − 01 1.820677904777E −

01

30 20 10 13 6 2.53392953375949E −
433 2.533929533759E − 433 2.533929601159E − 433 2.533929533760E −

433

44 3 0.29 5.6 2 5.11839129583637E − 02 5.118391295836E − 02 5.118391295836E − 02 5.118391295484E −
02

18 24 0.081 0.0076 3.46 −4.9239596224715E −02 −4.923959622471E − 02 −4.923959622486E − 02 −4.923959622501E
− 02

20 10 10 12 10 6.84570859068787E −
1238 6.84570859068E − 1238 6.84570859068E − 1238 6.84570859069E −

1238
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overlap integral and matrix elements over one-dimensional
harmonic oscillators wave function completely overlap with
the analytical results of Guseinov et al. [15], Iachello and
Ibrahim [16], and Chang [17] (Tables 1–4). The computer
program for Equations (12), (16), (17), and (19) containing
simple finite sums of binomial coefficients was developed
usingMathematica 8.0 software./e comparison between the
results of developed software and literature is shown in Tables
1–4 for arbitrary values of the integral parameters calculated.
/e results for the FC overlap integral and matrix elements
showed considerably high accuracy with the results in the
literature within the integral parameters. /e results of this
study can be used to determine the various spectral line
densities of molecules and to calculate the transition problems
of various vibration levels.

Data Availability

All relevant data are available from the Figshare database at
https://doi.org/10.6084/m9.figshare.6863708.
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