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Zirconium oxide/activated carbon (Zr3O/AC) composite was synthesized to remove methylene blue (MB) and crystal violet (CV)
from the aqueous medium. *e Zr3O/AC sample was characterized by X-ray diffraction (XRD), scanning electron microscopy
(SEM), energy dispersive X-ray analyses (EDS), Raman spectroscopy (RS), BET surface area, and Fourier transform infrared
spectroscopy (FTIR). XRD profiles confirmed the successful synthesis of the zirconium oxide/activated carbon composite. SEM
images showed multideveloped walls with irregular particle size with channel arrays. *e nitrogen physisorption combines I and
IV types with a calculated BETsurface area of 1095m2/g. Raman spectrum illustrated a disorder of both crystalline structure and
the graphitic structure. *e adsorption was better fitted to the pseudo-second-order (PSO) kinetic model. Langmuir model fitted
better the experimental results of MB adsorption, whereas the CV was better consistent with the Freundlich model. *e obtained
results suggested that the MB and CV adsorption might be influenced by the mass transfer that involves multiple diffusion steps.
*e maximum adsorption capacities are 208.33 and 204.12mg/g for MB and CV, respectively. *e MB and CV removal
mechanisms were proposed, and statistical optimization was performed using central composite design combined with the
response surface methodology.

1. Introduction

Nowadays, many industrial activities such as coloring,
textile, cosmetic, paper, food, paint, printing, and phar-
maceuticals are considered a big concern from the envi-
ronmental point of view as many hazardous synthetic dyes
are generally produced [1]. *ese pollutants are regarded as
reactive, acid, and basic and are very harmful to environ-
ment including vegetation, humans, and animals [2].
Methylene blue (MB) is a common basic dye that is used for
dyeing clothes in textile industries [3]. MB can cause the
adverse effects such as cyanosis, vomiting, diarrhea,
tachycardia, and jaundice on human beings. [3, 4]. Crystal
violet is another type of toxic pollutant with a poor
degradability that is widely used in textile industries because
of its low cost and high solubility in water [5, 6].

Various processes are effectively investigated for the
removal and elimination of pollutants like chemical pre-
cipitation, adsorption, membrane filtration, biological
treatment, and photocatalytic degradation [7, 8]. Among
these techniques, adsorption is the most effective and
broadly utilized approach due to its many advantages being
not only the relatively low cost and ease implementation of
the operation process [9] but also the effectiveness of the
adsorption process that primarily depends on the perfor-
mance of the adsorbent mass transfer and thermodynamics.
Nevertheless, traditional adsorbents including carbonaceous
materials, metal nanoparticle oxides, and polymer resins
suffer from either low adsorption capacities or low efficiency
[10–16]. *erefore, in the general framework of environ-
mental and waste management, there is a need to synthesize
environmental recyclable and friendly materials with better
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uptake and thermodynamic and kinetic properties. Recently,
ZrO2 or zirconium-based composites was used as an ad-
sorbent in the gas and liquid phase. More precisely, zirconia
ZrO2 was used for CO2 adsorption and hydrogen adsorption
to understand the relation to the dehydrogenation of hexane
[17, 18]. While in recent works, zirconium and zirconia was
used with activated carbon (AC) as composites for the re-
moval of pollutants in water. For instance, Mullick and
Neogi [19] have impregnated zirconium on powdered ac-
tivated carbon (AC) using ultrasound as the tool for syn-
thesis and applying it for fluoride adsorption from water.
However, Xiong et al. [20] have used iron-zirconium-
modified activated carbon nanofiber for the adsorption of
phosphates. Similar works have used these types of com-
posite for the removal of other pollutants [21, 22].

In the present work, commercial suboxide Zr3O nano-
particles have been fixed onto AC to improve the sorption
capacity of MB and CV dyes. *is suboxide is unique be-
cause of close-packed Zr layers in H stacking and O in
octahedral voids, and additionally, the OZr6 octahedra share
vertices to form a 3D framework. *is 3D framework is very
beneficial if it is fixed within the prepared adsorbent leading
to high density interactions. *e effect of various parameters
such as mass loading of Zr3O/AC, pH, contact time, dye
concentration, temperature, and regeneration was studied.
In addition, the mechanism of MB and CV onto Zr3O/AC
and adsorptions experiments optimization were investigated
using FTIR analysis after adsorption and RSM-CCD
method. It should be noted that the optimization of the
adsorption system using classic adsorption and experimental
protocol based on changing each single variable does not
give useful information about variables. Hence, RSM cou-
pled with the CCD method was considered as a new ap-
proach and helpful allowing changing more than a variable
at one time and studying the interaction effects between
operational parameters [8, 23–29].

To the best of our knowledge, this work reports an
effective methodology to study the adsorption of CV and
MB, a straightforward study to calculate the optimum
parameters through surface modeling, and a sorption
mechanism based on different techniques before and after
adsorption.

2. Materials and Methods

2.1. Synthesis of the Activated Carbon. *e chemicals used in
this study were of analytical reagent grade and used without
purification. *e activated carbon-based almond shell was
prepared by chemical activation using KOH. For this pur-
pose, the almond shell was mixed with KOH solution
(Sigma-Aldrich, 98%), 10 g of KOH (Sigma-Aldrich, 90%),
with 20 g of almond shell and 100mL of distillated water to
obtain a solution which was heated at 60°C for 12 h and then
dried at 110°C. *en, the dried sample was pyrolyzed under
N2 flow (200 cm3/min) at 300°C for 2 h and then at 800°C for
3 h at a heating rate of 10°C/min. *e Zr3O/AC composite
was prepared by impregnation of 20wt.% of zirconium
oxynitrate ZrO(NO3)2·xH2O (Sigma-Aldrich, 99%) on the
prepared activated carbon after 6 hours of stirring at room

temperature. Finally, the impregnated almond shell was
dried at 70°C for 12 h and then pyrolyzed at 800°C for 1 hour.

2.2. Adsorption Experiments. *e adsorption batch system
tests were conducted in glass beakers (150mL) containing
50mL of CV or MB solutions with a constant stirring rate.
*en, the influence of different key parameters was fully
investigated. After a certain time, the pollutants concen-
tration was determined using a UV-Vis spectrophotometer
(UV 2300) at their respective maximum wavelengths of
664 nm for MB and 582 nm for CV. *e adsorbed amount
and removal percentage at different conditions were cal-
culated using the following equations:

Qads � C0 −Ce( 􏼁∗
V

m
(mg/g),

% removal �
C0 −Ce( 􏼁

C0
􏼠 􏼡∗100,

(1)

where C0 (mg/L) and Ce (mg/L) are the initial and equi-
librium liquid-phase concentrations, m (g) is the mass of
Zr3O/activated carbon, and V (L) is the volume of the
MB/CV solution.

Langmuir [30] and Freundlich [31] were used to analyze
the equilibrium data, and the adsorption isotherm models
were also applied to simulate information about the dis-
tribution of adsorbate molecules at the solid-liquid interface.
Table 1 summarizes the mathematical parameters of these
models. However, the equations of the selected kinetics
models to fit the experimental data are listed in Table 2.

3. Results and Discussion

3.1. Structural and Textural Characterizations. Figure 1
shows the XRD patterns of the synthesized zirconia-AC
powder, and the diffractogram shows two aspects: amor-
phous aspect in the range of 20–30° and amorphous aspect in
the range of 40–50°, which are characteristics to carbon/two-
dimensional reflections of turbostratic layer stacks [32] and
to graphitic structure of activated carbon. *e intense dif-
fraction profiles are associated with the crystalline hexagonal
zirconium oxide Zr3O (JCPDS card no 03-065-7450), the
calculated lattice parameters for zirconia by Le Bail fit are a �

b � 5.613 (2) and c � 5.192 (3), and these parameters are very
close to the standard Zr3O JCPDS zirconia file.

*ermal analyses, illustrated in Figure 1(b), show the
thermal decomposition of zirconia/AC composite as
a function of temperature. *is experiment was performed
under air. Two major weight losses were recorded: the first
loss of 15% below 100°C is attributed to the surface-adsorbed
H2O [33], while the second weight loss of 60% in the range of
300–480°Cmight be originated from thermal decomposition
organic matters such as lignin, cellulose, and hemicelluloses
of the almond shell. An intense endothermic peak was
recorded for this loss showing the remarkable amount of
decomposed products [34].

Figure 2 illustrates the morphology and elemental dis-
persive spectroscopy of Zr3O/AC composite. In the SEM
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micrographs, multideveloped walls were observed, and
pores can be seen with irregular particles and channel arrays
in the range of few micrometers to few hundred microm-
eters. Clearly, knowing that almond shell contains micro-
pores, it is inferred that the AC preserved the original
structure of the almond after even after carbonization. �e
results of elemental analysis indicate the presence of three
main atoms: carbon, oxygen, and zirconium.

Raman analysis is a very important tool for the char-
acterization of active modes in the activated carbons ad-
sorbents [35, 36]. Clearly, all the samples have two obvious D
and G bands, which are assigned to the chaos and disorder of
the crystalline structure and the graphitic structure of carbon
materials, respectively [37, 38]. �e synthesized Zr3O/AC
and AC were studied by Raman analysis, and the results are
presented in Figure 3(a). �e spectra displayed the typical
spectra of AC with the characteristic D and G bands at 1362
and 1604 cm−1, respectively. Furthermore, the intensity of
Zr3O/AC decreased indicating that the preparation process
of Zr3O/AC slightly changed the structure of activated

carbon. Moreover, this means that the degree of graphiti-
zation of Zr3O/AC decreases because zirconia occupies the
pore channel [39].

�eN2 physisorption isotherm is illustrated in Figure 3(b).
It combines types I and IV characteristics, meaning the co-
existence of microporous and mesoporous structures in AC
and Zr3O/AC. Indeed, the distributions of pores size con�rm
the presence of micropores and mesopores in AC and
Zr3O/AC, and pore size distributions shown in Figure 3(c) are
bimodal with a peak at around 0.5 nm for microporous
structures and around 2nm for mesoporous structures. �e
Zr3O/ACBETsurface area is 1095m2/g with total pore volume
of 0.66 cm3/g (0.16 cm3/g of microporous volume and
0.56 cm3/g of mesoporous volume).

�e FTIR analysis of Zr3O/AC composite is displayed in
Figure 3(d). In the spectrum, a broad and strong absorption
band at approximately 3449 cm−1 attributed to the O-H
stretching vibration of water molecules adsorbed on the
surface Zr3O/AC [40]. �e spectrum of Zr3O/AC presents
a peak for Zr-O stretching vibration at 620 cm−1 [41].

Table 1: Isotherm models.

Isotherm Equation Description

Langmuir 1/Qe � 1/Qm + 1/(KLQmCe)
Ce: concentration at equilibrium; Qe � uptake at
equilibrium; Qm � maximum adsorption capacity;

KL� energy of adsorption

Freundlich ln (Qe) � lnKF + 1/n ln (Ce)
KF � adsorption capacity; n � intensity of adsorption;

1/n � 0 irreversible; 1/n > unfavourable;
0 < 1 favourable

Table 2: Kinetic models used to �t the experimental data.

Kinetic models Equation Description

Pseudo-�rst order ln (Qe − Qt) � log (Qe) − K1t/2.303
Qt � uptake at time t; Qe � uptake at equilibrium;

K1 � rate constant
Pseudo-second order t/Qt � 1/(K2Qt

2) + 1/Qe K2 � rate constant
Intraparticle di¢usion Qt � Kdit0.5 + C Kdi � rate constant
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Figure 1: (a) X-Ray di¢raction of Zr3O/AC composite and (b) TGA/DTA of the Zr3O/AC.
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However, the band centered on 1622 cm−1 indicates en-
hancement in the aromatic C�C groups [27, 42].

3.2. Adsorption Results

3.2.1. In
uence of Operational Parameters. Binding sites and
surface promoted by Zr3O/AC doses are one of the main
parameters in¥uencing the adsorption process. Conse-
quently, several experiments of the dyes removal with dif-
ferent Zr3O/AC doses have been conducted to evaluate the
e¢ect of these key factors. �ese experiments have been
performed at room temperature unless mentioned. �e
in¥uence of Zr3O/AC doses on MB and CV dyes removal by
Zr3O/AC is presented in Figure 4; As the Zr3O/AC com-
posite weight increased from 5mg to 16mg, the percentage
removal increased as well from 84.43% to 100% for MB
removal and from 75.41% to 98% for CV removal. �e
increase in MB and CV removal at higher dosages explain (i)
the increase in number of active binding sites and (ii) bulk
surface area [43].

Additionally, up to 20mg, the dyes removal was not
signi�cantly a¢ected by further increase in the Zr3O/AC
amount due to the possibility of aggregation, which limits
the active surfaces for adsorption. �e optimum Zr3O/AC
dosage was found to be 16mg for both dyes.

Figure 5(b) illustrates the removal of MB and CV dyes
as a function of solution pH. Knowing that pH can play
a substantial role in the adsorbent surface charges and
interfacial solid-liquid transport [44], the pH-dependence

experiment has been performed for both MB and CV. As
the pH increases, adsorption of both dyes on Zr3O/AC was
found to be increasing; this is mainly due to elimination of
the positive proton in the aqueous media thereby pro-
moting activities of electrostatic attraction between the
positive charges of both dye and the composite Zr3O/AC.
Indeed, according to the point of zero charge (Figure 5(a)),
it is con�rmed that the surface of the composite can be
negatively charged at pH higher than 7.5. While at an
acidic pH, the functional groups of activated carbon be-
come protonated, which are mainly the carboxylic
(-COOH-), phenolic (-OH-), and chromonic group. At pH
3, the surface charge of Zr3O/AC becomes more positively
charged, which enhances MB and CV electrostatic re-
pulsion: the number of positively charged sites on
Zr3O/AC increased and negatively charged sites on
Zr3O/AC decreased. �erefore, the electrostatic repulsion
between the Zr3O/AC sites and the positively charged CV
and MB dye molecules increased which inhibit the ad-
sorption pathway.

Figure 6 describes the in¥uence of contact time on MB
and CV adsorption by Zr3O/AC. It was observed that the
adsorption process of both dyes takes place in two di¢erent
stages:

(i) �e �rst stage was rapid which infers strong elec-
trostatics between cationic dyes and the Zr3O/AC
positive surface.

(ii) �e second stage was with no signi�cant improve-
ment of the adsorbed dyes, and this equilibrium
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Figure 2: (a-b) SEM photographs of the Zr3O/AC and (c-d) elemental EDS analyses.
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stage could be due to the fast saturation of the
binding sites in the Zr3O/AC surface.

3.2.2. Kinetics and Isotherm Adsorption. In this section,
pseudo-�rst-order (PFO), pseudo-second-order (PSO), and
intraparticle di¢usion (IPD) kinetic models were used to �t
the experimental data of MB and CV adsorption on
Zr3O/AC. It is well established that the pseudo-�rst-order
kinetic model has been widely applied for the adsorption of
solid/liquid systems [45–47].

Table 3 lists di¢erent calculated parameters using
PFO and PSO models. Figure S1 (Supporting information)

shows the �tting of experimental data to the PSO model at
di¢erent initial concentrations of both MB and CV dyes,
and the correlation coeªcient is more signi�cant than
those of the PFO model. Moreover, a large di¢erence of Qe
between the experiment (Qe,exp) and calculation (Qe,cal) is
observed [48]. �ese data support the fact that the ad-
sorption data are well represented by the PSO kinetics
model for the entire adsorption period of MB and CV dyes
onto Zr3O/AC [49].

In order to gain more insights into the kinetics of the
adsorption process, the IPD model was studied. �e plot (Qt
vs t1/2) (Figure 7) shows an initial curved portion followed by
a linear portion and a plateau.
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Figure 3: (a) Raman spectroscopy of the AC and Zr3O/AC; (b) N2 physisorption analyses; (c) pore size distribution curve; (d) FTIR
spectroscopy of the Zr3O/AC adsorbent.
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It is clear that the adsorption processes of both MB and
CV dyes can be roughly divided into three steps, as indicated
by the guidelines for each portion: �e �rst portion is at-
tributed to the di¢usion of theMB and CVmolecule through
solution to the external surface of the Zr3O/AC composite.
�is is a fast process that mainly depends on the surface area
of the Zr3O/AC. �e second portion is attributed to gradual
equilibrium with IPD as the rate-determining step. �e last
step is due to an adsorption/desorption equilibrium which is
established for both MB and CV dyes [8]. As can be seen
from the Figure 7, the Zr3O/AC exhibits faster adsorption
kinetics at the initial adsorption stage due to its much higher
surface area, as inferred in physisorption measurement.

�e adsorption isotherm models were used to in-
vestigate the interaction between the MB and CV dyes and
the Zr3O/AC when the adsorption process reaches equi-
librium. Figure S2 shows plots of adsorption data of MB
and CV dyes �tted to Langmuir and Freundlich isotherm
models. Table 4 summarizes the isotherm parameters for
this study. It is obvious that the Langmuir model provides
a better �t for MB and Freundlich models for CV. A good �t
with the Langmuir model indicate monolayer adsorption.
However, the Freundlich model is indicating multilayer
adsorption.

We have provided an extensive comparison of Zr3O/AC
to the best performing materials reported to date in Table 5.
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Our prepared material is one of the best adsorbents for the
removal of both MB and CV.

3.2.3. Regeneration of Zr3O/AC. Reusability was carried out
by regenerating Zr3O/AC with 1% sodium hydroxide at
room temperature for 3 hours. �e regenerated Zr3O/AC
was then washed with Milli-Q water and dried in a vacuum
oven.

�e Zr3O/AC was separated and washed with distilled
water. Recycling eªciency of Zr3O/AC was investigated
for the removal of MB and CV for 3 cycles. �e results
show that the adsorption eªciency of Zr3O/AC was re-
duced to 88% for MB and to 82% for CV dye (Figure 8). We
should note that, after every cycle, NaOH was used as
a desorption medium to remove adsorbed MB ions from
the Zr3O/AC surface.

3.2.4. Statistical Analysis andModel Fitting. �e signi�cance
of the independent variables and their interactions was
tested with various statistical analyses such as analysis of

variance (ANOVA), correlation coeªcient (R2), and ad-
justed correlation coeªcient (R2

adj) [58]. �e Box-Behnken
matrix used in this work is presented in Table 1S. �e
analysis of variance results (Table 6) suggests that the de-
velopedmodels (Equations (2) and (3)) are highly signi�cant
with a very low P value for all models:

Y R%,MB onto ZrO2−AC( ) � 99.498 + 0.379XAD − 0.084XIC

+ 0.112XCT − 0.304X
2
AD + 0.145XADXIC,

(2)

Y R%,VC onto ZrO2−AC( ) � 92.253 + 5.299XAD − 0.686XIC

− 0.177XCT − 3.287X
2
AD + 3.058X2

IC

+ 2.956X2
CT + 0.555XADXIC,

(3)

where XAD, XIC, and XCT represent the adsorbent dose,
initial dyes concentration, and contact time, respectively.

�e R2 values of full second-order polynomial regression
models were found to be 0.951 (R2

adj 0.895) and 0.972 (R2
adj
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Figure 6: E¢ect of contact time on the removal of MB (a) and CV (b) onto Zr3O/AC at 25°C.

Table 3: PFO and PSO �tting kinetic parameters of the experimental data.

Cintial (mg/L) Qe,exp (mg/g)
PFO PSO

Qe,cal (mg/g) K1 (min−1) R2 Qe,cal (mg/g) K2 (g/mg·min) R2

MB

80 125.000 0.752 0.005 0.054 125.000 0.128 0.999
100 155.035 1.553 0.014 0.087 156.250 0.102 0.999
150 228.507 2.837 0.032 0.163 227.273 0.022 0.999
200 296.937 4.871 0.046 0.234 294.118 0.010 0.999

CV

80 125.000 0.760 0.005 0.049 125.000 0.107 0.999
100 155.078 1.774 0.018 0.087 156.250 0.046 0.999
150 232.510 2.355 0.026 0.156 232.558 0.031 0.999
200 307.002 3.286 0.036 0.165 312.500 0.013 0.999
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0.952) for MB and CV adsorption on Zr3O/AC, respectively
[8]. Moreover, the control test was used to determine the
signi�cance of coeªcients of the parameters [59].�e linear,
quadratic, and interaction e¢ects of the parameters are given
in Table 7. �e results con�rm that most of the coeªcients

models were signi�cant (P values are less than 0.05) except
quadratics e¢ects of contact time, initial concentration, and
the interactions e¢ects of CT-IC and AD-CT, which are
statistically insigni�cant (P values are more than 0.05). �e
same conclusion was observed in the case of CV adsorption
onto Zr3O/AC.

3.2.5. Optimization of CV and MB Using RSM. Pareto di-
agrams (Figure S3) indicate the percent in¥uence of dif-
ferent independent variables on MB and CV adsorption
onto Zr3O/AC. An observation of the Pareto diagrammakes
it possible to say that the Zr3O/AC dose and initial
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Figure 7: �e plots of the intraparticle di¢usion model of MB (a) and CV (b).

Table 4: Constants of Langmuir and Freundlich simulations of the
MB and CV adsorption isotherms.

Langmuir Freundlich
Qmax
(mg/g)

KL
(L·min−1) RL R2 KF

(mg/g) n R2

MB 208.33 16.0 0.001 0.998 242.60 2.929 0.225
CV 169.49 11.80 0.001 0.492 204.12 0.910 0.915

Table 5: Comparison between di¢erent reported activated carbons
and Zr3O/AC composite.

AC adsorbent Qmax (mg/g) Ref.
MB
Karanj fruit hull 154.8 [50]
Macadamia nut endocarp 194.70 [51]
Wood 60.97 [52]
Ficus carica bast 47.62 [53]
Sawdust 416.7 [42]
�is work 208.33 —
CV
Bamboo leaves powder 393.16 [54]
Male ¥owers of coconut tree 85.84 [55]
Male ¥owers of coconut tree 60.42 [55]
Waste apricot 57.80 [56]
Tomato plant root 94.34 [57]
�is work 204.12 —
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Figure 8: Regeneration eªciency of Zr3O/AC for MB and CV
removal.
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concentration factors account more than 84.81% of the
variation of the response in the case of MB adsorption onto
Zr3O/AC. For the adsorption of CV onto Zr3O/AC, the
Zr3O/AC dose and the quadratic effects of Zr3O/AC dose,
contact time, and initial concentration are the most in-
fluential parameters on the adsorption efficiency, with an
influence percentage of 48.59, 18.70, 16.18, and 15.12%,
respectively.

From this study, it can be clearly seen that the Zr3O/AC
dose (with a positive influence) and the initial concentration
(with a negative influence) are the first factors influencing
the MB and CV adsorption onto Zr3O/AC or Zr3O/AC.*is
probably returns to the availability of active sites, when the
Zr3O/AC mass of the support increases [60].

To achieve the maximum adsorption of the CV and MB
dyes onto Zr3O/AC and AC, the RSM modeling was used
(Figures 9(a) and 9(b)). *e optimum values of different
independent variables (initial dye concentration, Zr3O/AC
dose, and contact time) are determined as shown in Table 8.
It shows that the model-predicted values are in very good
agreement with the experimentally determined values which
confirm that the proposed model combined with RSM is an
effective approach for modeling the adsorption process and
to understand the relationships between the independent
variables and response.

3.2.6. Adsorption Mechanism. From the FTIR, Raman, and
EDS analyses, a large number of hydroxyl functional groups
and carbonyl functional group on the surface of Zr3O/AC
were observed. Knowing that the prepared material has
a very high surface area, the functional groups are partici-
pating in the adsorption mechanism of CV and MB as
a function of solution pH and the load of Zr3O/AC on the
surface. After CV adsorption, the FTIR spectrum of the
Zr3O/AC, presented in Figure 10(a), shows characteristic
changes due to the adsorption of CV onto Zr3O/AC: the
intensity of the peak representing the stretching vibrations of
the O-H group shifted and the peak representing the
stretching vibrations of the C-C group diminished. *is
might be due to the formation of chemical bonds between
C-C of Zr3O/AC and electrophilic N+ of CV. Furthermore,
the Zr-O peak shifted to higher wavenumbers suggesting
a formation of chemical bonds between Zr-O and N+ of CV
dye. *e same behavior was observed in the case of MB
adsorption on Zr3O/AC. As shown in the FTIR spectroscopy
after MB (Figure 10(b)), -OH, C�C, and Zr-O peaks shifted
to different frequencies, confirming the interaction between
these groups and our MB dye. Figure 10(c) shows the
proposed model of MB and CV adsorption onto Zr3O/AC,
and similar observations were reported elsewhere [8]. From
this study, the mechanism can be divided into these 4
fundamental steps:

Table 6: Analysis of variance and coefficients of determination.

Sum of squares Degrees of freedom Mean square Fobs P value
MB adsorption onto Zr3O/AC
Regression 1.8019 9 0.2002 189.4786 <0.0001
Residue 0.0933 8 0.0117
Lack of fit 0.0880 3 0.0293 27.7681 0.00152
Error 0.0053 5 0.0011
Total 1.8952 17
R2 0.951
R2

A 0.895
CV adsorption onto Zr3O/AC
Regression 348.6312 9 38.7368 6027.5101 <0.0001
Residue 8.0777 8 1.0097
Lack of fit 8.0455 3 2.6818 417.2990 <0.0001
Error 0.0321 5 0.0064
Total 356.7088 17
R2 0.977
R2

A 0.952

Table 7: Analysis of the variance-reduced model.

Source Coefficient t exp P value
MB adsorption onto Zr3O/AC
a0 99.498 7498 <0.0001
aAD 0.379 32.96 <0.0001
aIC −0.084 −7.29 0.0007
aCT 0.112 9.79 0.00018
a2
AD −0.304 −19.55 <0.0001

a2
IC 0.006 0.37 0.723

a2
CT 0.013 0.86 0.431

aAD−IC 0.145 8.92 0.000295
aAD−CT −0.037 −2.31 0.069
aCT−IC −0.008 −0.46 0.664
CV adsorption onto Zr3O/AC
a0 92.253 2819 <0.0001
aAD 5.299 186.95 <0.0001
aIC −0.686 −24.21 <0.0001
aCT −0.177 −4.15 0.0089
a2
AD −3.287 −85.64 <0.0001

a2
IC 3.058 79.69 <0.0001

a2
CT 2.956 77.02 <0.0001

aAD−IC 0.555 13.85 <0.0001
aAD−CT −0.088 −2.18 0.081
aCT−IC −0.003 −0.06 0.953
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(i) �e adsorption of MB and CV molecules inside the
Zr3O/AC pores and the interaction between Zr-O
and nitrogen of CV and MB

(ii) �e hydrogen bonding would be produced between
hydroxyl functional groups of Zr3O/AC and the
nitrogen of CV and MB

(iii) �e π-π interaction between the double bonds of
AC and molecule and that of pollutants

4. Conclusion

Zr3O/AC was prepared by a facile chemical route and was
characterized by di¢erent structural and textural techniques.
�e composite Zr3O/AC was used as an eªcient adsorbent
for the MB and CV removal. Zr3O/AC presented irregular
particle size with a regular channel array and micro-
mesopores. Also, numerous functional organic groups on
the surface were observed by FTIR spectroscopy before and
after MB and CV adsorption. Functional groups on the
surface along with the porous structure, channel array, and
physical interactions (π-π and hydrogen) between the
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Figure 9: RSM and corresponding contour plot: (a) MB adsorption onto Zr3O/AC as a function of adsorbent dose and contact time at the
initial MB concentration constant; (b) CV adsorption onto Zr3O/AC as a function of adsorbent dose and contact time at the initial MB
concentration constant.

Table 8: Model validation.
Adsorbent dose � 12.66mg
Vm � 25ml
pH of solution,
C0 (MB) � 100mg·L−1
W � 30 rpm
T°C � 24 ± 1°C
58.08min

Adsorption of MB (%)
onto Zr3O/AC

Predicted Experimental

99.60 ± 0.07 99.25

Adsorbent dose � 14.92mg
Vm � 25ml
pH of solution,
C0 (MB) � 100mg·L−1
W � 30 rpm
T°C � 24 ± 1°C
31.35min

Adsorption of CV (%)
onto Zr3O/AC

Predicted Experimental

99.50 ± 0.22 99.01
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Zr3O/AC and the dyes are the main factors controlling the
adsorption capacity. Langmuir and Freundlich models
better described the adsorption process for MB and CV
removal, respectively. *e adsorption process followed the
PSO kinetic model. Statistical response modeling together
with the regression model helped us to optimize the ex-
perimental factors which provided a good fit with the ex-
perimental values.
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