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Mesomorphic three-coordinate copper(I) complexes ([Cu(BTU)2X], where X�Cl or Br) based on a new N-benzoylthiourea
(BTU) ligand with two decyloxy and one perfluorooctyl groups at its periphery were designed and prepared. *e BTU ligand
coordinates via the S atom in a neutral monodentate fashion as confirmed by IR and NMR spectroscopy data. *e liquid
crystalline behavior of these copper(I) complexes was investigated by a combination of polarized optical microscopy (POM),
differential scanning calorimetry (DSC), and X-ray diffraction analysis (XRD), while their thermal stability was studied by
thermogravimetric analysis (TGA). *ese new copper(I) complexes have mesomorphic properties and exhibit a hexagonal
columnar mesophase over a large temperature range, more than 100°C.

1. Introduction

Liquid crystalline compounds (LC) based on metal com-
plexes (metallomesogens) represent a special class of liquid
crystals with interesting properties related to metal ions
employed, such as luminescence, magnetism, redox prop-
erties, and so on [1, 2]. *e unique properties of thermo-
tropic liquid crystals, in particular their electrooptical
properties [3–7], have led to various applications (LCD,
molecular sensors and detectors, optical switches, spatial
light modulator, etc.) [8–10]. Metallomesogens based on
copper(I) complexes are quite rare, even if the copper(I) can
form complexes with low coordination number suitable for
the stabilization of LC phases. *e copper(I) complexes with
liquid crystalline properties reported so far are restricted to
few classes of ligands related to alkylthiolates [11], iso-
cyanides [12–16], phenantroline [17], azamacrocycles [18],
or Schiff bases derived from 2-iminopyridines [19, 20],
giving rise to either mono- or binuclear two- or tetra-
coordinate complexes. Ionic columnar metallomesogens
formed by three-coordinate copper(I) complexes with bis(1-
pyrazolyl)ethyl ether ligands were reported by Lin and Lai
[21]. In this study, we report a new class of copper(I)

metallomesogens based on neutral copper(I) three-coordinate
complexes with benzoylthiourea (BTU) ligands. *ese ben-
zoylthiourea derivatives (BTU) proved to have excellent
properties to bind to various metal ions due to the very strong
donor groups (carbonyl and thioamide) that yield various
transition metal complexes. *e BTU ligands can give neutral
homoleptic or heteroleptic complexes either with S- and O-
coordination, when the ligand is coordinated in monoanionic
bidentate form by deprotonation or with only S-coordination
if the ligand is bound in neutral form to the metal center
[22–32]. *e reaction between copper(II) salts and, more
generally, the versatile acylthiourea compounds leads to
a variety of copper(I) complexes, including tetra- and three-
coordinate mononuclear complexes, halide-bridged dinuclear
complexes, or cluster-type polynuclear complexes, depending
on the halide type and reaction conditions [33–39]. *e
complexity of the redox reaction between the copper(II) salts
and thiourea compounds results from the combination be-
tween the versatility of the acylthiourea ligands and the
coordination flexibility of the copper(I) ion. *e three-
coordinate copper(I) complexes, which possess two mole-
cules of the BTU ligand linked via the sulfur atom and one
halide ion, have approximately an overall planar shape
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[37–39]. *e molecular shape arguments indicate that such
complexes could be potential candidates for new liquid
crystalline materials after careful functionalization of BTU
derivatives with suitable mesogenic groups. *e BTU com-
pounds having terminal alkoxy groups at the both ends of the
molecule show interesting mesogenic behavior, displaying
nematic, smectic A, and smectic C phases, depending on the
position and length of the alkyl chains [40]. On the contrary,
partially fluorinated BTU compounds show comparable
mesogenic properties, with an increased stability of lamellar
phases and higher transition temperatures [41]. It is well
known that the alkyl chains substitution with semi- or per-
fluoroalkylated chains leads to a serious increasing of both the
transition temperatures and mesophases thermal ranges
[42, 43]. Moreover, the stability of layered phases for such
compounds with perfluoroalkyl groups is significantly in-
creased due to the incompatibility between the aliphatic and
perfluoroalkylated chains as well as the rigidity of the latter
[44–50].

*is paper reports the preparation and mesogenic be-
havior of a new class of copper(I) metallomesogens based on
copper(I) halide complexes (chloride or bromide) with
a novel benzoylthiourea ligand that have at one side two
decyloxy chains and, at the other side, a perfluorooctyl group.
*e liquid crystalline properties of the new three-coordinate
copper(I) complexes were studied by a combination of dif-
ferential scanning calorimetry (DSC) and polarizing optical
microscopy (POM). Moreover, these new complexes have
mesomorphic properties and exhibit a columnar mesophase
over a large temperature range, more than 100°C, as shown by
DSC.

2. Experimental

2.1. Characterization Methods. All the chemicals were used
as supplied. C, H, and N analyses were carried out with an
EuroEA 3300 instrument. IR spectra were recorded on
a Bruker spectrophotometer using KBr discs. 1H and 13C
NMR spectra were recorded on a Bruker spectrometer
operating at 500MHz, using CDCl3 as solvent. 1H chemical
shifts were referenced to the solvent peak position, δ
7.26 ppm. *e phase assignments for the BTU ligand and its
copper(I) complexes were evaluated by polarizing optical
light microscopy (POM), placed on untreated glass slides,
using a Nikon 50iPol microscope equipped with a Linkam
THMS600 hot stage and TMS94 control processor. Tem-
peratures and enthalpies of transitions were recorded by
using the differential scanning calorimetry (DSC) technique
employing a Diamond DSC PerkinElmer instrument. *e
BTU ligand and its copper(I) complexes were studied at
10°/min of scanning rate after being encapsulated in alu-
minium pans. *ree heating/cooling cycles were performed
on each sample. *ermogravimetric analysis for all samples
was performed on a TA Q50 TGA instrument using alumina
crucibles and nitrogen as purging gas. *e heating rate
employed was 10°C·min−1 from room temperature to 550°C.
*e powder XRD measurements were made on a D8 Ad-
vance diffractometer (Bruker AXS GmbH, Germany), in
parallel beam setting, with monochromatized Cu-Kα1

radiation (λ�1.5406 Å), scintillation detector, and hori-
zontal sample stage. *e measurements were performed in
symmetric (θ–θ) geometry in the 2θ range from 1.5° to 30° in
steps of 0.02°, with measuring times per step in the 5–40 s
range. *e temperature control of the samples during
measurements was achieved by adapting a home-made
heating stage to the sample stage of the diffractometer.

2.2. Preparation ofN-(4-Perfluorooctylphenylcarbamothioyl)-
3,4-didecyloxybenzamide (1). *e synthesis of the BTU li-
gand 1 followed the procedure described elsewhere [40, 41].
In the first step, the acid chlorides were prepared by reacting
the 3,4-didecyloxybenzoic acid (5mmol) with an excess of
thionyl chloride (20mmol) in freshly distilled dichloro-
methane (25ml) for 3 hours and heating under reflux. *en,
the excess of thionyl chloride and the solvent were removed
under reduced pressure. *e resulting acid chloride was
taken to the next step without further purification. *e acid
chloride was dissolved in dry acetone (20ml), and a solution
of NH4SCN (5mmol) in acetone (15mL) was added
dropwise for a period of 15min under nitrogen.*emixture
was heated under reflux for a period of 30min. During the
addition of the ammonium thiocyanate solution, the for-
mation of a cloudy white precipitate was observed. *e
mixture was cooled down to room temperature, and a so-
lution of p-perfluorooctylaniline (4.6mmol) in acetone
(10mL) was added dropwise for a period of 30min. *e
mixture was further stirred for 2 hours at room temperature,
and then it was poured in 100ml of deionized water. *e
resulting precipitate was filtered off and washed several
times with water and ethanol followed by two times of
recrystallization from amixture of dichloromethane/ethanol
to yield a white solid.

2.2.1. Compound 1. White crystalline solid. Yield: 77%.
Anal. Calcd. For C42H51F17N2O3S (%): C, 51.11; H, 5.21; and
N, 2.84; Found: C, 51.59; H, 5.35; and N, 2.65. 1H NMR
(500MHz, CDCl3) δ 12.99 (s, 1H), 9.05 (s, 1H), 7.98 (d,
J� 8.6Hz, 2H), 7.74 (d, J� 8.6Hz, 2H), 7.60–7.30 (m, 2H),
6.93 (d, J� 8.2Hz, 1H), 4.24–3.71 (m, 4H), 1.93–1.80 (m,
4H), and 1.55–1.20 (m, 28H), 0.88 (m, 6H). 13C NMR
(126MHz, CDCl3, ppm) δ: 178.5, 166.4, 154.2, 149.6, 141.1,
127.7, 127.6, 126.5, 123.3, 123.0, 121.1, 119.6, 112.4, 112.1,
69.6, 69.3, 31.8, 29.6, 29.4, 29.3, 29.1, 29.0, 26.1, 25.9, 22.7,
and 14.1. IR (KBr, cm−1): 3266 (]NH), 2924, 2853 (]CH2

), 1665
(]C�O), 1503 (]C-N), 1350 (]C�S), and 1144 (]C-N).

2.3. Preparation of Copper(I) Complexes (2a and 2b). *e
synthesis of copper(I) complexes with benzoylthiourea li-
gand 1 is similar to the preparation of such copper(I)
complexes described elsewhere [36, 38, 39]. A solution of the
corresponding halide copper(II) salt (CuX2, where X�Cl or
Br; 0.5mmol) dissolved in ethanol (5ml) was added
dropwise over a period of 5 min to a hot solution of the
ligand (1mmol) in ethanol (10ml). A bright-yellow pre-
cipitate was formed during the addition of the solution of
copper(II) salt. *e mixture was further stirred and heated
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under reflux for 2 hours. After this period of time, the hot
mixture was filtered and the resulting precipitate was washed
several times with ethanol and dried in vacuum to yield
a yellow solid. *e yields were calculated based on copper
salts. *e 1H NMR spectroscopy and the elemental analysis
confirmed the formation and purity of these copper(I)
complexes.

2.3.1. Compound 2a. Yellow solid. Yield: 74%. Anal. Calcd.
For C84H102ClCuF34N4O6S2(%): C, 48.67; H, 4.96; and N,
2.70; Found: C, 49.23; H, 4.84; and N, 2.74. 1H NMR
(500MHz, CDCl3, ppm) δ 13.35 (s, 2H), 11.06 (s, 2H),
8.16–7.92 (m, 2H), 7.70–7.62 (m, 10H), 6.89 (d, J� 8.6Hz,
2H), 4.09 (t, J� 6.5Hz, 4H), 4.03 (t, J� 6.5Hz, 4H), 2.05–1.69
(m, 8H), 1.51–1.20 (m, 56H), and 0.88 (m, 12H).

13C NMR (126MHz, CDCl3) δ 179.1, 169.0, 154.6, 148.9,
139.9, 127.8, 125.4, 123.9, 122.2, 113.4, 111.7, 69.5, 69.1, 31.9,
30.9, 29.6, 29.5, 29.3, 29.2, 29.1, 26.0, 22.7, 22.3, and 14.1.

IR (KBr, cm−1): 3274 (]NH), 2927, 2856 (]CH2
), 1664

(]C�O), 1512 (]C-N), and 1152 (]C-N).

2.3.2. Compound 2b. Yellow solid. Yield: 78%. Anal. Calcd.
For C84H102BrCuF34N4O6S2(%): C, 47.65; H, 4.86; and N,
2.65; Found: C, 48.51; H, 4.64; and N, 2.66. 1H NMR
(500MHz, CDCl3, ppm) δ 13.27 (s, 2H), 10.66 (s, 2H), 7.98
(d, 7.8Hz, 2H), 7.68 (m, 4H), 7.59 (m, 6H), 6.88 (d,
J� 8.6Hz, 2H), 4.09 (t, J� 6.5Hz, 4H), 4.01 (t, J� 6.5Hz,
4H), 1.97–1.65 (m, 8H), 1.50–1.11 (m, 56H), and 0.88 (m,
12H).

13C NMR (126MHz, CDCl3) δ 178.4, 168.6, 154.7, 149.0,
139.9, 127.8, 125.1, 123.8, 122.1, 113.3, 111.7, 69.6, 69.1, 31.9,
29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 26.0, 22.7, and 14.1.

IR (KBr, cm−1): 3275 (]NH), 2927, 2856 (]CH2
), 1665

(]C�O), 1510 (]C-N), and 1152 (]C-N).

3. Results and Discussions

3.1. Synthesis. *e novel BTU ligand having two terminal
decyloxy chains on the benzoyl unit and a perfluorooctyl
group on the aniline fragment was prepared through the
reaction of 3,4-didecyloxybenzoyl isothiocyanate with 4-
perfluorooctylaniline in high yield (77%) (Scheme 1)
[40, 41, 51]. *e copper(I) complexes were obtained by
reaction of the BTU ligand with copper(II) halide salts in hot
ethanol in a 2 :1 molar ratio to give yellow solids. *e re-
action can be also performed by employing copper(I) salts
giving identical products. *e new BTU derivative and the
copper(I) complexes were fully characterized by 1H NMR
and 13C NMR and IR spectroscopies as well as by elemental
analyses. *e 1H NMR spectrum of BTU ligand 1 contains
two singlets, one at 9.05 ppm and a second one at 12.99 ppm,
which can be assigned to the two NH groups.*e first singlet
can be assigned to the NH proton located between the
carbonyl and thiocarbonyl groups, while the second singlet
was assigned to the NH proton between the thiocarbonyl
group and the benzene ring. On the contrary, the chemical
shift values for the carbonyl and thiocarbonyl carbons
were found at about 166.5 ppm and around 178.5 ppm,

respectively, as reported for some other fluorinated BTU
compounds [52, 53].

*e 1H NMR spectra of copper(I) complexes recorded in
CDCl3 solvent show the expected signals assigned to ligand
with several significant shifts resulted from its coordination
to the copper(I) center (Figure 1). *e most significant
changes were seen for the two NH singlets. Both signals were
downfield shifted with a more pronounced shift for the
signal assigned to the NH group located between the car-
bonyl and thiocarbonyl groups of the BTU ligand.

While the first singlet at 12.99 ppm in the 1H NMR
spectrum of uncoordinated ligand downfield shifts to
13.35 ppm for 2a and to 13.27 ppm for 2b, the second NH
signal at 8.99 ppm for 1 is downfield shifted to 11.06 ppm for
2a and to 10.66 ppm for 2b as a consequence of the intra-
molecular hydrogen bonding between the halide ion and the
second NH group. *ese chemical shift changes are at-
tributed to the copper(I) complexes formation, and similar
results were found for related three-coordinate copper(I)
complexes [33–35]. Intramolecular hydrogen-bonding be-
tween the coordinated halide ions and NH group was evi-
denced by X-ray structural analysis for several related
complexes [37–39].

Several regions of the FTIR spectra, recorded in KBr
discs, are of interest for supporting the coordination via
the sulfur atom: 3200–3400 cm−1 for ]N-H frequencies,
1500–1700 cm−1 for strong ]C�O and ]C-N frequencies, and
finally, 1100–1250 cm−1 where strong absorption bands
assigned to a combination of ]C-N and ]phenyl stretching
frequencies can be found [54–58]. For example, the in-
tensity and the position of the carbonyl stretching ]C�O at
∼1665 cm−1 are essentially the same in the IR spectra of 2a
and 2b as in the free ligand 1. *e medium intense band at
1350 cm−1 in the IR of ligand 1, assigned to ]C�S, is absent
in the IR spectra of copper(I) complexes [34]. Addition-
ally, the very strong band at 1144 cm−1 for 1, corre-
sponding to ]C-N of the thioamide group, shifts to higher
wavenumber at 1152 cm−1 for 2a and 2b.

3.2. Liquid Crystalline Properties. *e new copper(I) com-
plexes and the benzoylthiourea ligand were investigated for
their liquid crystalline properties by a combination of hot-
stage polarizing optical microscopy (POM) and differential
scanning calorimetry (DSC). *e thermal parameters for all
compounds are presented in Table 1.

*e heating run of the DSC curve recorded for ligand 1
shows only one transition assigned to a crystal-to-isotropic state
transition (Table 1). On cooling from the isotropic state down to
0°C, three transitions were observed, an isotropic to a crystalline
phase (Cr1) transition followed by other two transitions be-
tween crystalline states (Cr2 and Cr3). No LC phase was evi-
denced for the BTU ligand. On the contrary, it was found that
both copper(I) complexes show mesogenic properties.

Two transitions were detected in the DSC traces both
during the heating and cooling runs for the two copper(I)
complexes: a first transition from the isotropic state to
a columnar phase followed by a second transition assigned to
a glass transition around 50°C (Figures 2 and 3). All these
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transitions were detected by POM as well, and an example of
textural changes for compound 2a is presented in Figure 4.
*ese results are consistent with the POM studies, where
typical optical textures of a hexagonal columnar (Colh)

phase were observed for both copper(I) complexes (Figures
4 and 5). *e clearing temperatures of the two copper(I)
complexes (Table 1, measured during the first heating run)
depend significantly on the size of the halide ion.
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Scheme 1: Synthesis of N-benzoyl-N′-arylthiourea perfluoroalkyl terminated BTU and of copper(I) complexes.
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Figure 1: *e low field region of the 1H NMR spectra of the benzoylthiourea derivative 1 and its copper(I) complexes 2a and 2b.
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*e lowest clearing temperature was recorded for
chlorocomplex 2a (162°C), while a higher clearing tempera-
ture was measured for the bromocomplex 2b (173°C). In-
terestingly, these two copper(I) compounds are stable in the
glassy state at room temperature as no crystalline phases were
seen during the first and subsequent heating-cooling cycles.

*e mesophase assignment for the two Cu(I) complexes
was confirmed further by powder X-ray diffraction (XRD)
measurements (Table 2). *e samples were heated up to
125°C in the mesomorphic domain, and typical patterns that
are characteristic of a hexagonal packing were obtained in
each case.

Table 1: Transition temperatures (in °C) and enthalpies (kJ·mol−1) for ligand 1 and its copper(I) complexes.

Compound Transitions, T/°C (ΔH/kJ·mol−1)a

1 Cr 110 (58.7) Iso 99 (−35.0) Cr1 87
(−7.1) Cr2 17 (−7.7) Cr3

2a g 50b Colh 162 (13.7) Iso 162 (−13.0) Colh 50b g
2b g 52 Colh 173 (18.2) Iso 170 (−16.3) Colh 47 g
aCr1, Cr2, and Cr3 � crystalline phases; Iso� isotropic phase; Colh � hexagonal columnar phase; g� glassy state. bTransition detected by POM.
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*e diffractograms of 2a and 2b show a strong maximum
from the (100) reflection followed by a series of four weaker
sharp peaks with a d-spacing ratio of d/√3, d/2, d/√7, and d/4
from the (110), (200), (210), and (400) reflections for 2a or
d/√3, d/2, d/√7, and d/3 from the (110), (200), (210), and
(300) reflections for 2b, respectively (Figure 6).

It is important to mention that the transition temper-
atures recorded both during the heating and cooling runs by
DSC were slightly shifted towards lower values on sub-
sequent heating-cooling cycles for complexes 2a and 2b.
*ese observations indicate a possible slight decomposition
of the copper(I) complexes on heating above the clearing
points. *erefore, a study regarding the thermal stability of
these compounds was performed in the next step.

3.3.6ermal Stability of the Ligands andCopper(I)Complexes.
*e two copper(I) complexes and the BTU ligand were in-
vestigated by TG analysis in nitrogen, in the 25–550°C tem-
perature range, and the decomposition curves are presented in
Figure 7. *ese TG curves do not contain steps or other
indication of mass loss in the 25–160°C region, and therefore,
the complexes do not contain small molecules (water or
ethanol solvent). On the contrary, the results of the ther-
mogravimetric analyses show that the copper(I) complexes 2a
and 2b have a higher thermal stability compared to the BTU
ligand 1, and their decomposition started at temperatures
around 180°C. For exemplification, Figure 7 gives the TG
curves for the BTU ligand 1 and its copper(I) complexes 2a
and 2b. *e BTU ligand starts decomposing around 160°C.

(a) (b)

(c) (d)

Figure 4: Pictures taken at the polarizing optical microscope showing the optical textures of 2a at 170°C (a), 160°C (b), 85°C (c), and 35°C (d).

(a) (b)

Figure 5: Pictures taken at the polarizing optical microscope showing the optical textures of 2b at 175°C (a) and 35°C (b).
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As it can be seen from Figure 7, the two copper(I)
complexes undergo complete decomposition up to 500°C. A
small weight loss, less than 2%, was recorded on heating the
copper(I) complexes 2a and 2b above the clearing points
around 180°C. *e slight decomposition observed at tem-
peratures higher than the clearing point could explain the
transition temperatures shifting recorded by DSC. Similar
observations were found for some palladium(II) complexes
with mixed ligands, Schiff bases, and BTU derivatives, re-
ported previously [59, 60].

4. Conclusions

*ree-coordinate copper(I)-containing liquid crystalline
materials with columnarmesophases were prepared by using
an alkoxy-substituted N-benzoylthiourea derivative having
a perfluorooctyl group at one end. *e new copper(I)
complexes exhibit a hexagonal columnar phase over a large
temperature range, more than 100°C, as evidenced by DSC,
POM observations, and powder X-ray diffraction analysis.
*e thermal stability of these copper(I) metallomesogens is

Table 2: Temperature dependent X-ray powder diffraction for Cu(I) compounds.

Compound Mesophase T (°C) Indexation d-spacing observed (Å) d-spacing calculated (Å) Lattice parameters (Å)a

2a Colh 125

100 26.91 26.91

a� 31.07

110 15.49 15.54
200 13.42 13.46
210 10.04 10.17
400 6.66 6.73

Broadb 4.6 —

2b Colh 125

100 26.51 26.51

a� 30.61

110 15.17 15.30
200 13.18 13.26
210 10.00 10.02
300 8.80 8.84

Broadb 4.6 —
a*e Colh lattice parameter a� 2<d100>/√3. bBroad peak assigned to molten alkyl chains.
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limited by a slight decomposition on heating above the
clearing points (∼180°C).
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