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In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of
a chemical compound. In this paper, M-polynomial Ox and Op networks are computed. The M-polynomial is rich in in-
formation about degree-based topological indices. By applnying the basic rules of calculus on M-polynomials, the first and second
Zagreb indices, modified second Zagreb index, general Randi¢ index, inverse Randi¢ index, symmetric division index, harmonic
index, inverse sum index, and augmented Zagreb index are recovered.

1. Introduction

Cheminformatics is a new branch of science which relates
chemistry, mathematics, and computer sciences. Quantita-
tive structure-activity relationship (QSAR) and quantitative
structure-property relationship (QSPR) are the main com-
ponents of cheminformatics which are helpful to study
physicochemical properties of chemical compounds [1-3].

A topological index is a numeric quantity associated with
the graph of chemical compound, which characterizes its
topology and is invariant under graph automorphism [4-6].
There are numerous applications of graph theory in the field
of structural chemistry. The first well-known use of a to-
pological index in chemistry was by Wiener in the study of
paraffin boiling points [7-9]. After that, in order to explain
physicochemical properties, various topological indices have
been introduced and studied [10, 11].

A computer network is a digital telecommunications
network which allows nodes to share resources. In computer
networks, computing devices exchange data with each other
using connections (data links) between nodes. These data links
are established over cable media such as wires or optic cables, or
wireless media such as WiFi. Optical transpose interconnection
system (OTIS) networks were initially contrived to give pro-
ductive network to new optoelectronic computer models that
profit by both optical and electronic advancements [12]. In

OTIS networks, processors are orchestrated into groups.
Electronic inter-connects are used between processors within
the same cluster, while optical links are used for intercluster
communication. Various algorithms have been produced for
directing, determination/arranging, certain numerical calcu-
lations, Fourier transformation [13], matrix multiplication [14],
image processing [15], and so on [16, 17]. The structure of an
interconnection system can be scientifically modeled by
a graph. The vertices of this graph are the processor nodes and
the edges are the connections between the processors. The
topology of a graph decides the manner by which vertices are
associated by edges. From the topology of a system, certain
properties can be decided. The diameter of a graph is the
maximum distance between any two vertices of the graph.

Definition 1 (OTIS (swapped) network Ok ) The OTIS
(swapped) network is derived from the graph Q, which is
a graph with vertex set V(Oq) = <g,p> | g, p € V(Q) and
edge set E(Oq) = <g,p1>,<g,p2>g9 € VI(Q), (p1,p,)
€EQU(<gp>,<gp-g>)lg,peV(Q)and g#p.

The graph of OTIS (swapped) network Ok given in
Figure 1 has (n*/2) + 3n® + (11n/2) + 3 edges and (n+2)?
vertices.

Definition 2 (OTIS (swapped) network Oy, ). Let P, be path
of n vertices and OP,, be OTIS (swapped) network w1th basis
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FIGURE 1: O, .

network P,. An OTIS (swapped) network with the basis
network P, is shown in Figure 2.

The OTIS (swapped) network graph O, given in Fig-
ure 2 has (3/2) (n* — n) edges and n* vertices.

In this paper, we aim to compute degree-dependent to-
pological indices of OTIS (swapped) networks Oy and Op . In
Section 2, we give definitions and literature review about TIs. In
Sections 3 and 4, we present the methodology and application of
our results in chemistry, respectively. Section 5 contains our
main results, and Section 6 concludes our paper.

2. Topological Indices (T1Is)

TIs are numbers which depend on the molecular graph and are
helpful in deciding the properties of the concerned molecular
compound [18-20]. We can consider TT as a function which
assigns a real number to each molecular graph, and this real
number is used as a descriptor of the concerned molecule. From
the TIs, a variety of physical and chemical properties like heat of
evaporation, heat of formation, boiling point, chromatographic
retention, surface tension, and vapor pressure of understudy
molecular compound can be identified. A TI gives us the
mathematical language to study a molecular graph. There are
three types of TIs:

(1) Degree-based TIs

(2) Distance-based TIs

(3) Spectrum-based TIs

The first type of TI depends upon the degree of vertices,

second one depends upon the distance of vertices and the
third type of TT depends upon the spectrum of graph.

2.1. Zagreb Indices. To compute total 7z-electron energy, the
following TI is defined:

veV (G)
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F1GURE 2: OP,.

But soon it was observed that this index increases with
increases in branching of the skeleton of carbon atoms. After
10 years, Balaban et al. wrote a review [21], in which he
declared M1 and M2 are among the degree-based TIs and
named them as Zagreb group indices. The name Zagreb
group indices was soon changed to Zagreb indices (ZIs), and
nowadays, M, and M, are abbreviated as first Zagreb index
and second Zagreb index.

In 1975, Gutman et al. gave a remarkable identity [22].
Hence, these two indices are among the oldest degree-based
descriptors, and their properties are extensively investigated.
The mathematical formulae of these indices are

MG = ) d,+d,
uveE (G)

M2 (G) = Z dudv'

uveE (G)

(2)

For detailed survey about these indices, we refer [23-26].
Doslic et al. [27] gave the idea of augmented ZI, whose
mathematical formula is

dd }
AZI(G) = () . (3)
WGEZ(G) d,+d,-2

2.2. Randi¢ or Connectivity Index. Historically, ZIs are the
very first degree-based TIs, but these indices were used for
completely different purposes; therefore, the first genuine
degree-based TI is the Randi¢ index (RI) which was given in
1975 by Randi¢ [28] as

1
Ry (G) = I B 4
uve;(G) deV ( )

Firstly, Randi¢ named it as a branching index, which was
soon named as connectivity index, and nowadays, it is called
as RI. The RI is the most popular degree-based TI and has
been extensively studied by both mathematicians and
chemists. Randi¢ himself wrote two reviews [29, 30], and
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many papers and books on this topological invariant are
present in the literature; few of them are [31-34]. Re-
searchers recognized the importance of the Randi¢ index in
drug design. Bollbas and Erdos, famous mathematicians of
that time investigated some hidden mathematical properties
of RI [35]; after that, RI was worth studying, and a surge of
publications began [36-39]. An unexpected mathematical
quality of the Randi¢ index was discovered recently, which
tells us about the relation of this topological invariant with
the normalized Laplacian matrix [38, 40, 41]. The GRI
known as general RI [42] is defined as

Ra (G) = Z (dudv)“‘ (5)

uveE (G)

2.3. M-Polynomial. The mathematical formula of M-poly-
nomial is

M(@Gixy) = ) (x%y™). (6)
uveE(G)

Detailed survey about the definitions of other TIs
computed in this paper and relation of TIs with M-poly-
nomial can be seen in [43, 44], where

0
D (f (% 3)) = x5 (f (%)),

0
D, (f(x ) = Y3y (f Ge )

X t,
s = [ 02 -

7 f(x1)

dt,
0 t

$,(f (x = |

J(f (%, 9) =T (f (x,x)),
Q. (f (x, ) = x*(f (x, ).

3. Methodology

To compute the M-polynomial of a graph G, we need to
compute the number of vertices and edges in it and divide
the edge set into different classes with respect to the degrees
of end vertices. From the M-polynomials, we can recover
many degree-dependent indices by applying some differ-
ential and integral operators.

4. Applications in Chemistry

A topological description is used to depict the features of the
studied compounds, and indices of graph-theoretical origin
are used to investigate the correlations between structure and
biological activity [45-48]. For example, the Randi¢ index
demonstrates great relationship with the physical property of
alkanes. The geometric arithmetic index has a similar role as
that of the Randi¢ index. The sum-connectivity index is

helpful in guessing the melting point of compounds. Zagreb
indices are used to calculate 71-electron energy.

5. Main Results

In this section, we compute M-polynomials of understudy
networks and recover nine TIs from these polynomials.

5.1. Results for OP,,

Theorem 1. Let OP, be the swapped network; then,
M(G;x,y) = ny3 + 3x2y2 + (61 — 14)x2y3

(3(n—2)(n—3)) \ s ®
1 G B

Proof. The OP, network has the following four types of
edges based on the degree of end vertices:

E,\ (OP,) ={uv € E(OP,) : d, = 1,d, = 3},

Eppy (OP,) ={uv € E(OP,) : d, = 2,d, = 2}, 9)
E3 (OP,) ={uv € E(OP,) : d, = 2,d, = 3},
Eg5 (OP,) ={uv € E(OP,) : d, = 3,d, = 3},
such that
|E{1,3} (OPn)| =2
|E{2,2} (OPn)| =3
(10)

|E23 (OP,)| = (61— 14),

3(n-2)(n-3
|E{3,3} (OPn)| = <%>

Now, from the definition of M-polynomial, we have

M(G;x,y) = Z m,-jxiyj

O<i<j<A

_ 1.3 2 2 23
=) mpx Yy + ) MpXxXy + ) mMyxy

1<3 2<2 2<3

+ Z m33x3y3

33
=[Eqs (OPn)|x1y3 +|Epy (OPn)lxz)’z
+ |Ep (OP,)]x*y’*
+|Es (OP,)|xy’
= ny3 + 3x2y2 + (61 — 14)x2y3

. (3(11 - 2;(71 - 3))x3y3.

(11)
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Corollary 1. Let OP,, be the swapped network; then,

M, (OP,) = 9n* — 15n + 4. (12)
Proof. Let

f(x,9) = M(G; x, y) = 2xy° + 3x°y* + (6n — 14)x*y’

+(3m—2ﬂn—$)f 3
2

(13)
Then,
D, (f (x,9) =2xy° +6x°y* +2(6n — 14)x’y’
(9(n—2)(n—3)) 3.3
| ——— |x7y,
2
(14)
D, (f(x, ) = 6xy3 + 6x2y2 +3(6n - 14)x2y3
(9(n—2)(n—3)) 33
+|—————— X7y
2
Now, we have
Ml (OPn) = Dxf +Dyf x=y=1 (15)
=9n” — 15n + 4.
Corollary 2. Let OP,, be the swapped network; then,
27n® 63
MZ(OPn :Tn—7n+l5. (16)

Proof. Let

f(x9y)=M(G;x,y) = 2xy3 + 3x2y2 + (61— 14)x2y3

. (3 (n—- 22) (n- 3)))&/3

(17)
Then,

3 2 2 2 3
Dy(f(x,y))=6xy +6x°y" +3(6n—14)x"y

s (9(n - 2;(71 - 3)>x3y3’

= 6xy° +12x°y* + 6(6n — 14)x*y’

(27(n—2)(n—3)> 3.3
T2 )Y

D.D,(f(x,y))

(18)
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Now, we have

MZ (Opn) :Dnyf|

x=y=1
(19)
27> 63n
= > - T + 15.
O
Corollary 3. Let OP, be the swapped network; then,
"M, (OP,) = —2+”+L (20)
! 6 12
Proof. Let
fx, ) = M(G; x,y) = 2xy° +3x°y* + (6n— 14)x°y’
3(n— -
N ( (n-2)(n 3))x3 3
2
(21)
Then,

5,7 G = (3 ) + (5 )y

6n-—14
+((”3 )>x2y3

(n- 2) (n- 3)>x

>

o
(

st =G (e )
(

(n- 2) (n- 3))x

(22)
Now, we have
mMZ (OPn) :SxSyflx:yzl
(23)
nw on 1
= g + g + E
O

Corollary 4. Let OP, be the swapped network; then,

9%3%(n—=2) (n - 3)>

Ra<(OPn) = 6% + 6%2% + 3%2% (6n — 14) + -

(24)

Proof. Let

f(xy)=M(G;x,y) = 2xy3 + 3x2y2 + (61— 14)x2y3

. (3 (n- 22) (n- 3))x3y3

(25)
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Then,

o _ L 3 o 2 2 o 2.3
Dy (f (%) =6xy +6x"y" +3 (6n—14)x"y

. <9“(n —;Z(n - 3)>x3y3)

Dij(( f(x,9) = 6%xy” +6"2x%y* + 3°2% (6n — 14)x°y’

(9“3“(n—2)(n—3)> 5 3>
+ e xy ).

(26)

Now, we have

Ra((opn) == DZD;‘/f|x:y:1

9%3%(n—-2)(n—-13) (27)

=6"+6"2% +3"2%(6n - 14) + T

O

Corollary 5. Let OP,, be the swapped network; then,

2¢ 3% 6n-14 -2 -3
RRa<(OPn) =22 + (n=2)(n )>.
3 22« 3aQa 2e3x

(28)

Proof. Let

f(x,9) = M(G; x, y) = 2xy° +3x°y* + (6n — 14)x*y’

. (3 (n- 22) (n- 3)>x3y3'

(29)
Then,

o (2" 3 (3% 22 [(6n=14)\ ;, 5
S, (f (x, %) —<¥>xy +<?>x y +(37a>x y

N < (n— 2;{57’1 - 3)>x3y3,

@ 2"\ s (322 [(6n=14)) ; 5
SxSy<(f(x,y)) —<3a>xy +<22a>x y +<W>x y
(n=2)(n-3)\ 3 3
+ <—2a3a >x y >

(30)
Now, we have
RR,((OP,) == S:S%fl,.,..
31
2 3% 6n-14 (n-2)(n-3) (31)
=—+—+
3a 220c 3apa Qa3a

5
Corollary 6. Let OP, be the swapped network; then,
SSD(OP,) = 3n” - 2n + % (32)
Proof. Let
f(x,y)=M(G;x,y) = 2xy3 + 3x2y2 + (61— 14)x2y3
(3(n—2)(n—3)) 3 3
| —— X7y
2
(33)
Then,
3(6n—14
8D, (f (x,») = 6xy° +3x°y +(%)x2y3
(3(n—2)(n—3)) 3 3
+| —m—m |x Y,
2
2 2(6n - 14)
D.S,(f(x, ) = <§)xy3 +3xy° +<f)x2y3
(3(n—2)(n—3)) 3 3
| —————— |x7y.
2
(34)
Now, we have
$SD(OP,) =(D,S, f +$,D, f)'x:y:1
(35)
2 1
=3n" -2n+ 3
O
Corollary 7. Let OP, be the swapped network; then,
H(op)— 2" L (36)
YT\ 4 20 20)
Proof. Let
f(x,y)=M(G;x,y) = ny3 + 3962)/2 + (61— 14)x2y3
(3(n—2)(n—3)> 3 3
| ———— ¢y
2
(37)

Then,

J(f(x,y) = 5xt + (61— 14)x5 +(3 (n=2)(n- 3))x6,

2

5 4 6n— 14 3 -2 -3 6
ZSx](f(x,y))zz(%+(1’l : < (n )(411 )x )

(38)



Now, we have

H(OP,) =2S,Jf|._,

Jom Sin 129 . (40)

Proof. Let

f(x9) = M(G; x, y) = 2xy° +3x°y” + (6n — 14)x*y’

+<3(n— 22)(n - 3))x3y3.

(41)
Then,
D, (f (x,¥)) = 6xy° +6x°y* +3(6n - 14)x’y’
y b

. (9(71 - 2;(n - 3))x3y3,

DD, (f(x,y) = 6xy’ + 12x*y* + 6 (6n - 14)x°y’

(27(n—2)(n—3)) 303
N

JD.D,, (f(x,y)) = 18x" + 6(6n — 14)x°

(27(n—2)(r1—3)) P
T2 )

4 —
S.JD,D, (f (x,)) = 18x* | (6(6n 14)>x5

4 5
27(n-=2)(n-3)\ ¢
| ——— |x".
12
(42)
Now, we have
1(OP,) =S,JD,D, f|
43
_9n* 8lm 129 9
4 20 5 0
Corollary 9. Let OP,, be the swapped network; then,
729n*  573n 413

A(op,)) =20 200 200 (44)

64 64 32

Journal of Chemistry

Proof. Let
f(x,y) = M(G;x,y) =2xy" +3x°y* + (6n - 14)x*y’

. (3 (n- 22) (n- 3))x3y3.

(45)
Then,
3 _ 3 2 2 2 3
Dy (f(x,9) =54xy” +24x"y" +27(6n—14)x"y

. (81 (n- 22) (n- 3)>x3y3’

DiDi (f (x,y)) = 54xy° +192x”y* + 216 (6n — 14)x’y’

<2187(n—2)(n—3)> 5 3
+ 5 Xy,

]DiDj (f (x, y)) = 246x" + 216 (61 — 14)x°

<2187(n—2)(n—3)> p
+ — X,

Q_,JD;D;, (f (x,y)) = 246x" + 216 (6n — 14)x’

(2187(n—2)(n—3)> 4
+t|—|x,

2
123x
$1Q,J DD} (f (x, ) = L T8n- 14)x°
<729 (n-2)(n- 3)) 4
t|l X
64
(46)
Now, we have
3 33
A(OP,) =S,Q_,JDiD;, f| |
47
_729n* 573n 413 “47)
64 64 32 0

5.2. Results for (ORy,)

Theorem 2. Let OR, be the swapped network; then,

nz(k+1)—n(1+2k)) kel kel
> Xy o

M(G;x,y) = nkxkykJrl +(

(48)

Proof. 'The OR; network has the following two types of
edges based on the degree of end vertices:

Ejyery (ORy) ={uv € E(ORy) : d, = k,d, =k + 1},
Eoixen) (OR) ={uv € E(ORy) :d, =k +1,d, =k + 1},
(49)
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such that
|E k1) (ORy)| = nk,

n?(k+1)—n(l+2k)
3 .

(50)

|E{k+1,k+1} (ORk)| =

Now, from the definition of M-polynomial, we have

M(G; x, m;x'
ij
d<i<j<A
_ k k+1 k+1_ k+1
= Z My Y+ Z M vy (k+1)X Y
k<k+1 k+1<k+1

k+1  k+1

= |E{k,k+1} (ORk)lxk)’ +lE{k+1 k+1} (ORy |x

k_ K+l +<”2 (k+1)

=nkx"y

—"(1+2k)> K+l K+l
5 xR

(51)
O

Corollary 10. Let (ORy) be the swapped network; then,
M, (ORy) = 2nk” + nk + n* (k +1)* = n(k + 1) (1 + 2Kk).
(52)

Proof. Let
f(x,9) = M(G;x, y) = nkx*y*!

(n2<k+1)—n<1+zk>> Y
+ 5 x Uy,

Then,
D (f(x y)) _ nk2 k k+1

2 _
ks 1)(n (k+1) 2n(l +2k)>xk+1yk+1’

D, (f (x,y)) = nk(k + 1)x*y*!

2 —
" (k+ 1)<n (k+ 1) 2"(1 + Zk))ka)/kH.

(54)
Now, we have

Ml (ORk) :Dxf +Dyf|

x=y=1

=2nk? + nk + n* (k+1)* = n(k + 1) (1 + 2k).

(55)
O

Corollary 11. Let (ORy) be the swapped network; then,

nr(k+1)° nk+ 1> +2k)
2 2 i

M, (ORy) = nk’ + nk” +
(56)

7
Proof. Let
flx,y)=M(G;x,y) = nkxkykJrl
<n2<k+ D -n(l+ zk)) WL
+ Xyt
2
Then,

Dy (f (x) y)) _ nkzxkykﬂ + nkxkykﬂ

n? (k+ 1)

>

+(k+1)< —n(1+2k)>xk+1yk+1

2

(f (x y ) _ nk3 k k+l + nkzxkykﬂ

2 _
+(k+ 1)2<” (k+1) . n(l+ 2k)>xk+1yk+l.

(58)
Now, we have

MZ (ORk) =Dnyf'x:y:1

RPN U5 1)* n(k+1)*(1+2Kk)
- 2 2 '
(59)

O

Corollary 12. Let (OR,) be the swapped network; then,

n? _n(1+2k)

M, (ORy) = (k2 w0 ok 2y @
Proof. Let
flx,y)=M(G;x,y) = nkxk el

<n2<k+1)—n<1+zk)) oY
+ 5 Xy

Then,

nk
S (f(x y))—<(k+1)>xkyk+1

+ n(k+1)=n(1+2k)\ r
2(k+1) A

S, (f(x, ) = ( (kz”'; k))xkykﬂ

n2 (k + 1) _n(l + 2k) k+1  k+1
+ 3 Xy .
2(k+1)

(62)



Now, we have
mMZ (ORk) =styf'x:y:1

nk n? n(1+ 2k) (63)

Tk (2k+2) 2kt 17

O
Corollary 13. Let (ORy) be the swapped network; then,

Ra<(ORk) = nk™ + nk*

+(k+ 1)2a<n2 (k+1)-n(l+ 2k)>xk+1yk+l).

20(
(64)

Proof. Let
f(x,9)=M(G;x,y) = nkxkyk+1

(n2<k+1>—n<1+zk>> oY
+ 5 Xy

Then,
D; (f(x, y)) _ nkZocxkyk-v-l + nkaxkykﬂ

2 _
ks 1)“(” (k+1) 2n(l +2k)>xk+1yk+1)

DzDit’((f (X, y)) _ nkSaxkka 4 nkZaxkka

2 _
+(k+ 1)2a<n (k+1) . n(l+ 2k)>xk+1yk“>.
(66)

Now, we have

R,((ORy) ==D5Ds f

x=y=1

> N
Yk o+ (K + 1)2a<n (k+1)-n(1+ 2k)>xk+lyk+l'

20t
(67)
O
Corollary 14. Let (OR,) be the swapped network; then,

o n n?(k+1)—n(1+2k)
RR(x((ORk) - (k + l)tx +< (k + 1)201206 )>

(68)

Proof. Let
f(x,y) = M(G;x, y) = nkx*y**!

<n2<k+1>—n<1+zk>> L
+ 5 Xy

Journal of Chemistry

Then,

o _ nk” k k+1
S, (f (x,9) —<(k+ I)a)x y

+ n?(k+1)=n(1+2k)\ 1 kn
2 (k+ 1) s

o oo n +
sty<<f(x, )= ( i 1)a)xkyk 1

(nz(k+1)—n(1+2k)> kel k+1>
+ Xy .

20 (k+1)*
(70)
Now, we have

RRa<(ORk) ==SiS3 1

(71)
_n n?(k+1)-n(1+2k)
C(k+1)* (k+1)%22 ‘

O

Corollary 15. Let (OR,) be the swapped network; then,

2
SSD (ORy) =%+nk+n+n2(k+l)—n(l + 2k).

(72)

Proof. Let
f(x,9) = M(G; x, y) = nkx"y**!

(n2<k+1>—n<1+zk)> Y
+ 5 Xy

Then,
8D, (f (x,») = nkex® Y 4 nxk !

(nz(k+1>—n(1+2k)> kel kel
+ 2 Xy,

k2
DS, (f (x,9) = ( s 1))x"y"“

2(k+1)-n(1+2k
+<n( + )zn( + ))xk+1yk+1'

(74)
Now, we have

SSD(ORy) =(D,S, f +S.D, f )|,C:y:1

nk? )
=m+nk+n+n (k+1)—n(1+2k).

(75)
O
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Corollary 16. Let (OR,) be the swapped network; then,

nk  n*(k+1) n(1+2k)
H(OR")_2<2I<+1+ dk+4  dk+4 (76)
Proof. Let
f(xy) = M(G; x, ) = nkx"y*"!
(77)

(nz(k+1)—n(1+2k)) kbl kel
+ > Xy .

Then,

J(f (x,9) = ke 2! +(n2 (k+1)-n(1 +2k)>x2k+2,

2
_ nk 2k+1
28 J(f (%, ) = 2((—2k " l)x

<n2(k+1)) 2k+2
+ | ———— |x
4k + 4

(”(1+2k)> 2k+2)
- —— |x .
4k + 4
(78)
Now, we have
H(OR,) =2S,Jf|,.,
_, nk +r12(1<+1)_n(1+21<) (79)
T\ 2k+1 0 4k+4 4k + 4 .

Corollary 17. Let (ORy) be the swapped network; then,

nk’ nk?
1 =—
(ORy) 2k+1+2k+1
, (80)
+(k+1)2<n (k+1)—n(1+2k)).
4k + 4

Proof. Let

f(x, ) = M(G; x, y) = nkx*y**!

<n2<k+1>—n<1+zk>> oY
+ 5 Xy

Then,

D, (f (x,)) = nk (k + D)x*y*!

+ (k + 1)<I’l2 (k + 1) - n(l + 2k)>xk+1yk+1,

2

Dny (f (x, y)) — nk3xkyk+l + nkakyk+l

2 _
fkt 1)2<n (k+1)-n(1+ 2k)>xk+1yk+1,

2

]Dny(f(x, ) = BVERE SRR

+(k+1)2<

3 2
S.JD,D,(f(x,y)) = <L>x2k+1 +< nk >x2k+1

n?(k+1)-n(1 +2k)>x2"*2
5 )

2k +1 2k +1

+(k+ 1)2 n? (k+1) —n(1+2k) 2K+
4k + 4 ’
(82)
Now, we have
1(OR,) =8,JD,D, f|
- nk’ . nk?
T2k+1 2k+1 (83)
ks 1)2<nz(k +1)-n(l+ 2k)>
4k + 4 '
|

Corollary 18. Let (ORy) be the swapped network; then,

A(ORy) = ’d(c;(ckjl;)z
. nl(c;({kjl;)z (84)
. it 1)6<n2 (k + 1)8;;(1 + 2k)).
Proof. Let

f(x,y) = M(G; x, y) = nkx"y**!

<n2(k+1>—n(1+2k)) &)
+ 5 Xy
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Then,
D} (f (x, y)) = nk’ (k + 1)°x"y**" + ke (ke + 1)y

2 _
+(k+ 1)3<1’1 (k+ 1) n(l +2k)>xk+1yk+l’

2

DD} (f (x, ) = nk® (k + 1)°x* y*" 4k (ke + 1) 2 y*!

2 _
f(kt 1)6<n (k+1)-n(1 +2k)>xkﬂykﬂ)

2

3.3 5 2 2k+1 4 2 2k+l
]DyDy(f(x,y))=nk (k+1)x +nk” (k+1)°x

+(k+ 1)6<7’12 (k+1)-n(1 +2k)>x2k+2

2

QJD; D}, (f (x, y)) = nk® (k + 1)°x™ + mke* (e + 1)

fks 1)6<n2(k+ 1)-n(1 +2k)>x2k

2

5 2 4 2
SiQ,leiDi(f(x,y)) :<nk (k+1) ) 2k-1 +(nk (k+1) > 2%k-1

ak-17 ) ak-1p )"

n?(k+1) —n(1+2k)
+(k + 1)6< v >x2k.
(86)
Now, we have
A(ORy) =8.Q,JD,D} f|
_nk® (k+ 1) nk*(k+1)>°
C(2k-1° T (2k-1) (87)
2
of n*(k+1)—n(1+2k)
+(k+1) ( v )
|

6. Conclusion

In this paper, our focus is on swapped interconnection
networks that allow systematic construction of large, scal-
able, modular, and robust parallel architectures, while
maintaining many desirable attributes of the underlying
basis network comprising its clusters. We have computed
several TIs of underlined networks. Firstly, we computed M-
polynomials of understudy networks, and then we recovered
Zagreb indices, Randi¢ indices, and some other indices
[49-52].
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