Research Article

Topology-Based Analysis of OTIS (Swapped) Networks $O_{K_{n}}$ and $O_{P_{n}}$

Hai-Xia Li, ${ }^{1}$ Sarfaraz Ahmad, ${ }^{2}$ and Iftikhar Ahmad $\mathbb{1}^{2,3}$
${ }^{1}$ Department of General Education, Anhui Xinhua University, Hefei 230088, China
${ }^{2}$ Department of Mathematics, COMSATS University of Islamabad, Lahore Campus, Lahore 54000, Pakistan
${ }^{3}$ Department of Mathematics, Riphah International University, Lahore Campus, Lahore 54000, Pakistan

Correspondence should be addressed to Iftikhar Ahmad; iffi6301@gmail.com
Received 2 September 2019; Accepted 10 October 2019; Published 7 November 2019
Guest Editor: Shaohui Wang
Copyright © 2019 Hai-Xia Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a chemical compound. In this paper, M-polynomial $O_{K_{n}}$ and $O_{P_{n}}$ networks are computed. The M-polynomial is rich in information about degree-based topological indices. By applying the basic rules of calculus on M-polynomials, the first and second Zagreb indices, modified second Zagreb index, general Randić index, inverse Randić index, symmetric division index, harmonic index, inverse sum index, and augmented Zagreb index are recovered.

1. Introduction

Cheminformatics is a new branch of science which relates chemistry, mathematics, and computer sciences. Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) are the main components of cheminformatics which are helpful to study physicochemical properties of chemical compounds [1-3].

A topological index is a numeric quantity associated with the graph of chemical compound, which characterizes its topology and is invariant under graph automorphism [4-6]. There are numerous applications of graph theory in the field of structural chemistry. The first well-known use of a topological index in chemistry was by Wiener in the study of paraffin boiling points [7-9]. After that, in order to explain physicochemical properties, various topological indices have been introduced and studied [10, 11].

A computer network is a digital telecommunications network which allows nodes to share resources. In computer networks, computing devices exchange data with each other using connections (data links) between nodes. These data links are established over cable media such as wires or optic cables, or wireless media such as WiFi. Optical transpose interconnection system (OTIS) networks were initially contrived to give productive network to new optoelectronic computer models that profit by both optical and electronic advancements [12]. In

OTIS networks, processors are orchestrated into groups. Electronic inter-connects are used between processors within the same cluster, while optical links are used for intercluster communication. Various algorithms have been produced for directing, determination/arranging, certain numerical calculations, Fourier transformation [13], matrix multiplication [14], image processing [15], and so on [16, 17]. The structure of an interconnection system can be scientifically modeled by a graph. The vertices of this graph are the processor nodes and the edges are the connections between the processors. The topology of a graph decides the manner by which vertices are associated by edges. From the topology of a system, certain properties can be decided. The diameter of a graph is the maximum distance between any two vertices of the graph.

Definition 1 (OTIS (swapped) network $O_{K_{n+2}}$). The OTIS (swapped) network is derived from the graph Ω, which is a graph with vertex set $V\left(O_{\Omega}\right)=\langle g, p\rangle \mid g, p \in V(\Omega)$ and edge set $E\left(O_{\Omega}\right)=\left\langle g, p_{1}\right\rangle,<g, p_{2}>g \in V(\Omega),\left(p_{1}, p_{2}\right)$ $\in E(\Omega) \cup(\langle g, p\rangle,\langle g, p, g\rangle) \mid g, p \in V(\Omega)$ and $g \neq p$.

The graph of OTIS (swapped) network $O_{K_{n+2}}$ given in Figure 1 has $\left(n^{3} / 2\right)+3 n^{2}+(11 n / 2)+3$ edges and $(n+2)^{2}$ vertices.

Definition 2 (OTIS (swapped) network $O_{P_{n}}$). Let P_{n} be path of n vertices and $O P_{n}$ be OTIS (swapped) network with basis

network P_{n}. An OTIS (swapped) network with the basis network P_{6} is shown in Figure 2.

The OTIS (swapped) network graph $O_{p_{n}}$ given in Figure 2 has $(3 / 2)\left(n^{2}-n\right)$ edges and n^{2} vertices.

In this paper, we aim to compute degree-dependent topological indices of OTIS (swapped) networks $O_{K_{n}}$ and $O_{P_{n}}$. In Section 2, we give definitions and literature review about TIs. In Sections 3 and 4, we present the methodology and application of our results in chemistry, respectively. Section 5 contains our main results, and Section 6 concludes our paper.

2. Topological Indices (TIs)

TIs are numbers which depend on the molecular graph and are helpful in deciding the properties of the concerned molecular compound [18-20]. We can consider TI as a function which assigns a real number to each molecular graph, and this real number is used as a descriptor of the concerned molecule. From the TIs, a variety of physical and chemical properties like heat of evaporation, heat of formation, boiling point, chromatographic retention, surface tension, and vapor pressure of understudy molecular compound can be identified. A TI gives us the mathematical language to study a molecular graph. There are three types of TIs:
(1) Degree-based TIs
(2) Distance-based TIs
(3) Spectrum-based TIs

The first type of TI depends upon the degree of vertices, second one depends upon the distance of vertices and the third type of TI depends upon the spectrum of graph.
2.1. Zagreb Indices. To compute total π-electron energy, the following TI is defined:

$$
\begin{equation*}
M_{1}(G)=\sum_{v \in V(G)} d_{v}^{2} \tag{1}
\end{equation*}
$$

But soon it was observed that this index increases with increases in branching of the skeleton of carbon atoms. After 10 years, Balaban et al. wrote a review [21], in which he declared M1 and M2 are among the degree-based TIs and named them as Zagreb group indices. The name Zagreb group indices was soon changed to Zagreb indices (ZIs), and nowadays, M_{1} and M_{2} are abbreviated as first Zagreb index and second Zagreb index.

In 1975, Gutman et al. gave a remarkable identity [22]. Hence, these two indices are among the oldest degree-based descriptors, and their properties are extensively investigated. The mathematical formulae of these indices are

$$
\begin{align*}
& M_{1}(G)=\sum_{u v \in E(G)} d_{u}+d_{v}, \\
& M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v} . \tag{2}
\end{align*}
$$

For detailed survey about these indices, we refer [23-26]. Doslic et al. [27] gave the idea of augmented ZI, whose mathematical formula is

$$
\begin{equation*}
\operatorname{AZI}(G)=\sum_{u v \in E(G)}\left(\frac{d_{u} d_{v}}{d_{u}+d_{v}-2}\right)^{3} \tag{3}
\end{equation*}
$$

2.2. Randić or Connectivity Index. Historically, ZIs are the very first degree-based TIs, but these indices were used for completely different purposes; therefore, the first genuine degree-based TI is the Randić index (RI) which was given in 1975 by Randić [28] as

$$
\begin{equation*}
R_{-1 / 2}(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{u} d_{v}}} \tag{4}
\end{equation*}
$$

Firstly, Randić named it as a branching index, which was soon named as connectivity index, and nowadays, it is called as RI. The RI is the most popular degree-based TI and has been extensively studied by both mathematicians and chemists. Randić himself wrote two reviews [29, 30], and
many papers and books on this topological invariant are present in the literature; few of them are [31-34]. Researchers recognized the importance of the Randić index in drug design. Bollbás and Erdos, famous mathematicians of that time investigated some hidden mathematical properties of RI [35]; after that, RI was worth studying, and a surge of publications began [36-39]. An unexpected mathematical quality of the Randić index was discovered recently, which tells us about the relation of this topological invariant with the normalized Laplacian matrix [38, 40, 41]. The GRI known as general RI [42] is defined as

$$
\begin{equation*}
R_{\alpha}(G)=\sum_{u v \in E(G)}\left(d_{u} d_{v}\right)^{\alpha} \tag{5}
\end{equation*}
$$

2.3. M-Polynomial. The mathematical formula of M-polynomial is

$$
\begin{equation*}
M(G ; x, y)=\sum_{u v \in E(G)}\left(x^{d_{u}} y^{d_{v}}\right) \tag{6}
\end{equation*}
$$

Detailed survey about the definitions of other TIs computed in this paper and relation of TIs with M-polynomial can be seen in [43, 44], where

$$
\begin{align*}
D_{x}(f(x, y)) & =x \frac{\partial}{\partial x}(f(x, y)), \\
D_{y}(f(x, y)) & =y \frac{\partial}{\partial y}(f(x, y)), \\
S_{x}(f(x, y)) & =\int_{0}^{x} \frac{f(t, y)}{t} \mathrm{~d} t \tag{7}\\
S_{y}(f(x, y)) & =\int_{0}^{y} \frac{f(x, t)}{t} \mathrm{~d} t \\
J(f(x, y)) & =J(f(x, x)) \\
Q_{\alpha}(f(x, y)) & =x^{\alpha}(f(x, y)) .
\end{align*}
$$

3. Methodology

To compute the M-polynomial of a graph G, we need to compute the number of vertices and edges in it and divide the edge set into different classes with respect to the degrees of end vertices. From the M-polynomials, we can recover many degree-dependent indices by applying some differential and integral operators.

4. Applications in Chemistry

A topological description is used to depict the features of the studied compounds, and indices of graph-theoretical origin are used to investigate the correlations between structure and biological activity [45-48]. For example, the Randić index demonstrates great relationship with the physical property of alkanes. The geometric arithmetic index has a similar role as that of the Randic index. The sum-connectivity index is
helpful in guessing the melting point of compounds. Zagreb indices are used to calculate π-electron energy.

5. Main Results

In this section, we compute M-polynomials of understudy networks and recover nine TIs from these polynomials.

5.1. Results for $O P_{n}$

Theorem 1. Let $O P_{n}$ be the swapped network; then,

$$
\begin{align*}
M(G ; x, y)= & 2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} \tag{8}
\end{align*}
$$

Proof. The $O P_{n}$ network has the following four types of edges based on the degree of end vertices:

$$
\begin{align*}
& E_{\{1,3\}}\left(O P_{n}\right)=\left\{u v \in E\left(O P_{n}\right): d_{u}=1, d_{v}=3\right\}, \\
& E_{\{2,2\}}\left(O P_{n}\right)=\left\{u v \in E\left(O P_{n}\right): d_{u}=2, d_{v}=2\right\}, \tag{9}\\
& E_{\{2,3\}}\left(O P_{n}\right)=\left\{u v \in E\left(O P_{n}\right): d_{u}=2, d_{v}=3\right\}, \\
& E_{\{3,3\}}\left(O P_{n}\right)=\left\{u v \in E\left(O P_{n}\right): d_{u}=3, d_{v}=3\right\},
\end{align*}
$$

such that

$$
\begin{align*}
& \left|E_{\{1,3\}}\left(O P_{n}\right)\right|=2, \\
& \left|E_{\{2,2\}}\left(O P_{n}\right)\right|=3, \\
& \left|E_{\{2,3\}}\left(O P_{n}\right)\right|=(6 n-14), \tag{10}\\
& \left|E_{\{3,3\}}\left(O P_{n}\right)\right|=\left(\frac{3(n-2)(n-3)}{2}\right) .
\end{align*}
$$

Now, from the definition of M-polynomial, we have

$$
\begin{align*}
M(G ; x, y)= & \sum_{\delta \leq i \leq j \leq \Delta} m_{i j} x^{i} y^{j} \\
= & \sum_{1 \leq 3} m_{13} x^{1} y^{3}+\sum_{2 \leq 2} m_{22} x^{2} y^{2}+\sum_{2 \leq 3} m_{23} x^{2} y^{3} \\
& +\sum_{3 \leq 3} m_{33} x^{3} y^{3} \\
= & \left|E_{\{1,3\}}\left(O P_{n}\right)\right| x^{1} y^{3}+\left|E_{\{2,2\}}\left(O P_{n}\right)\right| x^{2} y^{2} \\
& +\left|E_{\{2,3\}}\left(O P_{n}\right)\right| x^{2} y^{3} \\
& +\left|E_{\{3,3\}}\left(O P_{n}\right)\right| x^{3} y^{3} \\
= & 2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{11}
\end{align*}
$$

Corollary 1. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
M_{1}\left(O P_{n}\right)=9 n^{2}-15 n+4 \tag{12}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{13}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{x}(f(x, y))= & 2 x y^{3}+6 x^{2} y^{2}+2(6 n-14) x^{2} y^{3} \\
& +\left(\frac{9(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
D_{y}(f(x, y))= & 6 x y^{3}+6 x^{2} y^{2}+3(6 n-14) x^{2} y^{3} \tag{14}\\
& +\left(\frac{9(n-2)(n-3)}{2}\right) x^{3} y^{3} .
\end{align*}
$$

Now, we have

$$
\begin{align*}
M_{1}\left(O P_{n}\right) & =D_{x} f+\left.D_{y} f\right|_{x=y=1} \tag{15}\\
& =9 n^{2}-15 n+4
\end{align*}
$$

Corollary 2. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
M_{2}\left(O P_{n}\right)=\frac{27 n^{2}}{2}-\frac{63 n}{2}+15 \tag{16}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{17}
\end{align*}
$$

Then,

$$
\begin{aligned}
D_{y}(f(x, y))= & 6 x y^{3}+6 x^{2} y^{2}+3(6 n-14) x^{2} y^{3} \\
& +\left(\frac{9(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
D_{x} D_{y}(f(x, y))= & 6 x y^{3}+12 x^{2} y^{2}+6(6 n-14) x^{2} y^{3} \\
& +\left(\frac{27(n-2)(n-3)}{2}\right) x^{3} y^{3} .
\end{aligned}
$$

Now, we have

$$
\begin{align*}
M_{2}\left(O P_{n}\right) & =\left.D_{x} D_{y} f\right|_{x=y=1} \\
& =\frac{27 n^{2}}{2}-\frac{63 n}{2}+15 \tag{19}
\end{align*}
$$

Corollary 3. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
{ }^{m} M_{2}\left(O P_{n}\right)=\frac{n^{2}}{6}+\frac{n}{6}+\frac{1}{12} . \tag{20}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{21}
\end{align*}
$$

Then,

$$
\begin{aligned}
S_{y}(f(x, y))= & \left(\frac{2}{3}\right) x y^{3}+\left(\frac{3}{2}\right) x^{2} y^{2}+\left(\frac{(6 n-14)}{3}\right) x^{2} y^{3} \\
& +\left(\frac{(n-2)(n-3)}{2}\right) x^{3} y^{3}
\end{aligned}
$$

$$
S_{x} S_{y}(f(x, y))=\left(\frac{2}{3}\right) x y^{3}+\left(\frac{3}{4}\right) x^{2} y^{2}+\left(\frac{(6 n-14)}{6}\right) x^{2} y^{3}
$$

$$
\begin{equation*}
+\left(\frac{(n-2)(n-3)}{6}\right) x^{3} y^{3} \tag{22}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
{ }^{m} M_{2}\left(O P_{n}\right) & =\left.S_{x} S_{y} f\right|_{x=y=1} \\
& =\frac{n^{2}}{6}+\frac{n}{6}+\frac{1}{12} . \tag{23}
\end{align*}
$$

Corollary 4. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
R_{\alpha}\left(\left(O P_{n}\right)=6^{\alpha}+6^{\alpha} 2^{\alpha}+3^{\alpha} 2^{\alpha}(6 n-14)+\frac{9^{\alpha} 3^{\alpha}(n-2)(n-3)}{2^{\alpha}}\right) \tag{24}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{25}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{y}^{\alpha}(f(x, y))= & 6^{\alpha} x y^{3}+6^{\alpha} x^{2} y^{2}+3^{\alpha}(6 n-14) x^{2} y^{3} \\
& +\left(\frac{9^{\alpha}(n-2)(n-3)}{2^{\alpha}}\right) x^{3} y^{3}, \\
D_{x}^{\alpha} D_{y}^{\alpha}((f(x, y))= & 6^{\alpha} x y^{3}+6^{\alpha} 2^{\alpha} x^{2} y^{2}+3^{\alpha} 2^{\alpha}(6 n-14) x^{2} y^{3} \\
& \left.+\left(\frac{9^{\alpha} 3^{\alpha}(n-2)(n-3)}{2^{\alpha}}\right) x^{3} y^{3}\right) . \tag{26}
\end{align*}
$$

Now, we have

$$
\begin{align*}
& R_{\alpha}\left(\left(O P_{n}\right)==\left.D_{x}^{\alpha} D_{y}^{\alpha} f\right|_{x=y=1}\right. \\
& =6^{\alpha}+6^{\alpha} 2^{\alpha}+3^{\alpha} 2^{\alpha}(6 n-14)+\frac{9^{\alpha} 3^{\alpha}(n-2)(n-3)}{2^{\alpha}} \tag{27}
\end{align*}
$$

Corollary 5. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
R R_{\alpha}\left(\left(O P_{n}\right)=\frac{2^{\alpha}}{3^{\alpha}}+\frac{3^{\alpha}}{2^{2 \alpha}}+\frac{6 n-14}{3^{\alpha} 2^{\alpha}}+\frac{(n-2)(n-3)}{2^{\alpha} 3^{\alpha}}\right) . \tag{28}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{29}
\end{align*}
$$

Then,

$$
\begin{align*}
S_{y}^{\alpha}(f(x, y))= & \left(\frac{2^{\alpha}}{3^{\alpha}}\right) x y^{3}+\left(\frac{3^{\alpha}}{2^{\alpha}}\right) x^{2} y^{2}+\left(\frac{(6 n-14)}{3^{\alpha}}\right) x^{2} y^{3} \\
& +\left(\frac{(n-2)(n-3)}{2^{\alpha}}\right) x^{3} y^{3}, \\
S_{x}^{\alpha} S_{y}^{\alpha}((f(x, y))= & \left(\frac{2^{\alpha}}{3^{\alpha}}\right) x y^{3}+\left(\frac{3^{\alpha}}{2^{2 \alpha}}\right) x^{2} y^{2}+\left(\frac{(6 n-14)}{3^{\alpha} 2^{\alpha}}\right) x^{2} y^{3} \\
& \left.+\left(\frac{(n-2)(n-3)}{2^{\alpha} 3^{\alpha}}\right) x^{3} y^{3}\right) . \tag{30}
\end{align*}
$$

Now, we have

$$
\begin{align*}
& R R_{\alpha}\left(\left(O P_{n}\right)==\left.S_{x}^{\alpha} S_{y}^{\alpha} f\right|_{x=y=1}\right. \\
& =\frac{2^{\alpha}}{3^{\alpha}}+\frac{3^{\alpha}}{2^{2 \alpha}}+\frac{6 n-14}{3^{\alpha} 2^{\alpha}}+\frac{(n-2)(n-3)}{2^{\alpha} 3^{\alpha}} . \tag{31}
\end{align*}
$$

Corollary 6. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
\operatorname{SSD}\left(O P_{n}\right)=3 n^{2}-2 n+\frac{1}{3} \tag{32}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{33}
\end{align*}
$$

Then,

$$
\begin{align*}
S_{x} D_{y}(f(x, y))= & 6 x y^{3}+3 x^{2} y^{2}+\left(\frac{3(6 n-14)}{2}\right) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} \\
D_{x} S_{y}(f(x, y))= & \left(\frac{2}{3}\right) x y^{3}+3 x^{2} y^{2}+\left(\frac{2(6 n-14)}{3}\right) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{34}
\end{align*}
$$

Now, we have

$$
\begin{align*}
\operatorname{SSD}\left(O P_{n}\right) & =\left.\left(D_{x} S_{y} f+S_{x} D_{y} f\right)\right|_{x=y=1} \\
& =3 n^{2}-2 n+\frac{1}{3} \tag{35}
\end{align*}
$$

Corollary 7. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
H\left(O P_{n}\right)=2\left(\frac{n^{2}}{4}-\frac{n}{20}-\frac{1}{20}\right) \tag{36}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{37}
\end{align*}
$$

Then,

$$
J(f(x, y))=5 x^{4}+(6 n-14) x^{5}+\left(\frac{3(n-2)(n-3)}{2}\right) x^{6}
$$

$2 S_{x} J(f(x, y))=2\left(\frac{5 x^{4}}{4}+\frac{(6 n-14) x^{5}}{5}+\frac{(n-2)(n-3) x^{6}}{4}\right)$.

Now, we have

$$
\begin{align*}
H\left(O P_{n}\right) & =\left.2 S_{x} J f\right|_{x=1} \\
& =2\left(\frac{n^{2}}{4}-\frac{n}{20}-\frac{1}{20}\right) . \tag{39}
\end{align*}
$$

Corollary 8. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
I\left(O P_{n}\right)=\frac{9 n^{2}}{4}-\frac{81 n}{20}-\frac{129}{5} \tag{40}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{41}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{y}(f(x, y))= & 6 x y^{3}+6 x^{2} y^{2}+3(6 n-14) x^{2} y^{3} \\
& +\left(\frac{9(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
D_{x} D_{y}(f(x, y))= & 6 x y^{3}+12 x^{2} y^{2}+6(6 n-14) x^{2} y^{3} \\
& +\left(\frac{27(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
J D_{x} D_{y}(f(x, y))= & 18 x^{4}+6(6 n-14) x^{5} \\
& +\left(\frac{27(n-2)(n-3)}{2}\right) x^{6}, \\
S_{x} J D_{x} D_{y}(f(x, y))= & \frac{18 x^{4}}{4}+\left(\frac{6(6 n-14)}{5}\right) x^{5} \\
& +\left(\frac{27(n-2)(n-3)}{12}\right) x^{6} . \tag{42}
\end{align*}
$$

Now, we have

$$
\begin{align*}
I\left(O P_{n}\right) & =\left.S_{x} J D_{x} D_{y} f\right|_{x=1} \\
& =\frac{9 n^{2}}{4}-\frac{81 n}{20}-\frac{129}{5} \tag{43}
\end{align*}
$$

Corollary 9. Let $O P_{n}$ be the swapped network; then,

$$
\begin{equation*}
A\left(O P_{n}\right)=\frac{729 n^{2}}{64}-\frac{573 n}{64}-\frac{413}{32} \tag{44}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=2 x y^{3}+3 x^{2} y^{2}+(6 n-14) x^{2} y^{3} \\
& +\left(\frac{3(n-2)(n-3)}{2}\right) x^{3} y^{3} . \tag{45}
\end{align*}
$$

Then,

$$
\begin{aligned}
D_{y}^{3}(f(x, y))= & 54 x y^{3}+24 x^{2} y^{2}+27(6 n-14) x^{2} y^{3} \\
& +\left(\frac{81(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
D_{x}^{3} D_{y}^{3}(f(x, y))= & 54 x y^{3}+192 x^{2} y^{2}+216(6 n-14) x^{2} y^{3} \\
& +\left(\frac{2187(n-2)(n-3)}{2}\right) x^{3} y^{3}, \\
J D_{x}^{3} D_{y}^{3}(f(x, y))= & 246 x^{4}+216(6 n-14) x^{5} \\
& +\left(\frac{2187(n-2)(n-3)}{2}\right) x^{6},
\end{aligned}
$$

$$
\begin{aligned}
Q_{-2} J D_{x}^{3} D_{y}^{3}(f(x, y))= & 246 x^{2}+216(6 n-14) x^{3} \\
& +\left(\frac{2187(n-2)(n-3)}{2}\right) x^{4},
\end{aligned}
$$

$$
\begin{align*}
S_{x}^{3} Q_{-2} J D_{x}^{3} D_{y}^{3}(f(x, y))= & \frac{123 x^{2}}{4}+8(6 n-14) x^{3} \\
& +\left(\frac{729(n-2)(n-3)}{64}\right) x^{4} \tag{46}
\end{align*}
$$

Now, we have

$$
\begin{align*}
A\left(O P_{n}\right) & =\left.S_{x}^{3} Q_{-2} J D_{x}^{3} D_{y}^{3} f\right|_{x=1} \\
& =\frac{729 n^{2}}{64}-\frac{573 n}{64}-\frac{413}{32} . \tag{47}
\end{align*}
$$

5.2. Results for $\left(O R_{k}\right)$

Theorem 2. Let $O R_{k}$ be the swapped network; then,

$$
\begin{equation*}
M(G ; x, y)=n k x^{k} y^{k+1}+\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} . \tag{48}
\end{equation*}
$$

Proof. The $O R_{k}$ network has the following two types of edges based on the degree of end vertices:

$$
\begin{align*}
E_{\{k, k+1\}}\left(O R_{k}\right) & =\left\{u v \in E\left(O R_{k}\right): d_{u}=k, d_{v}=k+1\right\}, \\
E_{\{k+1, k+1\}}\left(O R_{k}\right) & =\left\{u v \in E\left(O R_{k}\right): d_{u}=k+1, d_{v}=k+1\right\}, \tag{49}
\end{align*}
$$

such that

$$
\begin{align*}
\left|E_{\{k, k+1\}}\left(O R_{k}\right)\right| & =n k, \\
\left|E_{\{k+1, k+1\}}\left(O R_{k}\right)\right| & =\frac{n^{2}(k+1)-n(1+2 k)}{2} . \tag{50}
\end{align*}
$$

Now, from the definition of M-polynomial, we have

$$
\begin{align*}
M(G ; x, y) & =\sum_{\delta \leq i \leq j \leq \Delta} m_{i j} x^{i} y^{j} \\
& =\sum_{k \leq k+1} m_{k(k+1)} x^{k} y^{k+1}+\sum_{k+1 \leq k+1} m_{(k+1)(k+1)} x^{k+1} y^{k+1} \\
& =\left|E_{\{k, k+1\}}\left(O R_{k}\right)\right| x^{k} y^{k+1}+\left|E_{\{k+1, k+1\}}\left(O R_{k}\right)\right| x^{k+1} y^{k+1} \\
& =n k x^{k} y^{k+1}+\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} . \tag{51}
\end{align*}
$$

Corollary 10. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{equation*}
M_{1}\left(O R_{k}\right)=2 n k^{2}+n k+n^{2}(k+1)^{2}-n(k+1)(1+2 k) . \tag{52}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{53}
\end{align*}
$$

Then,

$$
\begin{aligned}
D_{x}(f(x, y))= & n k^{2} x^{k} y^{k+1} \\
& +(k+1)\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}
\end{aligned}
$$

$$
D_{y}(f(x, y))=n k(k+1) x^{k} y^{k+1}
$$

$$
\begin{equation*}
+(k+1)\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{54}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
M_{1}\left(O R_{k}\right) & =D_{x} f+\left.D_{y} f\right|_{x=y=1} \\
& =2 n k^{2}+n k+n^{2}(k+1)^{2}-n(k+1)(1+2 k) . \tag{55}
\end{align*}
$$

Corollary 11. Let $\left(O R_{k}\right)$ be the swapped network; then,
$M_{2}\left(O R_{k}\right)=n k^{3}+n k^{2}+\frac{n^{2}(k+1)^{3}}{2}-\frac{n(k+1)^{2}(1+2 k)}{2}$.

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{57}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{y}(f(x, y))= & n k^{2} x^{k} y^{k+1}+n k x^{k} y^{k+1} \\
& +(k+1)\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}, \\
D_{x} D_{y}(f(x, y))= & n k^{3} x^{k} y^{k+1}+n k^{2} x^{k} y^{k+1} \\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} . \tag{58}
\end{align*}
$$

Now, we have

$$
\begin{align*}
M_{2}\left(O R_{k}\right) & =\left.D_{x} D_{y} f\right|_{x=y=1} \\
& =n k^{3}+n k^{2}+\frac{n^{2}(k+1)^{3}}{2}-\frac{n(k+1)^{2}(1+2 k)}{2} . \tag{59}
\end{align*}
$$

Corollary 12. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{equation*}
{ }^{m} M_{2}\left(O R_{k}\right)=\frac{n k}{\left(k^{2}+k\right)}+\frac{n^{2}}{(2 k+2)}-\frac{n(1+2 k)}{2(k+1)^{2}} . \tag{60}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{61}
\end{align*}
$$

Then,

$$
\begin{aligned}
S_{y}(f(x, y))= & \left(\frac{n k}{(k+1)}\right) x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2(k+1)}\right) x^{k+1} y^{k+1}
\end{aligned}
$$

$$
\begin{align*}
S_{x} S_{y}(f(x, y))= & \left(\frac{n k}{\left(k^{2}+k\right)}\right) x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2(k+1)^{2}}\right) x^{k+1} y^{k+1} \tag{62}
\end{align*}
$$

Now, we have

$$
\begin{array}{r}
{ }^{m} M_{2}\left(O R_{k}\right)=\left.S_{x} S_{y} f\right|_{x=y=1} \\
=\frac{n k}{\left(k^{2}+k\right)}+\frac{n^{2}}{(2 k+2)}-\frac{n(1+2 k)}{2(k+1)^{2}} \tag{63}
\end{array}
$$

Corollary 13. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{align*}
R_{\alpha}\left(\left(O R_{k}\right)=\right. & n k^{3 \alpha}+n k^{2 \alpha} \\
& \left.+(k+1)^{2 \alpha}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2^{\alpha}}\right) x^{k+1} y^{k+1}\right) \tag{64}
\end{align*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{65}
\end{align*}
$$

Then,

$$
\begin{aligned}
D_{y}^{\alpha}(f(x, y))= & n k^{2 \alpha} x^{k} y^{k+1}+n k^{\alpha} x^{k} y^{k+1} \\
& +(k+1)^{\alpha}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}
\end{aligned}
$$

$$
D_{x}^{\alpha} D_{y}^{\alpha}\left((f(x, y))=n k^{3 \alpha} x^{k} y^{k+1}+n k^{2 \alpha} x^{k} y^{k+1}\right.
$$

$$
\begin{equation*}
\left.+(k+1)^{2 \alpha}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}\right) . \tag{66}
\end{equation*}
$$

Now, we have

$$
\begin{align*}
& R_{\alpha}\left(\left(O R_{k}\right)==\left.D_{x}^{\alpha} D_{y}^{\alpha} f\right|_{x=y=1}\right. \\
& =n k^{3 \alpha}+n k^{2 \alpha}+(k+1)^{2 \alpha}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2^{\alpha}}\right) x^{k+1} y^{k+1} \tag{67}
\end{align*}
$$

Corollary 14. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{equation*}
R R_{\alpha}\left(\left(O R_{k}\right)=\frac{n}{(k+1)^{\alpha}}+\left(\frac{n^{2}(k+1)-n(1+2 k)}{(k+1)^{2 \alpha} 2^{\alpha}}\right)\right) . \tag{68}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{69}
\end{align*}
$$

Then,

$$
\begin{aligned}
S_{y}^{\alpha}(f(x, y))= & \left(\frac{n k^{\alpha}}{(k+1)^{\alpha}}\right) x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2^{\alpha}(k+1)^{\alpha}}\right) x^{k+1} y^{k+1}
\end{aligned}
$$

$$
\begin{align*}
S_{x}^{\alpha} S_{y}^{\alpha}((f(x, y))= & \left(\frac{n}{(k+1)^{\alpha}}\right) x^{k} y^{k+1} \\
& \left.+\left(\frac{n^{2}(k+1)-n(1+2 k)}{2^{\alpha}(k+1)^{2 \alpha}}\right) x^{k+1} y^{k+1}\right) \tag{70}
\end{align*}
$$

Now, we have

$$
\begin{align*}
& R R_{\alpha}\left(\left(O R_{k}\right)==\left.S_{x}^{\alpha} S_{y}^{\alpha} f\right|_{x=y=1}\right. \\
& =\frac{n}{(k+1)^{\alpha}}+\left(\frac{n^{2}(k+1)-n(1+2 k)}{(k+1)^{2 \alpha} 2^{\alpha}}\right) . \tag{71}
\end{align*}
$$

Corollary 15. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{equation*}
\operatorname{SSD}\left(O R_{k}\right)=\frac{n k^{2}}{(k+1)}+n k+n+n^{2}(k+1)-n(1+2 k) \tag{72}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{73}
\end{align*}
$$

Then,

$$
\begin{aligned}
S_{x} D_{y}(f(x, y))= & n k x^{k} y^{k+1}+n x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}
\end{aligned}
$$

$$
\begin{align*}
D_{x} S_{y}(f(x, y))= & \left(\frac{n k^{2}}{(k+1)}\right) x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{74}
\end{align*}
$$

Now, we have

$$
\begin{align*}
\operatorname{SSD}\left(O R_{k}\right) & =\left.\left(D_{x} S_{y} f+S_{x} D_{y} f\right)\right|_{x=y=1} \\
& =\frac{n k^{2}}{(k+1)}+n k+n+n^{2}(k+1)-n(1+2 k) \tag{75}
\end{align*}
$$

Corollary 16. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{equation*}
H\left(O R_{k}\right)=2\left(\frac{n k}{2 k+1}+\frac{n^{2}(k+1)}{4 k+4}-\frac{n(1+2 k)}{4 k+4}\right) \tag{76}
\end{equation*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{77}
\end{align*}
$$

Then,

$$
\begin{align*}
J(f(x, y))= & n k x^{2 k+1}+\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{2 k+2} \\
2 S_{x} J(f(x, y))= & 2\left(\left(\frac{n k}{2 k+1}\right) x^{2 k+1}\right. \\
& +\left(\frac{n^{2}(k+1)}{4 k+4}\right) x^{2 k+2} \\
& \left.-\left(\frac{n(1+2 k)}{4 k+4}\right) x^{2 k+2}\right) \tag{78}
\end{align*}
$$

Now, we have

$$
\begin{align*}
H\left(O R_{k}\right) & =\left.2 S_{x} J f\right|_{x=1} \\
& =2\left(\frac{n k}{2 k+1}+\frac{n^{2}(k+1)}{4 k+4}-\frac{n(1+2 k)}{4 k+4}\right) \tag{79}
\end{align*}
$$

Corollary 17. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{align*}
I\left(O R_{k}\right)= & \frac{n k^{3}}{2 k+1}+\frac{n k^{2}}{2 k+1} \\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{4 k+4}\right) \tag{80}
\end{align*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{81}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{y}(f(x, y))= & n k(k+1) x^{k} y^{k+1} \\
& +(k+1)\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}, \\
D_{x} D_{y}(f(x, y))= & n k^{3} x^{k} y^{k+1}+n k^{2} x^{k} y^{k+1} \\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}, \\
J D_{x} D_{y}(f(x, y))= & n k^{3} x^{2 k+1}+n k^{2} x^{2 k+1} \\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{2 k+2}, \\
S_{x} J D_{x} D_{y}(f(x, y))= & \left(\frac{n k^{3}}{2 k+1}\right) x^{2 k+1}+\left(\frac{n k^{2}}{2 k+1}\right) x^{2 k+1} \\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{4 k+4}\right) x^{2 k+2} . \tag{82}
\end{align*}
$$

Now, we have

$$
\begin{align*}
I\left(O R_{k}\right)= & \left.S_{x} J D_{x} D_{y} f\right|_{x=1} \\
= & \frac{n k^{3}}{2 k+1}+\frac{n k^{2}}{2 k+1} \tag{83}\\
& +(k+1)^{2}\left(\frac{n^{2}(k+1)-n(1+2 k)}{4 k+4}\right)
\end{align*}
$$

Corollary 18. Let $\left(O R_{k}\right)$ be the swapped network; then,

$$
\begin{align*}
A\left(O R_{k}\right)= & \frac{n k^{5}(k+1)^{2}}{(2 k-1)^{3}} \\
& +\frac{n k^{4}(k+1)^{2}}{(2 k-1)^{3}} \tag{84}\\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{8 k^{3}}\right)
\end{align*}
$$

Proof. Let

$$
\begin{align*}
f(x, y)= & M(G ; x, y)=n k x^{k} y^{k+1} \\
& +\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1} \tag{85}
\end{align*}
$$

Then,

$$
\begin{align*}
D_{y}^{3}(f(x, y))= & n k^{2}(k+1)^{2} x^{k} y^{k+1}+n k(k+1)^{2} x^{k} y^{k+1} \\
& +(k+1)^{3}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}, \\
D_{y}^{3} D_{y}^{3}(f(x, y))= & n k^{5}(k+1)^{2} x^{k} y^{k+1}+n k^{4}(k+1)^{2} x^{k} y^{k+1} \\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{k+1} y^{k+1}, \\
J D_{y}^{3} D_{y}^{3}(f(x, y))= & n k^{5}(k+1)^{2} x^{2 k+1}+n k^{4}(k+1)^{2} x^{2 k+1} \\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{2 k+2}, \\
Q_{-2} J D_{y}^{3} D_{y}^{3}(f(x, y))= & n k^{5}(k+1)^{2} x^{2 k-1}+n k^{4}(k+1)^{2} x^{2 k-1} \\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{2}\right) x^{2 k}, \\
S_{x}^{3} Q_{-2} J D_{y}^{3} D_{y}^{3}(f(x, y))= & \left(\frac{n k^{5}(k+1)^{2}}{(2 k-1)^{3}}\right) x^{2 k-1}+\left(\frac{n k^{4}(k+1)^{2}}{(2 k-1)^{3}}\right) x^{2 k-1} \\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{8 k^{3}}\right) x^{2 k} \tag{86}
\end{align*}
$$

Now, we have

$$
\begin{align*}
A\left(O R_{k}\right)= & \left.S_{x}^{3} Q_{-2} J D_{y}^{3} D_{y}^{3} f\right|_{x=1} \\
= & \frac{n k^{5}(k+1)^{2}}{(2 k-1)^{3}}+\frac{n k^{4}(k+1)^{2}}{(2 k-1)^{3}} \tag{87}\\
& +(k+1)^{6}\left(\frac{n^{2}(k+1)-n(1+2 k)}{8 k^{3}}\right)
\end{align*}
$$

6. Conclusion

In this paper, our focus is on swapped interconnection networks that allow systematic construction of large, scalable, modular, and robust parallel architectures, while maintaining many desirable attributes of the underlying basis network comprising its clusters. We have computed several TIs of underlined networks. Firstly, we computed Mpolynomials of understudy networks, and then we recovered Zagreb indices, Randić indices, and some other indices [49-52].

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they no conflicts of interest.

Authors' Contributions

All authors contributed equally to this study.

Acknowledgments

This study was partially supported by the Natural Science Foundation of Anhui Province (no. KJ2018A059).

References

[1] W. Gao, M. R. Farahani, and L. Shi, "Forgotten topological index of some drug structures," Acta Medica Mediterranea, vol. 32, no. 1, pp. 579-585, 2016.
[2] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, and M. R. Farahani, "Forgotten topological index of chemical structure in drugs," Saudi Pharmaceutical Journal, vol. 24, no. 3, pp. 258-264, 2016.
[3] W. Gao, W. Wang, and M. R. Farahani, "Topological indices study of molecular structure in anticancer drugs," Journal of Chemistry, vol. 2016, Article ID 3216327, 8 pages, 2016.
[4] M. Imran, A. Asghar, and A. Q. Baig, "On graph invariants of oxide network," Engineering and Applied Science Letters, vol. 1(2018), no. 1, pp. 23-28, 2018.
[5] G. Liu, Z. Jia, and W. Gao, "Ontology similarity computing based on stochastic primal dual coordinate technique," Open Journal of Mathematical Sciences, vol. 2(2018), no. 1, pp. 221-227, 2018.
[6] S. Noreen and A. Mahmood, "Zagreb polynomials and redefined Zagreb indices for the line graph of carbon nanocones," Open Journal of Mathematical Analysis, vol. 2(2018), no. 1, pp. 66-73, 2018.
[7] S. Hayat and M. Imran, "Computation of topological indices of certain networks," Applied Mathematics and Computation, vol. 240, pp. 213-228, 2014.
[8] S. Hayat and M. Imran, "Computation of certain topological indices of nanotubes covered by," Journal of Computational and Theoretical Nanoscience, vol. 12, no. 4, pp. 533-541, 2015.
[9] A. Q. Baig, M. Imran, and H. Ali, "On topological indices of poly oxide, poly silicate, DOX, and DSL networks," Canadian Journal of Chemistry, vol. 93, no. 7, pp. 730-739, 2015.
[10] Y. Bashir, A. Aslam, M. Kamran et al., "On forgotten topological indices of some dendrimers structure," Molecules, vol. 22, no. 6, p. 867, 2017.
[11] A. Aslam, J. L. Guirao, S. Ahmad, and W. Gao, "Topological indices of the line graph of subdivision graph of complete bipartite graphs," Applied Mathematics \& Information Sciences, vol. 11, no. 6, pp. 1631-1636, 2017.
[12] G. C. Marsden, P. J. Marchand, P. Harvey, and S. C. Esener, "Optical transpose interconnection system architectures," Optics Letters, vol. 18, no. 13, pp. 1083-1085, 1993.
[13] A. Al-Ayyoub, A. Awwad, K. Day, and M. Ould-Khaoua, "Generalized methods for algorithm development on optical systems," The Journal of Supercomputing, vol. 38, no. 2, pp. 111-125, 2006.
[14] C. F. Wang and S. Sahni, "Matrix multiplication on the OTISmesh optoelectronic computer," IEEE Transactions on Computers, vol. 50, no. 7, pp. 635-646, 2001.
[15] C. F. Wang and S. Sahni, "Image processing on the OTISmesh optoelectronic computer," IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 2, pp. 97-109, 2000.
[16] C. F. Wang and S. Sahni, "Basic operations on the OTIS-mesh optoelectronic computer," IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 12, pp. 1226-1236, 1998.
[17] S. Rajasekaran and S. Sahni, "Randomized routing, selection, and sorting on the OTIS-mesh," IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 9, pp. 833-840, 1998.
[18] A. R. Virk, M. N. Jhangeer, and M. A. Rehman, "Reverse Zagreb and reverse hyper-zagreb indices for silicon carbide $\mathrm{Si}_{2} \mathrm{C}_{3} \mathrm{I}[\mathrm{r}, \mathrm{s}]$ and $\mathrm{Si}_{2} \mathrm{C}_{3} \mathrm{II}[\mathrm{r}, \mathrm{s}]$," Engineering and Applied Science Letters, vol. 1, no. 2, pp. 37-50, 2018.
[19] N. De, "Computing reformulated first Zagreb index of some chemical graphs as an application of generalized hierarchical product of graphs," Open Journal of Mathematical Sciences, vol. 2, no. 1, pp. 338-350, 2018.
[20] N. De, "Hyper Zagreb index of bridge and chain graphs," Open Journal of Mathematical Sciences, vol. 2, no. 1, pp. 1-17, 2018.
[21] A. T. Balaban, I. Motoc, D. Bonchev, and O. Mekenyan, "Topological indices for structureactivity correlations," in Steric Effects in Drug Design, pp. 21-55, Springer, Berlin, Germany, 1983.
[22] I. Gutman, B. Ruscic, N. Trinajstic, and C. F. Wilcox Jr., "Graph theory and molecular orbitals. XII. Acyclic polyenes," The Journal of Chemical Physics, vol. 62, no. 9, pp. 3399-3405, 1975.
[23] W. Gao, M. Asif, and W. Nazeer, "The study of honey comb derived network via topological indices," Open Journal of Mathematical Analysis, vol. 2, no. 2, pp. 10-26, 2018.
[24] H. Siddiqui and M. R. Farahani, "Forgotten polynomial and forgotten index of certain interconnection networks," Open Journal of Mathematical Analysis, vol. 1, no. 1, pp. 44-59, 2017.
[25] W. Gao, B. Muzaffar, and W. Nazeer, "K-Banhatti and Khyper Banhatti indices of dominating David derived network," Open Journal of Mathematical Analysis, vol. 1, no. 1, pp. 13-24, 2017.
[26] W. Gao, A. Asghar, and W. Nazeer, "Computing degree-based topological indices of jahangir graph," Engineering and Applied Science Letters, vol. 1, no. 1, pp. 16-22, 2018.
[27] T. Doslic, B. Furtula, A. Graovac, I. Gutman, S. Moradi, and Z. Yarahmadi, "On vertex degree based molecular structure descriptors," MATCH Communications in Mathematical and in Computer Chemistry, vol. 66, no. 2, pp. 613-626, 2011.
[28] M. Randić, "Characterization of molecular branching," Journal of the American Chemical Society, vol. 97, no. 23, pp. 6609-6615, 1975.
[29] M. Randić, "On history of the Randić index and emerging hostility toward chemical graph theory," MATCH Communications in Mathematical and in Computer Chemistry, vol. 59, pp. 5-124, 2008.
[30] M. Randić, "The connectivity index 25 years after," Journal of Molecular Graphics and Modelling, vol. 20, no. 1, pp. 19-35, 2001.
[31] K. C. Das and I. Gutman, "Some properties of the second Zagreb index," MATCH Communications in Mathematical and in Computer Chemistry, vol. 52, no. 1, pp. 3-1, 2004.
[32] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, NY, USA, 1976.
[33] L. B. Kier and L. H. Hall, Molecular Connectivity in StructureActivity Analysis, Research Studies, Boston, MA, USA, 1986.
[34] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, University of Kragujevac, Kragujevac, Serbia, 2006.
[35] B. Bollobás and P. Erdos, "Graphs of extremal weights," Ars Combinatoria, vol. 50, pp. 225-233, 1998.
[36] Y. Hu, X. Li, Y. Shi, T. Xu, and I. Gutman, "On molecular graphs with smallest and greatest zeroth-order general Randić index," MATCH Communications in Mathematical and in Computer Chemistry, vol. 54, no. 2, pp. 425-434, 2005.
[37] Y. Ma, S. Cao, Y. Shi, I. Gutman, M. Dehmer, and B. Furtula, "From the connectivity index to various Randić-type descriptors," MATCH Communications in Mathematical and in Computer Chemistry, vol. 80, no. 1, pp. 85-106, 2018.
[38] I. Gutman, B. Furtula, and S. B. Bozkurt, "On Randić energy," Linear Algebra and its Applications, vol. 442, pp. 50-57, 2014.
[39] X. Li and Y. Shi, "A survey on the Randić index," MATCH Communications in Mathematical and in Computer Chemistry, vol. 59, no. 1, pp. 127-156, 2008.
[40] M. Cavers, S. Fallat, and S. Kirkland, "On the normalized Laplacian energy and general Randić index R-1 of graphs," Linear Algebra and its Applications, vol. 433, no. 1, pp. 172190, 2010.
[41] S. B. Bozkurt, A. D. Gungor, I. Gutman, and A. S. Cevik, "Randić matrix and Randić energy," MATCH Communications in Mathematical and in Computer Chemistry, vol. 64, pp. 239-250, 2010.
[42] L. Pogliani, "From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors," Chemical Reviews, vol. 100, no. 10, pp. 3827-3858, 2000.
[43] J. B. Liu, M. Younas, M. Habib, M. Yousaf, and W. Nazeer, "M-polynomials and degree-based topological indices of VC5C7[p, q] and HC5C7[p, q] nanotubes," IEEE Access, vol. 7, pp. 41125-41132, 2019.
[44] M. Riaz, W. Gao, and A. Q. Baig, "M-polynomials and degreebased topological indices of some families of convex polytopes," Open Journal of Mathematical Sciences, vol. 2, no. 1, pp. 18-28, 2018.
[45] M. S. Anjum and M. U. Safdar, "K Banhatti and K hyperBanhatti indices of nanotubes," Engineering and Applied Science Letters, vol. 2, no. 1, pp. 19-37, 2019.
[46] Z. Shao, A. R. Virk, M. S. Javed, M. A. Rehman, and M. R. Farahani, "Degree based graph invariants for the molecular graph of Bismuth Tri-Iodide," Engineering and Applied Science Letters, vol. 2, no. 1, pp. 01-11, 2019.
[47] L. Yan, M. R. Farahani, and W. Gao, "Distance-based indices computation of symmetry molecular structures," Open Journal of Mathematical Sciences, vol. 2, no. 1, pp. 323-337, 2018.
[48] R. Kanabur and S. K. Hosamani, "Some numerical invariants associated with V-phenylenic nanotube and nanotori," Engineering and Applied Science Letters, vol. 1, no. 1, pp. 1-9, 2018.
[49] J. B. Liu, C. Wang, and S. Wang, "Zagreb indices and multiplicative Zagreb indices of eulerian graphs," Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, pp. 67-78, 2019.
[50] J. B. Liu and X. F. Pan, "Asymptotic Laplacian-energy-like invariant of lattices," Applied Mathematics and Computation, vol. 253, pp. 205-214, 2015.
[51] J. B. Liu and X.-F. Pan, "Minimizing Kirchhoffindex among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, vol. 291, pp. 84-88, 2016.
[52] J. B. Liu, J. Zhao, and Z. Zhu, "On the number of spanning trees and normalized Laplacian of linear octagonal-quadrilateral networks," International Journal of Quantum Chemistry, vol. 2019, Article ID e25971, , 2019.

The Scientific
World Journal

Journal of
Applied Chemistry

International Journal of Medicinal Chemistry

Hindawi

Submit your manuscripts at
www.hindawi.com

