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)e deposition of palladium nanoparticles (PdNPs) on the surface of n-Si (100) substrate by pulsed electrolysis in dimethyl
sulfoxide (DMSO) solutions of Pd(NO3)2 was investigated. It has been shown that nonaqueous medium (DMSO) contributes the
Pd (II) recovery at high cathode potential values avoiding side processes to occur. In combination with the pulse mode, this allows
the deposition of spherical PdNPs with their uniform distribution on the silicon surface. We established that the main factors
influencing the geometry of PdNPs are the value of the cathode potential, the concentration of palladium ions in solution, and the
number of pulse-pause cycles. It is shown that with increasing Ecathode value there is a tendency to increase the density of silicon
surface filling with nanoparticles. As the concentration of Pd(NO3)2 increases from 1 to 6mM, the density of silicon surface filling
with PdNPs and their average size also increase. We found that with increasing the number of pulse-pause cycles, there is a
predominant growth of nanoparticles in diameter, which causes 2D filling of the substrate surface.

1. Introduction

)e deposition of metal nanoparticles (MNPs) on a silicon
surface is one of its modifying methods to obtain (i) silicon
nanowires (SiNWs) and nanomatrices [1–3], (ii) elements of
highly sensitive sensors [4–6], (iii) water-splitting photo-
electrodes for hydrogen generation [7, 8], and so on. Elec-
trolysis is an effective way to form the MNPs/Si surface
systems [9, 10] due to the relative simplicity of hardware and
technology.)emost studied is the electrodeposition of noble
metals that is caused due to their high stability and high values
of the standard electrode potential (E0

Au3+/Au = 1.49V and
E0
Pd2+/Pd = 0.987V). )e latter is especially important for

providing a high value of ΔE0 (ΔE0 � E0
Nn+/N − E0

Si4+/Si),
which is identical to the high etching rate of silicon during the
formation of the nanoporous surface [1–3].

By varying the electrolyte composition, the values of the
cathodic potential or current density, and the methods of

current supply (stationary, cyclic, and pulsed), it is possible
to obtain MNPs of various shapes and sizes on the silicon
surface. Most of the studies on electrochemical production
of MNPs/Si surface systems have been performed in aqueous
solutions (see Table 1) [9–28]. However, the water factor as a
medium does not always provide the ability to control the
geometry of MNPs at the main stages of their formation:
cathodic reduction (1), nucleation, i.e., formation of metal
nanoclusters (MNCs) (2), and nanoparticles (3). After all, at
high values of cathodic potential (Ecathode) and low con-
centrations of reducible metal ions which is a prerequisite
for the deposition of MNPs, parallel processes take place,
e.g., the cathode reaction (4) and the interaction of silicon
with water (5).

Mn+
+ ne⟶ M0 (1)

mM0⟶ MNCs (2)
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MNCs + pM0⟶ MNPs (3)

2H2O + 2e⟶ H2 + 2OH−
(4)

Si + 2H2O⟶ SiO2 + 4H+
(5)

Reaction (4) due to gas evolution causes the local
turbulence of electrolyte and, accordingly, the instability of
the mass transfer of metal ions into the pre-electrode layer.
Reaction (5) results in the passivation of the silicon surface.
To prevent such undesirable processes, a nonaqueous
mediummay be used as it was shown previously in [29–32],
where the deposition of metals on silicon was performed in
organic solvents. However, these papers report about the
deposition of noble metals via the galvanic replacement
method. Electrodeposition on the silicon surface in organic
solvents has not been practically studied wide. Moreover,
the formation of a nanostructured Ru/Si surface at high
cathodic potentials from an ionic liquid [25] indicates the
prospect of such a direction of silicon surface modification.
)e purpose of this work is to establish the conditions of
deposition of PdNPs on a silicon surface in dimethyl
sulfoxide (DMSO) solutions under a pulsed electrolysis
regime. Application of pulse electrodeposition and the use
of organic aprotic solvents allow ensuring the

concentration stability of reducible metal ions in the pre-
electrode layer at high Ecathode values. As shown in [33, 34],
this provides conditions for the controlled deposition of
MNPs of a certain geometry.

2. Experimental

Crysteco n-Si (100) wafers with resistivity 4.5Ω·cm were
used for the experiments. Wafers were cut into equal
samples of 1× 1 cm2. Palladium deposition on a silicon
surface was carried out by electrolysis from solutions of 1, 2,
4, and 6mM Pd(NO3)2 + 50mM Bu4NClO4 in DMSO sol-
vent. )e working electrode was the n-type Si (100) cre-
mation plate, the anomalous platinum plate (S� 2.7 cm2). A
silver chloride electrode manufactured as Ag/AgCl in sat-
urated KCl solution was used as the reference electrode.
Before electrolysis, the silicon samples were etched for 10 s in
HF solution to remove the oxide film from the substrate
surface. After that, the surface of the working electrode was
washed with DMSO solvent. Subsequently, the three elec-
trodes were connected to an IPC-Pro 200 potentiostat and
immersed into a glass cell filled with ∼50 cm3 of the elec-
trolyte at 25°C. Palladium was precipitated under pulsed
electrolysis mode: pulse time (τon) 6ms and pauses (τoff)
300ms at E� − 1.8, − 2.0, and − 2.2V for 25, 50, 100, and 400

200nm

1µm

(a)

200nm

1µm

(b)

200nm

1µm

(c)

0 1 2 4 5 6 E, keV3

Si

Pd

(d)

Figure 1: SEM images of PdNPs on the silicon surface obtained by electrolysis in a solution of 4mM Pd(NO3)2 + 50mM Bu4NClO4 mixed
with DMSO for 400 cycles at Ecathode (V): − 1.8 (a), − 2.0 (b), − 2.2 (c), and EDX-spectrum (d).
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cycles. After the process is completed, the palladium-pre-
cipitated samples were washed with ethanol and air-dried.

)e morphology and composition of sediment on the
silicon surface were studied using a ZEISS EVO 40XVP
scanning electron microscope (SEM) and a Solver P47-PRO
atomic force microscope (AFM).)e images of the modified

surface were obtained by recording secondary electrons by
scanning an electron beam of 15 kV energy. )e chemical
composition of the resulting precipitates was characterized
using energy-dispersive X-ray spectroscopy (EDX).

)e statistical histograms were obtained using Origin
software pack with its standard deviation values of
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Figure 2: SEM images of PdNPs on the silicon surface obtained by electrolysis in a solution containing 1mM (a), 2mM (b), 4mM (c), and
6mM (d) of Pd(NO3)2, 50mM Bu4NClO4, and DMSO for 400 cycles at Ecathode � − 2.0V and the size distribution histograms of PdNPs (e).
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nanoparticle size. Additionally, NPs size and density were
determined by using the public domain Java image pro-
cessing program ImageJ2 [35].

3. Results and Discussion

Electrochemical deposition of metals on the silicon surface
differs significantly from deposition on a metal substrate.
)is is due to the electrical conductivity of n-Si or p-Si
substrate which is much lower than metallic one, which
causes poor cathodic metal reduction on a semiconductor
surface. As a result, this leads to the priority 3D island
growth, which is caused by the prevailing reaction rate (1) at
the metal surface, resulting in the formation of nucleation
centers [8]. )erefore, in order to ensure a constant nu-
cleation on the doped Si surface during the electrodeposi-
tion, it must be periodically excited. )is function is
performed by the pulse mode of electrolysis at high cathode
potentials (Ecathode). To determine the dependence of the size

of electrodeposited Pd particles and their distribution on the
silicon surface from the electrolysis conditions, we studied
the impact of the following main factors: (i) the value of the
cathode potential, (ii) the concentration of Pd ions in so-
lution, and (iii) the number of pulse-pause cycles.

In a wide range of the Ecathode values (Figure 1), the
concentration of palladium ions (Figure 2) and regardless of
the number of pulse-pause cycles (Figure 3), the formation
of spherical metal particles is observed. )is is explained by
the influence of DMSO donor molecules (L), notably the
formation of surface complexes due to the donor-acceptor
interaction. )ese complexes are formed primarily on the
ledges, which block them and prevent dendritic formation.

3.1. Impact of the Cathode Potential. With the increase of
Ecathode, there is an upward trend in the density of the silicon
surface filling with Pd particles and their size increases
(Figure 1).)erefore, we can assume that the pulse regime of
electrodeposition leads simultaneously to the nucleation and
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Figure 3: SEM images of PdNPs on the silicon surface obtained by electrolysis in a solution containing 4mM of Pd(NO3)2, 50mM
Bu4NClO4, and DMSO at Ecathode � − 2.0V for 25 (a), 50 (b), and 400 (c) cycles and the size distribution histograms of PdNPs (d).
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growth of PdNPs on the semiconductor substrate. It is
expected that higher Ecathode values, as an energy factor,
contribute to this. )e − 1.8. . .− 2.2 V range determines the
maximum values of the cathode currents.)e latter provides

a high deposition rate of palladium nanoparticles (PdNPs),
their small size, and uniform distribution across the sub-
strate surface. )us, for Ecathode � − 1.8V (Figure 1(a)),
− 2.0V (Figure 1(b)), and − 2.2V (Figure 1(c)), the number of
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Figure 4: AFM images of PdNPs obtained by electrolysis in a solution containing 4mM of Pd(NO3)2, 50mM Bu4NClO4, and DMSO at
Ecathode � − 2.0V after 25 (a), 50 (c), and 400 (e) cycles and the height distribution histograms of PdNPs (b, d, and f).
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particles, respectively, is 8, 14, and 18 per 1× 1 μm2. So, when
Ecathode increases, the tendency for agglomeration of PdNPs
is observed (Figure 1(c)).

3.2. Impact of the Concentration of Pd Ions. Pulse-mode
electrolysis at τon � 6ms and τoff � 300ms provides diffusion
of solvated ions of [Pd(DMSO)n]2+ to the cathode surface
during the pause. )erefore, for each pulse-pause cycle, the
reduction of Pd during the pulse occurs at a stable con-
centration of Pd(II). )is contributes to the relatively uni-
form distribution of PdNPs over the substrate surface
(Figures 2(a)–2(d)) and their small size variation
(Figure 2(e)). With increasing concentration of ions of
[Pd(DMSO)n]2+ which is caused by high mass transfer, the
average particle size also increases significantly. )us, dis-
crete PdNPs with an average size of 75, 95, and 115± 10 nm
are precipitated from solutions containing 1, 2, and 4mM of
Pd(NO3)2, respectively. In a solution of 6mM Pd(NO3)2,
agglomeration of PdNPs is observed with the formation of
nanofilm fragments. Consequently, the size of the pre-
cipitated PdNPs is very sensitive to the concentration of
Pd(II), which can be considered as one of the main factors
influencing the morphology of the metal precipitate and the
geometry of its structural particles. As we can see in Figure 2,
the amount of Pd(NO3)2 in the solution did not influence the
increase in the concentration of Pd precipitates.

3.3. Impact of theNumber of Pulse-PauseCycles. According to
the SEM images, an increase in the pulse-pause cycles tends
to fill the silicon surface with PdNPs. )e PdNPs with an
average diameter of 55, 65, and 75± 10 nm are precipitated
from 25, 50, and 400 cycles, respectively (Figure 3).
)erefore, during deposition under pulsed electrolysis
mode, the nucleation and growth of PdNPs occur
simultaneously.

)e AFM results (Figure 4) are shown to demonstrate
the growth of nanoparticles in height with increasing
electrodeposition duration (number of cycles) at F � − 2.0V.
As shown in Figure 4, when the number of cycles increases,
the height of PdNPs changes slightly. )us, after 25 cycles,
the average height of PdNPs is about 9 nm (Figure 4(b)) and
after 50 and 400 cycles, the average height of PdNPs is about
14 nm (Figure 4(c)) and 17 nm (Figure 4(f)), respectively.
)e same trend was observed for other values of Ecathode.

)e effect of suppression of the growth of NPs in height
can be attributed to electrochemical Ostwald ripening [36].
In fact, the adhesion of MNPs to the surface of semi-
conductors is lower than that of metals [37]. So, this fa-
cilitates the migration of small nanoparticles across the
substrate surface and their absorption by larger 2D
nanoparticles.

4. Conclusions

Palladium nanoparticles with an average size of 40–160 nm
are deposited on the silicon surface from solutions con-
taining 1–6mM Pd(NO3)2 and DMSO by the pulsed elec-
trolysis method at Ecathode � − 1.8. . .− 2.2V. )e organic

aprotic solvent medium prevents the side cathodic processes
to occur during electrochemical reduction of Pd(II) at high
cathode potentials. )e latter contributes to the energy
excitation of the doped semiconductor surface, which causes
the formation of discrete PdNPs uniformly distributed on
the substrate surface. )e electron donor nature of DMSO
molecules and the pulsed electrolysis mode induce the de-
position of spherical nanoparticles and the 2D filling of the
silicon surface during electrolysis. )e main factors influ-
encing the size of PdNPs are the value of the cathode po-
tential, the concentration of palladium ions in solution, and
the number of pulse-pause cycles. As these values increase,
the nanoparticle size and the density of the substrate surface
filling increase.
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