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0e detour index of a connected graph is defined as the sum of the detour distances (lengths of longest paths) between unordered
pairs of vertices of the graph. 0e detour index is used in various quantitative structure-property relationship and quantitative
structure-activity relationship studies. In this paper, we characterize the minimum detour index among all tricyclic graphs, which
attain the bounds.

1. Introduction

Let G be a simple and connected graph with |V(G)| � n and
|E(G)| � m and NG(u) be the neighbor vertex set of vertex
u, then dG(u) � |NG(u)| is called the degree of u. If
m � n − 1 + c, then G is called a c-cyclic graph. If c � 0, 1, 2,

and 3, then G is a tree, unicyclic graph, bicyclic graph, and
tricyclic graph, respectively. Denote by Tn the set of all
tricyclic graphs of order n.

Let 􏽢T � 􏽢T
i
∣ 1≤ i≤ 15􏼚 􏼛, where graphs 􏽢T

i
for

i � 1, 2, . . . , 15 are defined in Figure 1. By [1, 2], we know
that for any Ti ∈ Tn, Ti can be obtained
from 􏽢T

i
(1≤ i≤ 15) by attaching trees to some of its vertices.

We call 􏽢T
i
the base of Ti.

A block of the graph G is a maximal 2-connected
subgraph of G. A cactus is a connected graph in which no
edge lies in more than one cycle, such that each block of a
cactus is either an edge or a cycle. A vertex shared by two or
more cycles is called a cut vertex. In this paper, denoteCl

n be
the set of all cacti of order n and l cycles, where l≥ 1. 0e
length of the cycles may be different and the length of each
cycle is at least 3.

0e concept of “topological index” was first proposed by
Haruo Hosoya for characterizing the topological nature of a
graph. Such graph invariants are usually related to the
distance function d(− , − ).

0e detour distance [3, 4] (also known under the name
elongation) between vertices u and v in G is the length of a
longest path between them, denoted by l(u, v ∣ G). Note
that l(u, u ∣ G) � 0 for any u ∈ V(G); see [5] for a dis-
cussion. 0e detour index of the graph G is defined as
[4–9]

ω(G) �
1
2

􏽘
u,v∈V(G)

l(u, v ∣ G). (1)

For a connected graph G with u ∈ V(G), let L(u ∣ G) �

􏽐v∈V(G)l(u, v ∣ G), then

ω(G) �
1
2

􏽘
u∈V(G)

L(u ∣ G). (2)

If we use the notion of the detour matrix [4], which is an
n × n matrix whose (i, j)-element is l(vi, vj ∣ G) with
V(G) � v1, v2, . . . , vn􏼈 􏼉, then the detour index is equal to the
half-sum of the (off diagonal) elements of the detour matrix.
0e detour index has been applied to chemistry, especially in
quantitative structure-activity relationship (QSAR) studies;
see [7, 10] for more details. A new branch cheminformatics
is a combination of mathematics and chemistry. 0is branch
studies QSAR/QSPR study, physicochemical properties and
topological indices such as Zagreb Indices [11], Kirchhoff
index [12], Hosoya index [13] and so on to predict

Hindawi
Journal of Chemistry
Volume 2019, Article ID 6031568, 8 pages
https://doi.org/10.1155/2019/6031568

mailto:caizhengqun1983@163.com
https://orcid.org/0000-0001-7674-1583
https://orcid.org/0000-0001-7067-6872
https://orcid.org/0000-0003-3938-6513
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/6031568


physicochemical properties and biological activities of the
chemical compounds theoretically.

In this paper, we consider the minimum detour index
among all tricyclic graphs.

2. Preliminaries

In this section, we will introduce some useful lemmas and
graph transformations.

2.1. Edge-Lifting Transformation [14, 15]. Let G1 and G2 be
two graphs with n1 ≥ 2 and n2 ≥ 2 vertices, respectively. IfG is
the graph obtained from G1 and G2 by adding an edge
between a vertex u0 of G1 and a vertex v0 of G2, G′ is the
graph obtained by identifying u0 ofG1 to v0 of G2 and adding
a pendant edge to u0(v0), then G′ is called the edge-lifting
transformation of G (see Figure 2).

Lemma 1 (see [16]). Let G be defined as in Figure 2, and G′
is obtained from G by the edge-lifting transformation (see
Figure 2). :en, ω(G)>ω(G′).

Denote T(1)
n � T1,T7,T8,T9,T12,T13,T14,T15􏼈 􏼉

(see Figure 1).
By Lemma 1, we can verify that if T ∈ Tn attains the

minimum detour index of all graphs in Tn, then the fol-
lowing two conditions hold:

(i) 0e base 􏽢T of T is one of 􏽢T
(1)

n

(ii) 0e graph T is obtained from 􏽢T by attaching some
pendant edges

Remark 1. In order to determine the tricyclic graphs which
attain the minimum detour index of all graphs inTn, we just
need to discuss the tricyclic graphs in T, where 􏽢T ∈ T(1)

n .

2.2. Cycle-Edge Transformation. Let C ∈ Cl
n be a cactus as

shown in Figure 3, where Cr � v1v2 . . . vrv1 is the
biggest cycle of C, r≥ 4. Denote the vertex set Wvi

�

NGi
(vi) � NG(vi)∩V(Gi), 1≤ i≤ r. C′ is the graph obtained

from C by deleting the edges v2v3 and v2 to Wv2
, meanwhile

adding the edges v1v3 and v1 to Wv2
.

We say that C′ is obtained from C by the cycle-edge
transformation (see Figure 3).

Lemma 2 (see [16]). Let C ∈ Cl
n be a cactus as shown in

Figure 3 with r≥ 4, andC′ be the cycle-edge transformation of
C (see Figure 3). :en, ω(C)>ω(C′).

2.3.Cycle-LiftingTransformation. LetC1 ∈ C
l
n be a cactus as

shown in Figure 4. Denote Wvi
� NGi

(vi) � NG (vi)∩V(Gi)

for 1≤ i≤ 3. Let C1′ be the graph obtained from C1 by de-
leting the edges v2vx for vx ∈Wv2

and adding the edges v1vx

for vx ∈Wv2
.

We say that C1′ is the cycle-lifting transformation of C1
(see Figure 4).

Lemma 3 (see [16]). Let C1′ be the cycle-lifting trans-
formation of C1 (see Figure 4). :en, ω(C1)>ω(C1′).

2.4.Operation I. We define Operation I as follows. LetG and
G′ be a simple and connected graph as shown in Figure 5.
v1v2 . . . vp be the path in a cycle. Denote Wvi

�

w ∣ wvi ∈ E(G) andd(w) � 1, 1≤ i≤p, p≥ 3􏼈 􏼉, and G′ be the
graph obtained from G by deleting the edges v2v3, v2w for
w ∈Wv2

and adding the edges v1v3, v1w for w ∈Wv2
(see

Figure 5).

Lemma 4. Let G and G′ be the graph shown in Figure 5.
:en, ω(G)>ω(G′).

Proof. Let V(G) � V(G′) � v1, v2, v3, . . . , vn􏼈 􏼉, and Wvi
�

w ∣ wvi ∈ E(G) andd(w) � 1, 1≤ i≤p􏼈 􏼉. For the vertices
vi, vj ∈ V(G − v2), obviously
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Figure 1: 0e fifteen types of bases for tricyclic graphs.
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l vi, vj |G)≥ l vi, vj |G′(( ), (3)

l v1, v2 |G)> l v1, v2 |G′(( ) � 1. (4)

Let Pi be the set of the longest path between v2 and vi inG
and Qi be the set of the longest path between v1 and vi in G,
where 3≤ i≤ n.

Case 1. v1v2 ∈ E(Pi) and v2v3 ∈ E(Pi), where 3≤ i≤ n.
Obviously, for 3≤ i≤ n, l(v2, vi |G) � l(v2, vi |G′) − 1. On

the other hand, if v1v2 ∈ E(Pi) and v2v3 ∈ E(Pi), then
v1v2, v2v3 ∈Li, whereLi be the any one longest path between
v1 and vi in G. �erefore, l(v1, vi |G) � l(v1, vi |G′) + 1, and

l v2, vi |G) + l v1, vi |G(( )
� l v2, vi |G′) + l v1, vi |G′(( ), 3≤ i≤ n.

(5)

Case 2. v1v2 ∉ E(Pi) and v2v3 ∈ E(Pi).
Obviously, for 3≤ i≤ n, we have

l v2, vi ∣ G( ) � l v3, vi |G( ) + 1

> l v1, vi ∣ G( ) + 1

≥ l v1, vi ∣ G′( ) + 1

� l v2, vi ∣ G′( ).

(6)

Case 3. v1v2 ∈ E(Pi) and v2v3 ∉ E(Pi).
Obviously, for 3≤ i≤ n, we have

l v2, vi |G) � l v2, v i |G′(( ). (7)

Cycle-edge transformation

· · ·

v1

v2

v3

vr

G1

G2

G3

Gr

· · ·

v1

v2
v3

v4

vr

G2 − {v2}

G1

G3

G4

Gr

′

Figure 3: �e cycle-edge transformation.

Edge-lifting transformation
G1 G2u0 v0

G

w0

u0G′1 G′2

G′

Figure 2: �e edge-lifting transformation.

G1

G2 G3

v1
v2 v3

G1

G2 − {v2}

G3

v1
v2 v3

Cycle-lifting transformation

1 ′1

Figure 4: �e cycle-lifting transformation.

k2

k1 k1 + k2

vp–1 vp–1v3 v3v2

v2

vp vpv1 v1

G G′

Operation I

Figure 5: Operation I on graph G.
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Case 4. v1v2 ∉ E(Pi) and v2v3 ∉ E(Pi).
Obviously, vi ∈Wv2

⊂ V(G), and
l v2, vi |G) � l v1, vi |G′(( ) � 1, (8)

l v1, vi |G)> l v2, vi |G′(( ) � 2. (9)

By (5)–(9), we have

l v2, vi |G) + l v1, vi |G(( )
≥ l v2, vi |G′) + l v1, vi |G′(( ), 3≤ i≤ n.

(10)

By (3), (4), and (10), we have ω(G)>ω(G′). □

2.5. Operation II. We de�ne Operation II as follows. Let G
and G′ be a simple and connected graph as shown in Fig-
ure 6. Denote v1v2v3v1 be a cycle with length 3,
Wvi

� w ∣ wvi ∈ E(G) andd(w) � 1, i � 1, 2{ }, and G′ be the
graph obtained from G by deleting the edges v2w for
w ∈Wv2

and adding the edges v1w for w ∈Wv2
(see

Figure 6).

Lemma 5. Let G and G′ be the graph shown in Figure 6.
�en, ω(G)>ω(G′), and the equality holds if and only if
G � G′.

Proof. Let V(G) � V(G′) � v1, v2, v3, . . . , vn{ }. For the ver-
tices vi, vj ∈ V(G) − Wv2

, vx, vy ∈Wv2
, we have

l vi, vj ∣ G) � l vi, vj |G′(( ), (11)

l vx, vy ∣ G) � l vx, vy |G′(( ) � 2. (12)

For the vertices vi ∈ V(G) − Wv2
− v1, v2{ }, w ∈Wv2

, we
have

l w, vi
∣∣∣∣G( )

� max 3 + l v1, vi |G), 3 + l v3, vi |G(( ){ }
≥max 1 + l v1, vi |G), 3 + l v3, vi |G(( ){ }
� max 1 + l v1, vi |G′), 3 + l v3, vi |G′(( ){ }
� l w, vi ∣ G′( ),

(13)

especially, if G≇G′, then

l w, v3 |G)> l w, v3 |G′(( ), (14)

l w, v1 |G( ) � l v1, v2 |G( ) + 1
� l v1, v2 ∣ G′( ) + 1
� l w, v2 ∣ G′( ),

(15)

l w, v2 |G) � l w, v1 |G′(( ) � 1. (16)

By (11)–(16), we have ω(G)≥ω(G′), and the equality
holds if and only if G � G′. □

Denote T(2)
n � T16,T17,T18,T19,T20,T21{ }; see

Figure 7.

By Lemma 2–5, we can verify that if T ∈ Tn attains the
minimum detour index of all graphs in Tn, then T ∈ T(2)

n .

Remark 2. In order to determine the tricyclic graphs which
attain the minimum detour index of all graphs inTn, we just
need to discuss the tricyclic graphs in T, where
T̂ ∈ T(2)

n � T16,T17,T18,T19,T20,T21{ }; see Figure 7.

2.6. Operation III. We de�ne Operation III as follows. Let
G ∈ T17 ∪T18 ∪T20 ∪T21 as shown in Figure 7. Denote
Wvi

� w ∣ wvi ∈ E(G) and d(w) � 1{ } and G′ be the graph
obtained from G by deleting the edges v3w for w ∈Wv3

and
adding the edges v1w for w ∈Wv3

(see Figures 8–11).

Lemma 6. Let Gi and Gi′(1≤ i≤ 4) be the graph in
Figures 8–11. �en, ω(G)≥ω(G′), and the equality holds if
and only if G � G′.

Proof. Let V(G1) � V(G1′) � v1, v2, v3, . . . , vn{ }. For the
vertices vi, vj ∈ V(G) − Wv3

− v1, v3{ }; vx, vy ∈Wv3
, we have

l vi, vj |G1) � l vi, vj |G1′(( ), (17)

l vx, vy |G1) � l vx, vy |G1′(( ) � 2, (18)

l v1, vi |G1) � l v1, vi |G1′(( ), (19)

l v3, vx |G1) � l v1, vx |G1′(( ), (20)

l v3, vi |G1)≥ l v1, vi |G1′(( ), (21)

l vx, vi |G1( ) � l v3, v i | G1( ) + 1
� l v3, vi ∣ G1′( ) + 1
≥ l v1, vi ∣ G1′( ) + 1
� l vx, vi ∣ G1′( ),

(22)

l vx, v5 G1
∣∣∣∣ ) � 5> 3 � l vx, v5

∣∣∣∣G1′(( ). (23)

By (17)–(23), we have ω(G1)>ω(G1′).
Similarly, we have ω(Gi)≥ω(Gi′), and the equality holds

if and only if Gi � Gi′ (i� 2, 3, 4). □

2.7. Operation IV. We de�ne Operation IV as follows. Let
G ∈ T19 as shown in Figure 12. Denote Wvi

� w ∣ wvi{
∈ E(G) and d(w) � 1}, and G′ be the graph obtained from G

|Wv2| = k2 ≠ 0

v3 v1

v2

v3 v1

v2

k1 + k2k1

G G′

Operation II ......

...

......

Figure 6: Operation II on graph G.
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Figure 7: Graph T(2)
n .

G1 G1′

k1 + k3k1

Operation III

|Wv3| = k3 > 0

v3 v3

v1

v4v4

v5 v5v6v6

v2v2
... ...

. . .

} }v1

Figure 8: Operation III on graph G1 ∈ T
17.

G2 G2′

k1 + k3k1

v3v3

v1 v1

v4 v4

v5v5 v2v2

Operation III

|Wv3| = k3 > 0

}}

}

. . .

. . . . . . . . .

. . .

Figure 9: Operation III on graph G2 ∈ T
18.

} }
}

k1 k1 + k3

v1

v3

v4v2 v5

G3 G3′

|Wv3| = k3 > 0

Operation III v2 v5

v1

v3

v4

. . . . . .

. . .

Figure 10: Operation III on graph G3 ∈ T
20.
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by deleting the edges viw for w ∈Wvi
, i � 2, 4, 5 and adding

the edges v1w for w ∈Wvi
, i � 2, 4, 5 (see Figure 12).

Lemma 7. Let G and G′ be the graph shown in Figure 12.
�en, ω(G)≥ω(G′) with equality holding if and only if
G � G′.

Proof. Let V1 � vi ∣ 1≤ i≤ 6{ }, V2 � V(G) − V1, we have

ω(G) � ∑
vx,vy∈V1

l vx, vy ∣ G( )

+ ∑
vx∈V1 ,vy∈V2

l vx, vy ∣ G( )

+ ∑
vx,vy∈V2

l vx, vy ∣ G( ),

(24)

ω G′( ) � ∑
vx,vy∈V1

l vx, vy ∣ G′( )

+ ∑
vx∈V1 ,vy∈V2

l vx, vy ∣ G′( )

+ ∑
vx,vy∈V2

l vx, vy ∣ G′( ).

(25)

Obviously,

∑
vx,vy∈V1

l vx, vy ∣ G( ) � ∑
vx,vy∈V1

l vx, vy ∣ G′( ),

∑
vx∈V1 ,vy∈V2

l vx, vy ∣ G( ) � + ∑
vx∈V1 ,vy∈V2

l vx, vy ∣ G′( ),
(26)

l vx, vy |G) � l vx, vy | G′(( ) � 2, vx, vy ∈Wvi
,

l vx, vy |G)> 2 � l vx, vy | G′(( ),
vx ∈Wvi

, vy ∈Wvj
, i≠ j.

(27)

�erefore,

ω(G) − ω G′( )

� ∑
vx,vy∈V2

l vx, vy ∣ G( ) − ∑
vx,vy∈V2

l vx, vy ∣ G′( )

≥ 0,

(28)

and the equality holds if and only if G � G′. □

Denote T(3)
n � T16 ∪T22 ∪T23 ∪T24 ∪T25 ∪T26{ }

(see Figure 13).
By Lemma 6-7, we can verify that if T ∈ Tn attains the

minimum detour index of all graphs in Tn, then T̂ ∈ T(3)
n .

Remark 3. In order to determine the tricyclic graphs which
attain the minimum detour index of all graphs inTn, we just
need to discuss the tricyclic graphs inT, where T̂ ∈ T(3)

n �
T16,T22,T23,T24,T25,T26{ } (see Figure 13).

3. Results and Discussion

From the discussions of Section 2, we can verify that if
T ∈ Tn attains the minimum detour index of all graphs in
Tn, then ω(T) � min ω(G){ }, where Ĝ ∈ T(3)

n � T16,{
T22,T23,T24,T25,T26}.

Theorem 1. Let T(3)
n be de�ned as in Figure 13.

(1) When n � 4 or n≥ 8, T26 is the unique graph which
attains the minimum detour index of all graphs inTn
and ω(T26) � n2 + 4n − 14.

(2) When n � 5 or n � 6, T25 is the unique graph which
attains the minimum detour index of all graphs inTn
and ω(T25) � n2 + 5n − 21.

(3) When n � 7,T25 andT26 are the graphs which attain
the minimum detour index of all graphs in Tn and
ω(T25) � ω(T26) � 63.

Proof. It can be checked directly that
L v1 ∣ T

16( ) � n + 5;

L vi ∣ T
16( ) � 3n − 1, where 2≤ i≤ 7;

L w ∣ T16( ) � 2n + 3, wherew ∈Wv1
.

(29)

} }

}

|Wv3| = k3 > 0

G4 G4′

k1 k1 + k3

v1

v2

v4

v3

Operation III

v1

v3 v2

v4

. . . . . .

. . .

. . . . . . . . .

. . .

Figure 11: Operation III on graph G4 ∈ T
21.
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�erefore,

ω T
16( ) �

1
2

∑
u∈V T16( )

L u ∣ T16( )

�
1
2
[(n + 5) + 6(3n − 1) +(2n + 3)(n − 7)]

� n2 + 4n − 11, n≥ 7.

(30)

Similarly, we have

ω T
22( ) � n2 + 5n − 15

� n2 + 4n +(n − 15), n≥ 6,

ω T
23( ) � n2 + 8n − 27

� n2 + 4n +(4n − 27), n≥ 5,

ω T
24( ) � n2 + 15n − 57

� n2 + 4n +(11n − 57), n≥ 6,

ω T
25( ) � n2 + 5n − 21

� n2 + 4n +(n − 21), n≥ 5,

ω T
26( ) � n2 + 4n − 14, n≥ 4.

(31)

(1) When n � 4 or n≥ 8, obviously, T26 is the unique
graph which attains the minimum detour index of all
graphs in Tn and ω(T26) � n2 + 4n − 14.

(2) When n � 5 or n � 6, obviously, T25 is the unique
graph which attains the minimum detour index of all
graphs in Tn and ω(T25) � n2 + 5n − 21.

(3) When n � 7, obviously, T25 and T26 are the graphs
which attain the minimum detour index of all graphs
in Tn and ω(T25) � ω(T26) � 63. □

4. Conclusions

Mathematical chemistry is an area of research in chemistry
in which mathematical tools are used to solve problems of
chemistry. Chemical graph theory is an important area of
research in mathematical chemistry which deals with to-
pology of molecular structures such as the mathematical
study of isomerism and the development of topological
descriptors or indices. In this paper, we �rst introduce
some useful graph transformations, and then we de-
termine the minimum detour index of all tricyclic graphs.
In addition, all the corresponding extremal graphs are
characterized.

} } }

k1 k2

} }

v1 v2

v3v6

v4v5

v1 v2

v3v6

v4v5

k5 k4

G G′

k1 + k2 + k4 + k5

Operation III

. . . . . . . . .

. . . . . .

Figure 12: Operation IV on graph G ∈ T19.
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}

v1 v2

v3v6

v4v5

n – 6

v3

v2 v4
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}
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. . . . . . . . .
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
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
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Figure 13: Graph T(3)
n .
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