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,e energy of a simple connected graph G is equal to the sum of the absolute value of eigenvalues of the graph G where the
eigenvalue of a graph G is the eigenvalue of its adjacency matrix A(G). Ultimately, scores of various graph energies have been
originated. It has been shown in this paper that the different graph energies of the regular splitting graph S′(G) is a multiple of
corresponding energy of a given graph G.

1. Introduction

Let G be a simple, finite, and undirected graph and its vertex
set and edge set are denoted by V(G) � v1, v2, v3, . . . , vp􏽮 􏽯

and E(G) � e1, e2, e3, . . . , eq􏽮 􏽯, respectively. Number of
edges finishing at a vertex v of a graph G is named as degree
of vertex v and is denoted by d(v) or dv.

,e adjacency matrix of G, denoted by A(G), is a square
matrix [aij] such that aij is equal to unity if vivj ∈ E(G) and
is equal to zero otherwise. ,e eigenvalues of the adjacency
matrix A(G) are known as the eigenvalues of the graph G.
Collection of eigenvalues of the graph G together with their
multiplicities is called spectrum of the graph G.

Let μ1, μ2, μ3, . . . , μp be eigenvalues ofG and are assumed
in nonincreasing order; then, Ivan Gutman in 1978 [1]
defined the energy of the graph G as the sum of the absolute
values of all eigenvalues of the graph G:

E(G) � 􏽘

p

j�1
μj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (1)

,e inspiration of description energy of graph happened
from quantumChemistry. During 1930s, E. Hückel presented
chemical applications of graph theory in his molecular orbital

theory where eigenvalues of graphs take place. In quantum
chemistry, the skeleton of nonsaturated hydrocarbon is
represented by a graph. ,e energy levels of electrons in such
a molecule are eigenvalues of graph. ,e strength of particles
is closely identified with the spectrum of its graph.,e carbon
atoms and chemical bond between them in a hydrocarbon
system denote vertices and edges, respectively, in a molecular
graph. A lot of work has been done on graph theory, special
graph labeling [2–10], chemical graph theory and graph
energies. In the thesis of Siraj [11], certain elementary results
on the energy of the graph are also described.

,e present work is considered to relate several energies of a
graph to bigger graph acquired from the given graph with the
help of some graph operations, namely, the splitting graph
which is defined in [12]. For a graphG, the splitting graph S′(G)

is obtained by taking a new vertex v′ corresponding to each
vertex v of the graph G and then join v′ to all vertices of G
adjacent to v. In [13], it has been proven that E(S′(G)) ��
5

√
E(G).

Let A � [aij] and B � [bij] be two matrices of order a ×

m and b × n, respectively.,en, their tensor product, A⊗B is
obtained from A when every element aij is replaced by the
block aijB and is of order ab × mn.
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Proposition 1 (see [14]). Let A ∈Mq and B ∈Mp. Also, let
α be an eigenvalue of the matrix A with corresponding ei-
genvector y and β be an eigenvalue of the matrix B with
corresponding eigenvector z. 7en, αβ is an eigenvalue of
A⊗B with corresponding eigenvector yz.

In recent times, comparable energies are being considered,
based on eigenvalues of a variety of other graph matrices. Nu-
merous matrices can be related to a graph, and their spectrums
provide certain helpful information about the graph [15–18].

2. Maximum Degree Energy

,e maximum degree energy EM of a simple connected
graphG in [19] is defined as the sum of the absolute values of
eigenvalues of the maximum degree matrix M(G) of a graph
G. ,en, M(G) � [Mij] where

Mij �
max di, dj􏼐 􏼑, if vi, vj ϵE(G),

0, otherwise,

⎧⎨

⎩ (2)

where di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 1. For a graph G,

EM S′(G)( 􏼁 � 2EM(G). (3)

Proof. Let G be a graph with vertices v1, v2, v3, . . . , vp. ,en
the maximum degree matrix M(G) is

(4)

where dkij
� max(di, dj) and di and dj are the degrees of

vertices vi and vj, respectively, for i � 1, 2, 3, . . . , p and
j � 1, 2, 3, . . . , p.

Let v1′, v2′, v3′, . . . , vp
′ be the vertices corresponding to

v1, v2, v3, . . . , vp which are added in G to obtain S′(G) such
that N(vj) � N(vj

′) for j � 1, 2, 3, . . . , p. ,en, the maxi-
mum degree matrix of S′(G) is denoted by M(S′(G)) and
can be written as a block matrix:

(5)

,at is

M S′(G)( 􏼁 �
2M(G) 2M(G)

2M(G) 0
􏼢 􏼣

or �
2 2

2 0
􏼢 􏼣⊗M(G).

(6)

Here, the maximum degree spectrum of S′(G) is
(1 +

�
5

√
)μj (1 −

�
5

√
)μj

p p
􏼠 􏼡, (7)

where μj for j � 1, 2, 3, . . . , p are the eigenvalues of

M(G)and 1 ±
�
5

√
are the eigenvalues of 2 2

2 0􏼢 􏼣.

Here,

EM S′(G)( 􏼁 � 􏽘

j�p

j�1
(1 ±

�
5

√
)μj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
μj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(1 +
�
5

√
+ 1 −

�
5

√
)

� 2 􏽘

j�p

j�1
μj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 2EM(G),

(8)

which completes the proof. □
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3. Minimum Degree Energy

In [20], the minimum degree energy Em of a simple con-
nected graphG is defined as the sum of the absolute values of
eigenvalues of minimum degree matrix m(G) of a graph G.
Here, m(G) � [mij] where

mij �
min di, dj􏼐 􏼑, if vi, vj ϵE(G),

0, otherwise,

⎧⎨

⎩ (9)

where di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 2. For a graph G,

Em S′(G)( 􏼁 � 2Em(G). (10)

Proof. Let G be a graph with vertices v1, v2, v3, . . . , vp. ,en,
the minimum degree matrix m(G) is

(11)

where dkij
� min(di, dj) and di and dj are the degrees of

vertices vi and vj, respectively, for i � 1, 2, 3, . . . , p and j �

1, 2, 3, . . . , p. Let v1′, v2′, v3′, . . . , vp
′ be the vertices corre-

sponding to v1, v2, v3, . . . , vp which are added in G to
obtain S′(G) such that N(vj) � N(vj

′) for j � 1, 2, 3, . . . , p.
,en, the minimum degree matrix of splitting graph of G,
denoted by m(S′(G)), can be defined as a block matrix as
follows:

(12)

,at is

m S′(G)( 􏼁 �

2m(G) m(G)

m(G) 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

or �

2 1

1 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⊗m(G).

(13)

Here, the minimum degree spectrum of S′(G) is

(1 +
�
2

√
)]j (1 −

�
2

√
)]j

p p

⎛⎝ ⎞⎠, (14)

where ]j for j � 1, 2, 3, . . . , p are the eigenvalues of m(G)

and 1 ±
�
2

√
are the eigenvalues of 2 1

1 0􏼢 􏼣.
Here,

Em S′(G)( 􏼁 � 􏽘

j�n

j�1
(1 ±

�
2

√
)]j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
]j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌(1 +
�
2

√
+ 1 −

�
2

√
)

� 2 􏽘

j�n

j�1
]j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 2Em(G),

(15)

which is the required result. □
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4. Randić Energy

,e randić energy ER of a simple connected graph G in [21]
is the sum of the absolute values of eigenvalues of the randić
matrix R(G). Here, R(G) � [rij] where

rij �

1
����
didj

􏽱 , if vi, vj ϵE(G),

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

Here, di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 3. For a graph G,

ER S′(G)( 􏼁 �
3
2
ER(G). (17)

Proof. Let x1, x2, x3, . . . , xp be vertices of a graph G. ,en,
the randić matrix of G is denoted by R(G) and is given as

(18)

Let x1′, x2′, x3′, . . . , xp
′ be the vertices corresponding to

x1, x2, x3, . . . , xp which are added in G to obtain S′(G) such
that N(xj) � N(xj

′) for j � 1, 2, 3, . . . , p. ,en, the randić
matrix of S′(G) is denoted by R(S′(G)) and can be written as
a block matrix as follows:

(19)

,at is,

R S′(G)( 􏼁 �

1
2

R(G)
1
�
2

√ R(G)

1
�
2

√ R(G) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
2

1
�
2

√

1
�
2

√ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗R(G).

(20)

Here, the randić spectrum of S′(G) is

− 1
2

􏼒 􏼓ρj (1)ρj

p p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (21)
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where ρj for j � 1, 2, 3, . . . , p are the eigenvalues of R(G)and

− 1/2 and 1 are the eigenvalues of 1/2 1/
�
2

√

1/
�
2

√
0􏼢 􏼣.

Here,

ER S′(G)( 􏼁 � 􏽘

j�p

j�1

− 1
2

+ 1􏼒 􏼓ρj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
ρj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1
2

+ 1􏼒 􏼓

�
3
2

􏽘

j�p

j�1
ρj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

�
3
2
ER(G).

(22)

□

5. Seidel Energy

In [22], Haemers defined the Seidel energy ESE of a simple
connected graph G as the sum of the absolute values of
eigenvalues of the seidel matrix SE(G) of G. Here, SE(G) �

[sij] where

sij �

− 1, if vi and vj are adjacent and i≠ j,

1, if vi and vj are non adjacent and i≠ j,

0, if i � j.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(23)

Theorem 4. For a s-regular graph G,

ESE S′(G)( 􏼁≥ESE(G). (24)

Proof. Let G be a graph with vertices v1, v2, v3, . . . , vp. ,en,
the seidel matrix SE(G) of G is

(25)

Let u1, u2, u3, . . . , up be the vertices corresponding to
v1, v2, v3, . . . , vp which are added in G to obtain S′(G). ,en,
the seidel matrix of S′(G) is denoted by SE(S′(G)) and can
be written as a block matrix as follows:

(26)

,at is,

SE S′(G)( 􏼁 �
SE(G) SE(G) + Ip

SE(G) + Ip Jp − Ip

⎡⎢⎣ ⎤⎥⎦

or �
SE(G) SE(G)

SE(G) 0
⎡⎣ ⎤⎦ +

0Ip Ip

Ip Jp − Ip

⎡⎢⎣ ⎤⎥⎦.

(27)

Hence,

SE S′(G)( 􏼁≥
SE(G) SE(G)

SE(G) 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

1 1

1 0
􏼢 􏼣⊗ SE(G). (28)

Here, the seidel spectrum of S′(G) is greater than or
equal to the spectrum

1
2

(1 +
�
5

√
)sj

1
2

(1 −
�
5

√
)sj

p p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (29)

where sj for j � 1, 2, 3, . . . , p are the eigenvalues of

SE(G)and 1/2(1 ±
�
5

√
) are the eigenvalues of 1 1

1 0􏼢 􏼣.

,us,

ESE S′(G)( 􏼁≥ 􏽘

j�p

j�1

1
2

(1 ±
�
5

√
)􏼒 􏼓sj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
1
2

+

�
5

√

2
+
1
2

−

�
5

√

2
􏼠 􏼡

�
1
2

+
1
2

􏼒 􏼓 􏽘

j�p

j�1
sj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� ESE(G).

(30)
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Hence,

ESE S′(G)( 􏼁≥ESE(G). (31)
□

6. Sum-Connectivity Energy

,e sum-connectivity energy ESC of a simple connected
graphG in [23] is defined as the sum of the absolute values of
eigenvalues of the sum-connectivity matrix SC(G). Here,
SC(G) � [scij] where

scij �

1
������
di + dj

􏽱 , if vi, vj ϵE(G),

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

Here, di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 5. For a regular graph G,

ESC S′(G)( 􏼁 �
1
�
2

√ ESC(G). (33)

Proof. Let G be a graph with vertices z1, z2, z3, . . . , zp.
,en the sum-connectivity matrix of G is denoted by
SC(G) and is defined as

(34)

where dj is the degree of vertex zj for j � 1, 2, 3, . . . , p. Let
z1′, z2′, z3′, . . . , zp

′ be the vertices that are added inG to acquire
S′(G) such that N(zj) � N(zj

′). ,en the sum-connectivity
matrix of S′(G) is denoted by SC(S′(G)) and is defined as a
block matrix as follows:

(35)
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where dj
′ is the degree of vertex zj

′ for j � 1, 2, 3, . . . , p. ,us,

SC S′(G)( 􏼁 �

1
�
2

√ SC(G)

�
2
3

􏽲

SC(G)

�
2
3

􏽲

SC(G) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or⟹ SC S′(G)( 􏼁 �

1
�
2

√

�
2
3

􏽲

�
2
3

􏽲

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ SC(G).

(36)

Here, the sum-connectivity spectrum of S′(G) is

3
�
2

√
+

���
114

√

12
􏼠 􏼡βj

3
�
2

√
−

���
114

√

12
􏼠 􏼡βj

p p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (37)

where βj, for j � 1, 2, 3, . . . , p are the eigenvalues of SC(G) and

(3
�
2

√
±

���
114

√
)/12 are the eigenvalues of 1/

�
2

√ ���
2/3

√

���
2/3

√
0􏼢 􏼣.

Hence,

ESC S′(G)( 􏼁 � 􏽘

j�p

j�1

3
�
2

√
±

���
114

√

12
􏼠 􏼡βj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
3

�
2

√
+

���
114

√

12
+
3

�
2

√
−

���
114

√

12
􏼠 􏼡

�
6

�
2

√

12
􏽘

j�p

j�1
βj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �
1
�
2

√ ESC(G),

(38)

which completes the proof. □

7. Degree Sum Energy

In [24], the degree sum energy EDS of a simple connected
graph G is defined as the sum of the absolute values of
eigenvalues of the degree sum matrix DS(G) of G. Here,
DS(G) � dsij where

dsij �
di + dj, if i≠ j,

0, otherwise.
􏼨 (39)

Here, di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 6. For a s-regular graph G with order p,

EDS S′(G)( 􏼁≤ 6s(3p − 2). (40)

Proof. Let G be a s-regular graph with vertices
w1, w2, w3, . . . , wp. ,en the degree sum matrix of G is
denoted by DS(G) and is defined as

(41)

where dj is degree of vertex wj for j � 1, 2, 3, . . . , p. Let
w1′, w2′, w3′, . . . , wp

′ be the vertices corresponding to vertices
w1, w2, w3, . . . , wp that are added in G to get the splitting
graph S′(G).,en the degree summatrix of S′(G) is given as

(42)

where dj
′ is the degree of vertex wj

′ for j � 1, 2, 3, . . . , p.
Note that

DS S′(G)( 􏼁 �
4s Jp − Ip􏽨 􏽩 3s Jp×p􏽨 􏽩

3s Jp×p􏽨 􏽩 2s Jp − Ip􏽨 􏽩

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (43)
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,us,

EDS S′(G)( 􏼁≤ 􏽘

2p

j�1
μj

4s Jp − Ip􏽨 􏽩 0Ip

0Ip 0Ip

⎡⎢⎣ ⎤⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘

2p

j�1
μj

0Ip 3sJp×p

3sJp×p 0Ip

⎡⎣ ⎤⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

2p

j�1
μj

0Ip 0Ip

0Ip 4s Jp − Ip􏽨 􏽩

⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(44)

As

􏽘

2p

j�1
μj

4s Jp − Ip􏽨 􏽩 0Ip

0Ip 0Ip

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 8s(p − 1),

􏽘

2p

j�1
μj

0Ip 3sJp×p

3sJp×p 0Ip

⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 6sp,

􏽘

2p

j�1
μj

0Ip 0Ip

0Ip 4s Jp − Ip􏽨 􏽩

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 4s(p − 1).

(45)

Hence,

EDS S′(G)( 􏼁≤ 8s(p − 1) + 6sp + 4s(p − 1)

� 12s(p − 1) + 6sp

� 18sp − 12s

� 6s(3p − 2),

(46)

which is the required result. □

8. Degree Square Sum Energy

,e degree square sum energy EDSS(G) of a simple con-
nected graph G in [25] is defined as the sum of the absolute
values of eigenvalues of the degree square sum matrix
DSS(G). Here, DSS(G) � [dssij] where

dssij �
d2

i + d2
j , if i≠ j,

0, otherwise.

⎧⎨

⎩ (47)

Here, di and dj are degrees of vertices vi and vj,
respectively.

Theorem 7. For a s-regular graph G with p vertices,

EDSS S′(G)( 􏼁≤ 2s
2
(14p − 9). (48)

Proof. Let x1, x2, x3, . . . , xp be vertices of a s-regular graph
G and x1′, x2′, x3′, . . . , xp

′ be the vertices added in G corre-
sponding to x1, x2, x3, . . . , xp to get the splitting graph S′(G)

such that for j � 1, 2, 3, . . . , p, N(xj) � N(xj
′). ,en, the

degree square sum matrix of G and S′(G) are given as

(49)
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where di is the degree of vertex xi and di
′ is the degree of

vertex xi
′, for i � 1, 2, 3, . . . , p.

Note that

DSS S′(G)( 􏼁 �
8s2 Jp − Ip􏽨 􏽩 5s2[J(p × p)]

5s2[J(p × p)] 2s2 Jp − Ip􏽨 􏽩

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (50)

,us,

EDSS S′(G)( 􏼁≤ 􏽘

2p

j�1
μj

8s2 Jp − Ip􏽨 􏽩 0Ip

0Ip 0Ip

⎡⎢⎣ ⎤⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘

2p

j�1
μj

0Ip 5s2[J(p × p)]

5s2[J(p × p)] 0Ip

⎡⎢⎣ ⎤⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

2p

j�1
μj

0Ip 0Ip

0Ip 2s2 Jp − Ip􏽨 􏽩

⎡⎢⎢⎣ ⎤⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(51)

As

􏽘
j�1

2p

μj

8s2 Jp − Ip􏽨 􏽩 0Ip

0Ip 0Ip

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 16s
2
(p − 1),

􏽘
j�1

2p

μj

0Ip 5s2[J(p × p)]

5s2[J(p × p)] 0Ip

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 10s
2
p,

􏽘
j�1

2p

μj

0Ip 0Ip

0Ip 2s2 Jp − Ip􏽨 􏽩

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 4s
2
(p − 1).

(52)

Hence,

EDSS S′(G)( 􏼁≤ 16s
2
(p − 1) + 10s

2
p + 4s

2
(p − 1)

� 20s
2
(p − 1) + 10s

2
p

� 30s
2
p − 20s

2

� 10s
2
(3p − 2),

(53)

which completes the proof. □

9. First Zagreb Energy

In [26], the First zagreb energy ZE1 of a simple connected
graph G is defined as the sum of the absolute values of
eigenvalues of first zagreb matrix Z(1)(G) of G where
Z(1)(G) � [z

(1)
ij ] where

z
(1)
ij �

di + dj, if vi, vj ϵE(G),

0, otherwise.

⎧⎪⎨

⎪⎩
(54)

Here, di and dj are degrees of vertices vi and vj,
respectively.

Theorem 8. For a regular graph G,

ZE1 S′(G)( 􏼁 � 2ZE1(G). (55)

Proof. Let G be a graph with vertices z1, z2, z3, . . . , zp. ,en,
the first zagreb matrix of G is denoted by Z(1)(G) and is
defined as

(56)

where dj is the degree of vertex zj for j � 1, 2, 3, . . . , p. Let
z1′, z2′, z3′, . . . , z″p be vertices added in G corresponding to
z1, z2, z3, . . . , zp to get S′(G) such that N(zi) � N(zi

′).
,en, the first zagreb matrix of S′(G) can be written as a
block matrix as follows:
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(57)

where dj
′ is the degree of vertex zj

′ for j � 1, 2, 3, . . . , p.
Here,

Z
(1)

S′(G)( 􏼁 �

2Z(1)(G)
3
2
Z

(1)
(G)

3
2
Z

(1)
(G) 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

orZ
(1)

S′(G)( 􏼁 �

2
3
2

3
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗Z

(1)
(G).

(58)

Here, the first zagreb spectrum of S′(G) is

2 −
��
13

√

2
􏼠 􏼡ζj

2 +
��
13

√

2
􏼠 􏼡ζj

p p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (59)

where ζj for j � 1, 2, 3, . . . , p are the eigenvalues of
Z(1)(G)and ((2 ±

��
13

√
)/2) are the eigenvalues of

2 3/2
3/2 0􏼢 􏼣. Hence,

ZE1 S′(G)( 􏼁 � 􏽘

j�p

j�1

2 ±
��
13

√

2
􏼠 􏼡ζj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
ζj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2 −

��
13

√

2
+
2 +

��
13

√

2
􏼠 􏼡

� 2ZE1(G).

(60)

□

10. Second Zagreb Energy

,e second zagreb energy ZE2 of a simple connected graphG
is defined in [26] as the sum of the absolute values of ei-
genvalues of the second zagreb matrix Z(2)(G) of G where
Z(2)(G) � [z

(2)
ij ], where

z
(2)
ij �

di · dj, if vi, vj ϵE(G),

0, otherwise.
􏼨 (61)

Here, di and dj are the degrees of vertices vi and vj,
respectively.

Theorem 9. For a regular graph G,

ZE2 S′(G)( 􏼁 � 4ZE2(G). (62)

Proof. Let G be a graph with vertices z1, z2, z3, . . . , zp. ,en,
the second zagreb matrix of G is denoted by Z(2)(G) and is
defined as

(63)
where dj is the degree of vertex zj for j � 1, 2, 3, . . . , p. Let
z1′, z2′, z3′, . . . , zp

′ be vertices added in G corresponding to
z1, z2, z3, . . . , zp to get S′(G) such that N(zj) � N(zj

′).
,en, the second Zagreb matrix of S′(G) is denoted by
Z(2)(S′(G)) and can be written as a square matrix as follows:
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(64)

where dj
′ is the degree of vertex zj

′ for j � 1, 2, 3, . . . , p.
Here,

Z
(2)

S′(G)( 􏼁 �
4Z(2)(G) 2Z(2)(G)

2Z(2)(G) 0
⎡⎣ ⎤⎦,

Z
(2)

S′(G)( 􏼁 �
4 2

2 0
􏼢 􏼣⊗Z

(2)
(G).

(65)

Here, the second zagreb spectrum of S′(G) is

(2 + 2
�
2

√
)ηj (2 − 2

�
2

√
)ηj

p p
􏼠 􏼡, (66)

where ηj for j � 1, 2, 3, . . . , p are the eigenvalues of

Z(2)(G)and 2 ± 2
�
2

√
are the eigenvalues of 4 2

2 0􏼢 􏼣. Hence,

ZE2 S′(G)( 􏼁 � 􏽘

j�p

j�1
(2 ± 2

�
2

√
)ηj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘

j�p

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(2 + 2

�
2

√
+ 2 − 2

�
2

√
)

� 􏽘

j�p

j�1
ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(4)

� 4ZE2(G).

(67)

□

11. Conclusion

,e energy of a graph is one of the important idea of spectral
graph theory. ,is idea links organic chemistry to mathe-
matics. Numerous graph energies established from the ei-
genvalues of a variety of graphmatrices and their bounds has
been discovered. In this paper, we give a relation of various
graph energies between the regular graph and its splitting

graph. It is interesting to compute graph energies for the
families of graphs considered in [27–31].
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