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Organophosphorus compounds are organic compounds widely employed in agriculture as well as in chemical weapons.0e use in
agriculture is due to their insecticidal properties. However, in chemical warfare, the use of organophosphorus is associated with
acetylcholinesterase inhibition, which promotes the cholinergic syndromes. In this line, the fast detection of this class of
compound is crucial for the determination of environmental exposure. 0is improved detection will naturally allow for more
prompt courses of treatment depending on the contaminant findings. In this perspective, the dipyrrinone oxime (1) was employed
for the detection of organophosphorus compounds that are employed as nerve agents, such as cyclosarin, sarin, soman, diethyl
chlorophosphate, diisopropylfluorophosphate, 2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate, O-ethyl-S-[2-
(diethylamino)ethyl]methylphosphonothioate, O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate, and O,O-
diethyl-S-[2-(diethylamino)ethyl] phosphorothioate, through fluorescent emission. 0e thermodynamics and kinetic parameters
as well as spectroscopic properties of the complexes formed for 1 and all organophosphorus compounds previously cited were
investigated by means of theoretical calculations. From our findings, only the diethyl chlorophosphate, 2-(dimethylamino)ethyl
N,N-dimethylphosphoramidofluoridate, and O,O-diethyl-S-[2-(diethylamino)ethyl] phosphorothioate emitted fluorescence in
the hexane, toluene, chloroform, dichloromethane, methanol, acetonitrile, water, and dimethyl sulfoxide solvents.0e study of the
absorption wavelength with the most polar solvent showed higher values compared to apolar solvents. In the same solvent, for
instance, soman in hexane showed the lowest absorption wavelength value, 324.5 nm, and DCP the highest value, 330.8 nm. 0is
behavior was observed in other tested solvents. 0e thermodynamic parameters indicate negative Gibbs free energy (ΔG) values
for the O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate with 1 reaction. On the other hand, the sarin and
cyclosarin revealed the lowest Gibbs free energy (ΔG‡) values, being kinetically favorable and presenting more reactivity.

1. Introduction

Organophosphorus (OP) compounds are organic compounds
that have, at least, one carbon-phosphorus chemical bond.
0e first OP compounds were prepared in the Middle Ages,
but in the XIX century, their study became more intense by
Michaelis [1–3]. In 1930, toxic and insecticidal properties of
these compounds were reported [4]. Since then, there has
been growing interest in the study of this class of compounds
due to their possible application as agrochemicals and
chemical weapons [5, 6]. 0e high toxicity of the OP

compounds is associated with high affinity for the acetyl-
cholinesterase enzyme [7, 8]. Actually, it is well known that
OP compounds can form a stable chemical bond with the
serine amino acid residue present in the active site of the
acetylcholinesterase enzyme (AChE) [8, 9] Among the main
nerve agents, it is possible to highlight the compounds
cyclosarin, sarin, soman, DCP (diethyl chlorophosphate),
DFP (diisopropylfluorophosphate), GV (2-(dimethylamino)
ethyl N,N-dimethylphosphoramidofluoridate), VM (O-ethyl-
S-[2-(diethylamino)ethyl]methylphosphonothioate), VX (O-
ethyl-S-[2(diisopropylamino)ethyl]
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methylphosphonothioate), and VG (O,O-diethyl-S-[2-
(diethylamino)ethyl] phosphorothioate) (Figure 1).

It should be kept in mind, however, that the reactivation
reaction can occur by spontaneous hydrolysis, which is a
very slow process, or by using oximes, which are considered
AChE reactivators [10, 11].

To date, the use of oximes is the most efficient approach
aiming at AChE reactivation [12, 13]. 0e AChE inhibition
process can be illustrated in Scheme 1 [14].

Although the use of OP compounds as chemical
weapons has called much attention and generated wide
discussion in the international community [15, 16], it is
important to keep in mind that the abusive use of OP
compounds, as agrochemicals, is dangerous [16]. Cur-
rently, the use and misuse of OP compounds in agriculture
are responsible for the majority of poisonings in Brazil
[4, 16].

In view of this scenario, the detection and quantification
of OP compounds in the environment are crucial [2]. In
2013, Walton et al. suggested the use of fluorescent tech-
niques to detect OP compounds [17]. In fact, when OP
compounds bind to a fluorescent probe, such as dipyrrinone
oxime (2-ethyl-7-[(Z)-(hydroxyimino)methyl]-1-methyl-
3H-dipyrrolo[1,2-c:2′,1′-f]pyrimidine-3,5-dione), the color
changes from red to yellow (Scheme 2) [17].

Despite several efforts to apply fluorescent probes for OP
detection, there is still a dearth of systematic understanding
of the thermodynamics of guest-responsive hybrid frame-
works. In this perspective, the theoretical work could be an
ally in the rationalization of thermodynamics and spec-
troscopic properties of these materials [18]. Furthermore,
theoretical approaches provide an economically viable route
for applications, as these methods can also open a new
avenue to study the structural modifications, which could
optimize the detection of OP compounds [19].

0us, aiming at combining efficiency and selectivity in
the OP compound detection process, this paper is devoted to
the theoretical study of spectroscopic properties of nerve
agents as fluorescent probes.

2. Methodology

0e oxime-organophosphorus complex calculations were
carried out in the ground and the excited states using the
DFT and TD-DFT levels [20, 21], respectively. Six different
functionals were tested (B3LYP, CAM-B3LYP, B3PW91,
MPW1PW91, PBEPBE, and ωB97XD) [22, 23]. 0e func-
tional that best approached the wave function theoretical
result with respect to the experimental result was selected for
performing the calculations together with the DGTZVP
basis set. For the potential energy surface, the surface re-
sponse was employed that was developed by selecting two α1
(C26, C28, C29, and C31) and α2 (C29, C31, C32, and C33)
dihedral angles according to Figure 2. 0e energy for the
ground and excited states was calculated, and a potential
energy surface scan of dihedral angles α1 and α2 from −180
to 180° was performed, according to Table 1.0e effect of the
methanol solvent on the surface response was carried out by
employing IEFPCM [24] for each point of the surface.

All compounds involved in the reaction described in
Scheme 2 were optimized and the frequency was calculated
at the DFT/B3LYP/DGTZVP level. 0e transition state was
evaluated using Spartan quantum software [25] 0e imag-
inary frequency for all transition states was determined at
the DFT/B3LYP/DGTZVP level [26, 27]. 0e relaxation of
the solvent was investigated using the Tamm–Dancoff ap-
proximation (TDA) [28–30] for the nine organophosphorus
compounds (cyclosarin, DCP, DFP, GV, sarin, soman, VG,
VM, and VX) complexed with the dipyrrinone oxime (1),
taking into account the effect of the solvents (such as hexane,
acetonitrile, methanol, toluene, chloroform, dichloro-
methane, dimethyl sulfoxide, and water). 0e TDA is a
computationally simple method for molecular excited states,
which can be used for predicting vibrationally resolved
absorption and emission spectra of diverse molecules
[28–30]. 0ese calculations were performed in conjugation
with the TD-DFT method for the solvent relaxation and
spectroscopic property calculation investigation for each
oxime/organophosphorus compound. All spectroscopic
calculations were carried out in Orca quantum chemistry
[31].

3. Results and Discussion

3.1. Selection of the DFT Functional for Spectroscopic
Calculations. 0e spectroscopic properties of the complexes
formed by 1 and the organophosphorus compounds studied
(Figure 2) were evaluated by both DFT and TD-DFT
methods. At the first moment, the selection of the best DFT
functional was performed by error calculation in the ab-
sorption wavelength value for the oxime (1)/DFP complex.
0is complex showed an absorption wavelength at 400 nm.

TD-DFT/DGTZVP was employed in conjugation with
the DFT functionals B3LYP, CAM-B3LYP, B3PW91,
MPW1PW91, PBE, and ωB97XD with the IEFPCM model
for methanol, which was used in the experimental part.
0ese functionals were tested for behold different families:
meta-GGA, hybrid functional, and long-range hybrid
functional. 0e compound geometric properties showed
similarity in the DFT and TD-DFTmethods, which allowed
us to apply the same geometries in the ground and excited
states. 0e bond lengths are similar for geometries generated
by both methods, for instance, the P atom bounded with the
three oxygen atoms in VG, DFP, and DCP and the P atom
bonded to N, C, or S atoms in VG, VM, sarin, and soman.
0e distances between P and these atoms are reported in
Supplementary Material, Table S3. In the same cases, the
distance between P�O was around 1.46 Å, and the other O
atoms showed values between 1.58 and 1.71 Å. 0e distance
between P and F or Cl atoms was 1.68 Å, and the distance
between P and S atomwas 2.70 and 1.61 Å. After the reaction
with oxime, all distances showed the same values, but the
atoms bound with P atom were changed. In the same cases,
the P atom linked with four O atoms with 1.80 at 1.64 Å.

From our findings, the best functional for the spectro-
scopic properties investigated was the B3LYP hybrid
functional. 0e error for the B3LYP functional was 7.1 nm,
while for B3PW91 it was –9.31 nm and for MPW1PW91 it

2 Journal of Chemistry



O

O

O
O O

O

O OF

F ClCyclosarin

P P
P P

F
Sarin

Soman DCP

CH3

CH3
CH3

CH3

CH3

H3C

H3C

H3C

H3C
H3C

H3C

H3CH3C

O

H3C

H3C

CH3

CH3 CH3

CH3
CH3

CH3

CH3
CH3

CH3

CH3
CH3

CH3

H3C H3C

H3C

H3C

H3C

H3C

H3C

H3C

H3C

H3C

O

O

OO

O

O
O

O

O
O

PP
P

P
P

N
N

N

N N

S
S

VG DFP
VX

VM
GV

S

F

F

Figure 1: Chemical structure of organophosphorates employed with fluorescent probes.
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Scheme 1: Inhibition scheme of acetylcholinesterase enzyme by organophosphate, where R1 is the alquil group, O alquil or amide; R2 the O
alquil group or amide; and X the leaving group.0e reaction pathway followed by acetylcholinesterase consists primarily in the activation of
a water molecule, followed by the attack to the central phosphorus, leading to a change of configuration.
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Scheme 2: Colorimetric reaction between dipyrrinone oxime with organophosphates generating complex fluorescent oxime/organo-
phosphates, where R4 is the leaving group. R2 and R3 were other specific substituents in the compounds.
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Figure 2: 0e dihedral angles α1 and α2 employed for building the
surface response model in the oxime-organophosphorus complex.

Table 1: Wavelength values for each functional studied and the
respective error value.

DFT functional∗∗ Wavelength (nm) Error (nm)
B3LYP 407.1 7.1
CAM-B3LYP 347.13 −52.87
B3PW91 390.69 −9.31
MPW1PW91 386.78 −13.22
PBEPBE 478.82 78.82
ωB97XD 345.25 −54.75
Experimental 400∗ —
∗Experimental value according to Walton et al. [17]. ∗∗B3LYP (Becke, 3-
parameter, Lee–Yang–Parr); MPW1PW91 (hybrid Hartree–Fock density
functional); PBEPBE (Perdew–Burke–Ernzerhof).
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was –13.22 nm (Table 1). On the other hand, the CAM-
B3LYP and ωB97XD long-range hybrid functional [32–35]
showed higher error values, –52.87 nm and –54.75 nm, re-
spectively. 0e PBE meta-GGA functional showed an error
value of 78.82 nm, the highest error for the spectroscopic
properties (Table 1).

0e ANQ geometry for the enol and keto forms was
optimized at the DFT level employing the six DFT func-
tionals cited above, the B3LYP showed results with lower
deviation between n⟶ π∗ and π⟶ π∗ and a good
agreement with hybrid functional and long-range hybrid
functional (CAM-B3LYP and ωB97XD) for the π conju-
gation [28, 36–38].

0e B3LYP functional selected in the study was
employed for the optimization in the ground state as well as
in the theoretical calculations of twenty excited states for all
compounds because the first 20 excited states give a good
description of the electronic parameters for organophos-
phorus compounds [36, 39–41].

3.2. Response Surface Analysis. It is well known that spec-
troscopic properties are modulated by structural features
[42–46]. 0us, to take into account the geometric effects on
the nerve agents, we have used chemometric techniques,
such as surface response methodology [47].

0e response surface (RS) is a design of experiment
(DOE) methodology employed for optimization (in this case
minimization) of response [48, 49] 0e RS is based on the
factorial design with a central point and using the quadratic
equation provides for minimum response with the least
number of experiments (in this case theoretically calculated)
[50, 51]. 0e response surface was used to obtain the energy
minimum in relation to the two α1 and α2 dihedral angles
(Figure 2). 0e dihedral angles were modified from −180 to
180° according to that described in Supplementary Infor-
mation Tables S1 and S2. 0e surface response in the gas
phase is presented in Figure 3, which describes the opti-
mization obtained using the employed response surface that
connected the variation of α1 and α2 angles (see Figure 2)
with the energy variation calculated by the B3LYP/DGTZVP
method. 0e results indicated that the variation of angles in
the studied compounds modified the calculated energy. 0e
optimization generated the contour graph, the 2D dimen-
sion plot, as well as the contours map described in the
surface and put in evidence the minimum energy values for
dihedral angles [52, 53]. In the gas phase, the energy
minimum is associated with α1 dihedral angle of 25° and with
α2 dihedral angle of 0°. On the other hand, Figure 4 shows
the same angles for the compounds in the solvent, which also
describes the optimization obtained using the response
surface, which connected the variation of angles α1 and α2 to
the variation of energy calculated by the same method
mentioned above; however, the oxime/organophosphate
complex is in methanol.

From the dihedral angles (Figure 3), the spectroscopic
properties were obtained for all analyzed compounds. 0e
OPs analyzed were sarin, soman, DCP, DFP, cyclosarin, GV,
VX, VM, and VG. Interestingly, all complexes formed

between OP and the spectroscopic probe 1 showed the same
dihedral angles for the energy minimum. 0us, the dihedral
angles were fixed for all compounds for the TD-DFT/
DGTZVP/B3LYP spectroscopic property calculations in the
gas phase, as well as in the other eight solvents (hexane,
chloroform, dichloromethane, toluene, methanol, acetoni-
trile, water, and DMSO).

3.3.5ermodynamics and Kinetic Parameters for the Reaction
between Oxime (1) and Nerve Agents. 0e thermodynamic
and kinetic parameters for the colorimetric reaction de-
scribed in Scheme 2 were calculated using the DFT meth-
odology.0e 1 reacted with each OP compound forming the
oxime/OP complex, having the leaving group (R4) according
to the OP employed. 0e SN2 reaction mechanism was
employed for this reaction [1]0e enthalpy (ΔH), Gibbs free
energy for reaction (ΔG), transition state Gibbs free energy
(ΔG‡) values, and rate constants were calculated for the
analysis of the spontaneity of this reaction. 0e thermo-
dynamic and kinetic parameters are shown in Table 2.

Reaction I, employing the cyclosarin compound as
substrate and fluorine as a leaving group, showed the ΔH
value of –2.49 kcal/mol.0is process was exothermic and the
activation Gibbs free energy (ΔG‡) for reaching the tran-
sition state was 15.68 kcal/mol. It was possible to observe
that reaction II showed higher ΔG, ΔH, and ΔG‡ values than
reaction I. 0e reaction II employed the DCP compound
and the chlorine as leaving group. 0e ΔH for this reaction
was the highest among the endothermic reactions (see
Table 2).

Now, by analyzing the other reactions having the
fluorine as leaving group, it is possible to notice that reaction
III, employing DFP as OP, showed 1.80 and 6.49 kcal/mol
for ΔH and ΔG, respectively. 0us, this reaction is endo-
thermic and is not spontaneous. 0e reactions IV, V, and VI
were exothermic with ΔH values of −0.51, −2.50, and
−2.53 kcal/mol, respectively. 0us, having the fluorine as the
leaving group, only reaction III was endothermic. 0e ΔG
values for the reactions IV, V, and VI were 6.44, 2.68, and
3.08 kcal/mol, respectively. Similarly, all reactions were not
spontaneous. 0e other four reactions exhibit the sulfur
group as the leaving group. 0e reactions VII and VIII
showed the 2-[di(propan-2-yl)amino]ethanethiolate com-
pound as the leaving group, while the reactions IX exhibit
the 2-(diethylamino)ethanethiolate as the leaving group.0e
reactions VII and VIII showed ΔH values of 0.37 and
0.28 kcal/mol while the ΔG values were 0.69 and 0.40 kcal/
mol, respectively. Although the reaction showed positive ΔH
and ΔG values, these systems were the most promising
among the studied reactions without the sulfur group as the
leaving group. 0e reaction IX showed the ΔH value of
0.08 kcal/mol and the ΔG value of −0.23 kcal/mol. 0e re-
action IX was endothermic and spontaneous.

Turning now to kinetic studies, the ΔG‡ values (Figure 5)
were positive for all studied reactions, which is according to
the transition state theory. Surprisingly, the halogen de-
rivatives indicated the lowest ΔG‡ values, probably due to
lower steric hindrance. 0is fact was observed in reactions
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VII, VIII, and IX, where there is the presence of more bulky
substituents as leaving groups. In fact, it is well known that
steric factors are crucial for SN2 reactions.

Furthermore, the rate constant (k) was also calculated
employing the Eyring equation [54–57] according to
equation (1). 0e rate constant demonstrates that sarin is
more reactive, while VM was less reactive among the OPs.

0erefore, the reactivity order was sarin> cyclo
sarin>DFP>DCP>GV>VG>VM>VX. 0e chemical
reactions for VX were thermodynamically favorable, which
can be characterized by negative ΔG values. 0e reaction
with cyclosarin and sarin was the most kinetically favorable
among all, revealing the lowest ΔG‡ value. It should be kept
in mind that all OP compounds were kinetically, but not
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Figure 3: (a) Surface response of the oxime/organophosphate complex showing the energyminimum for the dihedral angles α1 and α2 in the
gas phase. (b) 0e contour graph of the potential surface of the oxime/diisopropylfluorophosphate complex showing the energy minimum
for the dihedral angles α1 and α2 in the gas phase.
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and α2 in methanol. (b) Contour graph of the potential surface of the oxime/organophosphate complex showing the energy minimum for
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thermodynamically, favorable for the colorimetric detection
reaction of nerve agents (Scheme 2):

k �
kBT

h
exp −
ΔG‡

RT
 . (1)

3.4. Spectroscopic Properties of the Oxime/Organophosphate
Complex. 0e complexes formed between the oxime de-
rivatives and OPs are displayed in Scheme 2. 0e com-
pounds formed by the reaction of nine OPs with the oxime
(Table 3) also have their spectroscopic properties calculated.

0e absorption wavelengths of all complexes in eight
solvents are reported in Table 4. 0e spectroscopic pa-
rameters were calculated by using the ORCA program at the
TD-DFT/DGTZVP/B3LYP level, incorporating the
Tamm–Dancoff approximation for evaluating the solvent
relaxation as well as the absorption and emission energy for
all compounds.

0e study of the absorption wavelength with the most
polar solvent showed higher values compared to apolar
solvents. In the same solvent, for instance, soman in hexane
showed the lowest absorption wavelength value (324.5 nm),
followed by DFP (325.9 nm), sarin (326.2 nm), VM
(326.4 nm), VG (327.7 nm), VX (327.9 nm), cyclosarin
(328 nm), GV (329.4 nm), and DCP (330.8 nm). 0is

behavior was observed in other tested solvents. For the same
OPs, for example, GV, the absorption wavelength was
according to the following order: hexane (329.4 nm), toluene
(329.3 nm), chloroform (326.2 nm), dichloromethane
(326.5 nm), methanol (325.7 nm), acetonitrile (325.8 nm),
water (325.7 nm), and DMSO (326.4 nm). All values for the
other compounds are described in Table 4. In fact, the
constant dielectric (δ) value of the studied solvents influ-
ences the absorption wavelength. 0e solvent hexane
(δ �1.88) always showed lower values compared to water
(δ � 80), which shows the highest constant dielectric value in
the studied series. Other solvent properties, such as the
dipolar moment ( ρ→), can also be taken. From our findings,
hexane ( ρ→ � 0D) showed lowest absorption wavelength
value compared to DMSO ( ρ→ � 3.96D), according to Table 3.
In this line, the dipolar moment can, in principle, rationalize
the behavior observed in OP compounds cyclosarin, DCP,
GV, sarin, soman, VG, VM, and VX, which showed higher
absorption wavelength values compared to water
( ρ→ �1.85D). It is important to notice that DFP was the only
OP that showed an inversion of the behavior, and in water
solvent, it showed the highest absorption wavelength values
compared to DMSO.

0e emission wavelength value was observed in three
OPs, DCP, GV, and VG (Table 5). 0e compounds showed
four O atoms bonded with the P atom, and this feature was
favorable for charge delocalization and promotion of the
fluorescence emission. 0e other OP compounds dissipated
the energy without fluorescence emission.0e wavelength in
the tested solvents was constant showing less variance. DCP
emitted fluorescence at 734 nm, which corresponds to red
color emission; GV emitted fluorescence at 420 nm, which
corresponds to violet color emission; and VG emitted
fluorescence at 570 nm, which corresponds to green color
emission.

0e main transitions in the absorption process in apolar
solvents (hexane, toluene, and chloroform) were from
HOMO− 1 to LUMO, HOMO− 1 to LUMO+1, and
HOMO to LUMO. On the other hand, in polar solvents
(water and DMSO), only the transition HOMO-LUMO was
observed for the absorption process.0is effect was observed
for all OPs, and the HOMO orbitals involved in the

Table 2: 0ermodynamic and kinetic parameters (kcal/mol) for the colorimetric reaction between oxime and organophosphates (OP)
according to Figure 3.

Reaction OP∗ Leaving group Enthalpy
(ΔH)

Transition state Gibbs free
energy (ΔG‡)

Reaction Gibbs free
energy (ΔG)

Rate constant
(k)

I Cyclosarin F −2.49 15.68 3.49 6.17E+ 12
II DCP Cl 2.42 18.74 6.37 6.16E+ 12
III DFP F 1.80 16.82 6.49 6.17E+ 12
IV GV F −0.51 18.01 6.44 6.16E+ 12
V Sarin F −2.50 15.17 2.68 6.18E+ 12
VI Soman F −2.53 18.50 3.08 6.16E+ 12
VII VG S(CH2)2N(CH2(CH3)2)2 0.37 25.09 0.69 6.15E+ 12
VIII VM S(CH2)2N(CH2(CH3)2)2 0.28 53.53 0.40 6.08E+ 12
IX VX S(CH2)2N(CH2CH3)2 0.08 61.36 −0.23 6.06E+ 12
∗DCP (diethyl chlorophosphate), DFP (diisopropylfluorophosphate), GV (2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate), VM (O-ethyl-
S-[2-(diethylamino)ethyl]methylphosphonothioate), VX (O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate), and VG (O,O-diethyl-S-[2-
(diethylamino)ethyl] phosphorothioate).

TS

∆G‡

∆G

Complex + R4

1 + OP

Reaction coordinate

En
er

gy

Figure 5: Diagram for the reaction between 1 and organophos-
phates as demonstrated in Figure 3. 0e ΔG‡ is the transition state
Gibbs free energy and ΔG is the Gibbs free energy for reaction.
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Table 3: Structure of reaction products between dipyrrinone oxime and organophosphate compounds according to Scheme 2.

Reaction Oxime/OP complex
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Table 3: Continued.

Reaction Oxime/OP complex
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Table 4: Energy and absorption wavelength of oxime/organophosphate complexes for the eight studied solvents.

Cyclosarin DCP∗ DFP∗ GV∗ Sarin Soman VG∗ VM∗ VX∗

Hexane E (eV) 3.78 3.75 3.80 3.76 3.80 3.82 3.78 3.79 3.78
λ (nm) 328 330.8 325.9 329.4 326.2 324.5 327.7 326.4 327.9

Toluene E (eV) 3.77 3.74 3.79 3.76 3.79 3.81 3.78 3.78 3.78
λ (nm) 328.4 331.2 327.2 329.3 326.8 325.2 327.9 327.4 327.8

Chloroform E (eV) 3.78 3.76 3.79 3.80 3.78 3.80 3.77 3.79 3.79
λ (nm) 327.9 329.9 326.4 326.2 327.5 326.2 328.3 327 327.3

DCM∗∗ E (eV) 3.78 3.76 3.79 3.79 3.77 3.79 3.78 3.78 3.78
λ (nm) 328 329.6 326.4 326.5 328.2 327.1 328 328 327.8

Methanol E (eV) 3.78 3.76 3.79 3.80 3.77 3.78 3.78 3.77 3.78
λ (nm) 328 329.1 327.1 325.7 328.7 327.8 327.9 328.4 327.8

Acetonitrile E (eV) 3.78 3.76 3.79 3.80 3.77 3.78 3.78 3.77 3.78
λ (nm) 328.1 329.2 327.4 325.8 328.8 327.9 328 328.6 327.9

Water E (eV) 3.78 3.76 3.78 3.80 3.76 3.78 3.78 3.77 3.78
λ (nm) 328.2 329.2 328 325.7 329 328.1 328.1 328.7 328

DMSO∗∗ E (eV) 3.76 3.76 3.79 3.79 3.76 3.77 3.60 3.76 3.80
λ (nm) 328.9 330.1 326.8 326.4 329.6 328.7 328.9 329.4 328.7

∗DCP (diethyl chlorophosphate), DFP (diisopropylfluorophosphate), GV (2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate), VM (O-ethyl-
S-[2-(diethylamino)ethyl]methylphosphonothioate), VX (O-ethyl-S-[2(diisopropylamino)ethyl] methylphosphonothioate), and VG (O,O-diethyl-S-[2-
(diethylamino)ethyl] phosphorothioate). ∗∗Dichloromethane solvent (DCM); dimethyl sulfoxide (DMSO).
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excitation were localized just in the 1 structure, while the
LUMO orbitals are delocalized in 1 as well as in other or-
ganophosphorus compounds. 0e angles observed on the
response surface can help in the delocalized orbitals between
the organophosphorus and 1 as observed in Figure 6. 0is
feature demonstrates that the conformational structure
generated on the response surface was important for orbital
delocalizations as well as for the emission process.

4. Conclusion

0e DFT and TD-DFT were satisfactory for this study, and
the hybrid functional family showed the lowest error when
compared with other families. 0e B3LYP functional
exhibited the error inside its family (7.1), being the func-
tional selected for the optimization step as well as absorption
and emission property calculations. 0e surface response
analysis showed the energy minimum when angle α1 was 25°
and α2 was 0°. 0e solvent analysis showed less variation in
the absorption values. 0e dipolar moment and dielectric
constant showed influence on the absorption properties.0e
reaction between 1 and the OP compounds showed to be
kinetically favorable for all compounds, Sarin and cyclosarin
are more reactive. 0e OPs with a sulfur leaving group
demonstrated to be more thermodynamically favorable (VX,
VG, and VM).0e VX reaction showed –73 kcal/mol for ΔG
and –98 kcal/mol for ΔH. 0e TDA was significant because
this methodology describes the solvent effects better [28–30].
Only three compounds showed emission values (DCP, VG,
and GV). 0e emission was influenced by HOMO–1-
LUMO, HOMO-LUMO, and HOMO-LUMO+1 transi-
tions. 0e conformational structure generated on the re-
sponse surface was important for orbital delocalization
between oxime and organophosphates. 0e understanding

of the nature of the emission and the solvent influence was
important for this study because it allows proposing new
ways for compound structural modifications in order to
build more efficient fluorescent probes.
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Supplementary Materials

S1. Surface response. Table S1: values for angles, energies of
ground state (GS) and excited state (ES), and wavelength
calculated for combination of angles employed for building
surface response. Table S2: values for angles, energies of
ground state (GS) and excited state (ES), and wavelength
calculated for combination of angles employed for building

LUMO HOMO

Figure 6: Representation of HOMO-LUMO orbitals in the dipyrrinone oxime/diethyl chlorophosphate complex.

Table 5: Energy and emission wavelengths of the oxime/organophosphate complex in eight solvents.

OP∗ Hexane Toluene Chloroform DCM Methanol Acetonitrile Water DMSO

DCP λ (nm) 746.7 754.0 742.3 735.3 721.4 722.2 720.2 734.2
E (eV) 1.66 1.64 1.67 1.68 1.72 1.71 1.72 1.69

GV λ (nm) 423.6 434.5 426.5 422.4 411.6 413.2 411.5 426.2
E (eV) 2.92 2.85 2.91 2.93 3.01 3.00 3.01 2.91

VG λ (nm) 577.7 582.4 574.7 570.8 562.3 563.3 561.9 572.0
E (eV) 2.14 2.13 2.15 2.17 2.20 2.20 2.21 2.16

∗DCP (diethyl chlorophosphate), GV (2-(dimethylamino)ethyl N,N-dimethylphosphoramidofluoridate), and VG (O,O-diethyl-S-[2-(diethylamino)ethyl]
phosphorothioate). ∗∗Dichloromethane solvent (DCM); dimethyl sulfoxide (DMSO).
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surface response in water solvent. Table S3: values for
geometric properties from organophosphorus compounds
and the complex with oxime (distance). (Supplementary
Materials)
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