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A graph is called unicyclic if the graph contains exactly one cycle. Unicyclic graphs with the fourth extremal Wiener indices are
characterized. It is shown that, among all unicyclic graphs with n≥ 8 vertices, C5(Sn− 4) and C

u1 ,u2
2 (S3, Sn− 4) attain the fourth

minimum Wiener index, whereas C
u1 ,u2
3 (P3, Pn− 4) attains the fourth maximum Wiener index.

1. Introduction

Let G � (V(G), E(G)) be a connected (molecular) graph
with vertex set V(G) and edge set E(G). For any two vertices
u, v ∈ V(G), the distance dG(u, v) between them is defined
as the number of edges in a shortest path connecting them.
,e distance of a vertex u ∈ V(G), denoted by dG(u), is the
sum of distances between u and all other vertices of G, i.e.,
dG(u) � 􏽐v∈V(G)dG(u, v). ,e famous Wiener index of G,
denoted by W(G), is defined as

W(G) � 􏽘
u,v{ }⊆V(G)

dG(u, v) �
1
2

􏽘
u∈V(G)

dG(u). (1)

,e Wiener index of a graph is a well-known topo-
logical index, and it seems that Wiener [1] was the first who
considered it. Wiener himself used the name path number
and conceived W(G) only for acyclic molecules. ,e def-
inition of the Wiener index in terms of distances between
vertices of a graph, such as in equation (1), was first given
by Hosoya [2]. Since the middle of the 1970s, the Wiener
index has been extensively studied. For research devel-
opment on the Wiener index, the readers are referred to
[3–7] and two special issues of MATCH [8] and Discrete
Appl. Math. [9]. Analogous to the Wiener index, some

other topological indices are introduced and studied (for
example, see [10–13]).

As summarized in [14–16], studies on the Wiener index
mainly focus on trees and hexagonal systems. Recently,
Wiener indices of unicyclic graphs (i.e., connected graphs
containing exactly one cycle) have attracted much attention.
Studies along this line include relations betweenWiener and
Szeged indices of unicyclic graphs [17], minimum Wiener
indices of unicyclic graphs of given order, cycle length and
number of penden vertices [18], minimumWiener indices of
unicyclic graphs of given matching number [19], Wiener
indices of unicyclic graphs with given girth [20], minimum
Wiener indices of unicyclic graphs of order n with girth g

and the matching number β≥ 3g/2 [21], minimum Wiener
indices of unicyclic graphs of order n and girth g with k
pendent vertices [22], minimum Wiener index of unicyclic
graphs with given bipartition [23], and so on. In [24], Tang
and Deng considered unicyclic graphs with the first three
smallest and largest Wiener indices. However, their char-
acterization turned out to be incomplete and two extremal
graphs were missed. Later, Nasiri et al. [25] filled the gap and
presented a complete characterization to these extremal
graphs. On the basis of the previous work, in this paper, we
characterize unicyclic graphs with the fourth smallest and
largest Wiener indices.
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2. Notations and Lemmas

,roughout the paper, the path, star, and cycle graphs on n
vertices are denoted by Pn, Sn, and Cn, respectively. Let G be
a unicyclic graph of order n with its unique cycle Cm �

v1v2 . . . vmv1 of length m. Suppose that T1, T2, . . . , Tk

(0≤ k≤m) are all the nontrivial components (they are all
nontrivial trees) of G − E(Cm), and ui is the common vertex
of Ti and Cm, i � 1, 2, . . . , k. Such a unicyclic graph is
denoted by Cu1 ,u2 ,...,uk

m (T1, T2, . . . , Tk). Specially, G � Cn for
k � 0. And if k � 1, we write Cm(T1) for Cu1

m (T1). Let
|V(Ti)| � li + 1, i � 1, 2, . . . , k. ,en, l � l1 + l2 + · · · +

lk � n − m. Denote by Tn the set of all trees of order n.
In the following, we summarize some known results

concerning Wiener indices of unicyclic graphs which will be
used in the later.

Lemma 1 (see [24]). Let G � Cu1 ,u2 ,...,uk
m (T1, T2, . . . , Tk) be

a unicyclic graph. 0en,

W(G) � W Cm( 􏼁 +(n − m)ω +(m − 1) 􏽘
k

i�1
ωi + 􏽘

k

i�1
W Ti( 􏼁

+ 􏽘
k− 1

i�1
􏽘

k

j�i+1
liωj + liljdCm

ui, uj􏼐 􏼑 + ljωi􏼐 􏼑,

(2)

where ωi � dTi
(ui), ω � dCm

(u), and u ∈ Cm.

Lemma 2 (see [24]). Let G1 � Cu1 ,u2 ,...,uk
m (Sl1+1, Sl2+1, . . . ,

Slk+1) and G2 � Cu1 ,u2 ,...,uk
m (Pl1+1, Pl2+1, . . . , Plk+1), where

u1, u2, . . . , uk are the centers of Sl1+1, Sl2+1, . . . , Slk+1, re-
spectively, in G1 and u1, u2, . . . , uk are the pendent vertices of
Pl1+1, Pl2+1, . . . , Plk+1, respectively, in G2. 0en,

W G1( 􏼁≤W(G) ≤W G2( 􏼁, (3)

for any graph G � Cu1 ,u2 ,...,uk
m (T1, T2, . . . , Tk) and

|V(Ti)| � li + 1, i � 1, 2, . . . , k, with the equality on the left
(or on the right) if and only if G � G1 (or G � G2).

Lemma 3 (see [24]). Let G1 � Cu1 ,u2 ,...,uk
m (Sl1+1, Sl2+1, . . . ,

Slk+1) and li � n(Ti), i � 1, 2, . . . , k. If k≥ 1, then

W G1( 􏼁≥W Cm Sl+1( 􏼁( 􏼁, (4)

with the equality if and only if G1 � Cm(Sl+1), where
l � l1 + l2 + · · · + lk � n − m.

Lemma 4 (see [24]). Let G2 � Cu1,u2 ,...,uk
m (Pl1+1, Pl2+1, . . . ,

Plk+1) and li � n(Ti), i � 1, 2, . . . , k. If k≥ 1, then

W G2( 􏼁≥W Cm Pl+1( 􏼁( 􏼁, (5)

with the equality if and only if G1 � Cm(Pl+1), where
l � l1 + l2 + · · · + lk � n − m.

Lemma 5 (see [25]). If n≥ 8 and m≥ 3, then W(Cm

(Sn− m+1)) − W(Cm− 1(Sn− m+2))> 0.

Besides, we also need the following result.

Lemma 6 (see [22]). Let H, X, and Y be three connected
pairwise vertex-set disjoint graphs. Suppose that u and v are
the two vertices of H, v′ is a vertex of X, and u′ is a vertex of Y.
Let G be the graph obtained from H, X, andY by identifying v

with v′ and u with u′, respectively. Let G∗1 be the graph
obtained from H, X, andY by identifying vertices
v, v′, and u′, and let G∗2 be the graph obtained from
H, X, andY by identifying vertices u, v′, u′. 0en,

W G
∗
1( 􏼁<W(G) orW G

∗
2( 􏼁<W(G). (6)

3. Results

3.1. Unicyclic Graphs with the Fourth Minimum Wiener
Index. Let C3(T1

n− 5,1) be the unicyclic graph as shown in
Figure 1(a). ,en, unicyclic graphs with the first smallest
Wiener indices are completely characterized in the following
result.

Theorem 1 (see [25]). Suppose G � Cu1 ,u2 ,...,uk
m (T1, T2, . . . ,

Tk) is a unicyclic graph of order n, with n≥ 7. If G≇ Sn + e,

C4(Sn− 3), C
u1 ,u2
3 (S2, Sn− 3), then

W Sn + e( 􏼁<W C4 Sn− 3( 􏼁( 􏼁 � W C
u1 ,u2
3 S2, Sn− 3( 􏼁( 􏼁

<W C3 T
1
n− 5,1􏼐 􏼑􏼐 􏼑≤W(G),

(7)

with equality if and only if

G �
C3 T1

n− 5,1􏼐 􏼑, if n> 7,

C
u1,u2
3 S3, S3( 􏼁 orC5 S3( 􏼁, if n � 7.

⎧⎨

⎩ (8)

As illustrated in the following theorem, we show that
C5(Sn− 4) and C

u1 ,u2
3 (S3, Sn− 4) have the fourth smallest

Wiener indices.

Theorem 2. Suppose G � Cu1 ,u2,...,uk
m (T1, T2, . . . , Tk) is

a unicyclic graph of order n, with n≥ 8. If G≇ Sn + e,

C4(Sn− 3), C
u1 ,u2
3 (S2, Sn− 3), C3(T1

n− 5,1), then

W Sn + e( 􏼁<W C4 Sn− 3( 􏼁( 􏼁 � W C
u1 ,u2
3 S2, Sn− 3( 􏼁( 􏼁

<W C3 T
1
n− 5,1􏼐 􏼑􏼐 􏼑

<W C5 Sn− 4( 􏼁( 􏼁 � W C
u1 ,u2
3 S3, Sn− 4( 􏼁( 􏼁≤W(G),

(9)

with equality if and only if G � C5(Sn− 4) or C
u1 ,u2
3 (S3, Sn− 4).

Proof. By Lemma 1,
W Sn + e( 􏼁<W C4 Sn− 3( 􏼁( 􏼁 � W C

u1 ,u2
3 S2, Sn− 3( 􏼁( 􏼁

<W C3 T
1
n− 5,1􏼐 􏼑􏼐 􏼑 � n

2
− n − 3.

(10)

On the other hand, by Lemma 1, it is easily computed
that
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W C5 Sn− 4( 􏼁( 􏼁 � W C
u1 ,u2
3 S3, Sn− 4( 􏼁( 􏼁 � n

2
− 10. (11)

Hence, for n≥ 8, W(Sn + e)<W(C4(Sn− 3)) � W(C
u1 ,
3 u2

(S2, Sn− 3))<W(C3(T1
n− 5,1))<W(C5(Sn− 4)) � W(C

u1 ,u2
3 (S3,

Sn− 4)). So, it suffices to show that if G is a n-vertex unicyclic
graph (n≥ 8), such that G≇ Sn + e, C4(Sn− 3),

C
u1 ,u2
3 (S2, Sn− 3), C3(T1

n− 5,1), then W(C5(Sn− 4))≤W(G), with
equality if and only if G � C5(Sn− 4) or C

u1 ,u2
3 (S3, Sn− 4). To

this end, for convenience, we distinguish three cases that
m � 3, 4 or m≥ 5. □

Case 1 (m≥ 5). If k � 0, then G � Cn. It is well known that

W Cn( 􏼁 �

1
8

n
3
, if n is even,

1
8

n n
2

− 1􏼐 􏼑, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

Hence, if n is even, then

W(G) − W C5 Sn− 4( 􏼁( 􏼁 �
1
8
n
3

− n
2

− 10􏼐 􏼑 �
1
8
n
3

− n
2

+ 10> 0,

(13)

and if n is odd, then

W(G) − W C5 Sn− 4( 􏼁( 􏼁 �
1
8

n n
2

− 1􏼐 􏼑 − n
2

− 10􏼐 􏼑

�
1
8

n
3

−
9
8

n
2

+ 10> 0,

(14)

as desired.
Now assume that k≥ 1. ,en, by Lemmas 2, 3, and 5,

W(G) ≥W C
u1 ,u2,...,uk

m Sl1+1, Sl2+1, . . . , Slk+1􏼐 􏼑􏼐 􏼑

≥W Cm Sn− m+1( 􏼁( 􏼁≥W C5 Sn− 4( 􏼁( 􏼁,
(15)

with equality if and only if G � C5(Sn− 4).

Case 2 (m � 4). In this case, we consider four subcases that
k � 1, 2, 3, or 4.

Subcase 1 (k � 1). In this case, G � C4(T1). Since
G � C4(T1)≇C4(Sn− 3), it has been shown in [25] that

W(G)≥W C4 T
1
n− 6,1􏼐 􏼑􏼐 􏼑 � n

2
− 7. (16)

Hence, W(G)≥W(C4(T1
n− 6,1)) � n2 − 7> n2 − 10 � W

(C5(Sn− 4)), as desired.

Subcase 2 (k � 2). In this case, G � C
u1 ,u2
4 (T1, T2). It has

been shown in [24] that

W(G) � W C
u1 ,u2
4 T1, T2( 􏼁( 􏼁≥W C

u1 ,u2
4 Sl1+1, Sl2+1􏼐 􏼑􏼐 􏼑

� n
2

− n − 4 + αl1l2,

(17)

where α � 1 if u1 and u2 are adjacent in C4; otherwise, α � 2.
Noticing that l1 + l2 � n − 4, we have

W(G) − W C5 Sn− 4( 􏼁( 􏼁≥ n
2

− n − 4 + αl1l2 − n
2

− 10􏼐 􏼑

� αl1l2 − n + 6

≥ 1 ×(n − 5) − n + 6> 0.

(18)

Subcase 3 (k � 3). In this case, G � C
u1 ,u2 ,u3
4 (T1, T2, T3). Let

G∗1 be the graph obtained from G by first removing T1 from
G and then identifying the root of T1 with u2, and let G∗2 be
the graph obtained from G by first removing T2 from G and
then identifying the root of T2 with u1. ,en, by Lemma 6,
W(G∗1 )<W(G) or W(G∗2 )<W(G). Suppose that
W(G∗1 )<W(G). ,en, according to the proof of Subcase 2,
we know that W(G∗1 )>W(C5(Sn− 4)). Hence, we have
W(G) >W(C5(Sn− 4)), as desired.

Subcase 4 (k � 4). ,e same argument as Subcase 3 shows
that

W(G) � W C
u1 ,u2 ,u3 ,u4
4( 􏼁 T1, T2, T3, T4( 􏼁>W C5 Sn− 4( 􏼁( 􏼁.

(19)

Case 3 (m � 3). For convenience, we distinguish the fol-
lowing three cases.

Subcase 5 (k � 1). In this case, G � C3(T1). Let C3(T2
n− 6,1)

be the graph shown in Figure 1(b) . ,en, it is well known
that Sn− 3, T1

n− 5,1, and T2
n− 6,1 has the minimum, second

minimum, and third minimum of Wiener index in Tn− 2.
Since G≇ Sn + e, C3(T1

n− 5,1), we know T1 ≇ Sn− 2, T1
n− 5,1. By

Lemma 1,

W(G) � W C3 T1( 􏼁( 􏼁 � W C3( 􏼁 +(n − 3)du C3( 􏼁

+ 3du1
T1( 􏼁 + W T1( 􏼁.

(20)

Noticing that W(T1)≥W(T2
n− 6,1) and du1

(T1)≥du1
(T2

n− 6,1), we readily have

W(G) ≥W C3 T
2
n− 6,1􏼐 􏼑􏼐 􏼑 � n

2
− 8>W C5 Sn− 4( 􏼁( 􏼁. (21)

Subcase 6 (k � 2). In this case, G � C
u1 ,u2
3 (T1, T2). Without

loss of generality, we assume that l1 ≤ l2. Now, we consider
the following two cases:

(1) l1 � 1. In this case, T1 � S2. By Lemma 1,

W(G) � W C
u1,u2
3 S2, T2( 􏼁( 􏼁 � W C3( 􏼁 +(n − 3)ω +(m − 1)

· du1
S2( 􏼁 + du2

T2( 􏼁􏼐 􏼑 + W S2( 􏼁 + W T2( 􏼁

+ l1du2
T2( 􏼁 + l1l2dC3

u1, u2( 􏼁 + l2du1
S2( 􏼁.

(22)
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Since G≇C
u1 ,u2
3 (S2, Sn− 3), we have T2 ≇ Sn− 3. So

W(T2)≥W(T1
n− 6,1) and du2

(T2)≥du2
(T1

n− 6,1). It thus
follows that

W(G) � W C
u1 ,u2
3 S2, T2( 􏼁( 􏼁≥W C

u1 ,u2
3 S2, T

1
n− 6,1􏼐 􏼑􏼐 􏼑.

(23)

Again By Lemma 1, simple computation shows that
W(C

u1 ,u2
3 (S2, T1

n− 6,1)) � n2 − 7. Hence, we have W

(G)≥W(C
u1 ,u2
3 (S2, T1

n− 6,1)) � n2 − 7> n2 − 10 � W

(C5(Sn− 4)).
(2) l1 ≥ 2. In this case, it is obvious that

G≇C
u1 ,u2
3 (S2, Sn− 3). By Lemma 2,

W(G) � W C
u1 ,u2
3 T1, T2( 􏼁( 􏼁≥W C

u1 ,u2
3 Sl1+1, Sl2+1􏼐 􏼑􏼐 􏼑.

(24)

It has been computed in [24] that

W C
u1 ,u2
3 Sl1+1, Sl2+1􏼐 􏼑􏼐 􏼑 � n

2
− 2n + l1l2. (25)

Bearing in mind that l1 ≥ 2 and l1 + l2 � n − 3, we readily
have

W C
u1 ,u2
3 Sl1+1, Sl2+1􏼐 􏼑􏼐 􏼑 � n

2
− 2n + l1l2 ≥ n

2
− 2n

+ 2(n − 5) � n
2

− 10,
(26)

with equality if and only if l1 � 2 and l2 � n − 5. Hence,

W(G) � W C
u1 ,u2
3 T1, T2( 􏼁( 􏼁≥W C

u1 ,u2
3 Sl1+1, Sl2+1􏼐 􏼑􏼐 􏼑

≥W C
u1 ,u2
3 S3, Sn− 4( 􏼁( 􏼁 � n

2
− 10,

(27)

with equality if and only if G � C
u1 ,u2
3 (S3, Sn− 4).

Subcase 7 (k � 3). In this case, G � C
u1 ,u2 ,u3
3 (T1, T2, T3). It

has been shown in [24] that

W(G)≥W C
u1 ,u2 ,u3
3 Sl1+1, Sl2+1, Sl3+1􏼐 􏼑􏼐 􏼑 � n

2
− 2n + l1l2 + l1l3 + l2l3.

(28)

Since l1 + l2 + l3 � n − 3, we have

l1l2 + l1l3 + l2l3 � l1l2 + l1 + l2( 􏼁l3 � l1l2 + l1 + l2( 􏼁

· n − 3 − l1 + l2( 􏼁( 􏼁.
(29)

If l1 + l2 � n − 4, then l1l2 ≥ n − 5 and thus l1l2 +

l1l3 + l2l3 ≥ n − 5 + (n − 4)(n − 3 − (n − 4)) � 2n − 9; other-
wise, 2≤ l1 + l2 ≤ n − 5, then l1l2 ≥ 1 and thus l1l2 +

l1l3 + l2l3 ≥ 1 + (n − 5)(n − 3 − (n − 5)) � 2n − 9. Hence, in
both cases, we have l1l2 + l1l3 + l2l3 ≥ 2n − 9 and
consequently,

W(G)≥W C
u1 ,u2 ,u3
3 Sl1+1, Sl2+1, Sl3+1􏼐 􏼑􏼐 􏼑≥ n

2
− 2n

+(2n − 9) � n
2

− 9> n
2

− 10.
(30)

□

3.2. Unicyclic Graphs with the Fourth Maximum Wiener
Index. Unicyclic graphs with the first three largest Wiener
indices were first characterized by Tang and Deng [24], but
one extremal graph was missed. ,en, Nasiri et al. [25] gave
a complete characterization.

Theorem 3 (see [25]). Suppose G � Cu1 ,u2 ,...,uk
m (T1, T2, . . . ,

Tk) is a unicyclic graph of order n, with n≥ 6. If
G≇C3(Pn− 2), C4(Pn− 3), andC

u1 ,u2
3 (P2, Pn− 3), then

W(G)≤W C3(T(n − 5, 1, 1))( 􏼁<W C4 Pn− 3( 􏼁( 􏼁

� W C
u1 ,u2
3 P2, Pn− 3( 􏼁( 􏼁<W C3 Pn− 2( 􏼁( 􏼁,

(31)

with equality if and only if G � C3(T(n − 5, 1, 1)). Here,
T(n − 5, 1, 1) is a unicyclic graph depicted in Figure 2(a).

Now, we characterize unicyclic graphs with the fourth
largest Wiener indices.

Theorem 4. Suppose that G � Cu1 ,u2 ,...,uk
m (T1, T2, . . . , Tk) is

a unicyclic graph of order n, with n≥ 8. If G≇
C3(Pn− 2), C4(Pn− 3), C

u1 ,u2
3 (P2, Pn− 3), andC3(T(n − 5, 1, 1)),

then

W(G)≤W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁<W C3(T(n − 5, 1, 1))( 􏼁

<W C4 Pn− 3( 􏼁( 􏼁

� W C
u1,u2
3 P2, Pn− 3( 􏼁( 􏼁<W C3 Pn− 2( 􏼁( 􏼁,

(32)

with equality if and only if G � C
u1 ,u2
3 (P3, Pn− 4).

Proof. By Lemma 1, it is easily computed that for n≥ 8,

un–2

un–3
un–4

u1

u3

u2

(a)

un–2
un–3

un–5
un–4

u3
u1 u2

(b)

Figure 1: Unicyclic graphs C3(T1
n− 5,1) (a) and C3(T1

n− 6,2) (b).
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1
6

n
3

− 19n + 72􏼐 􏼑 � W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁

<
1
6

n
3

− 13n + 30􏼐 􏼑 � W C3(T(n − 5, 1, 1))( 􏼁.

(33)

Hence, according to ,eorem 4, we only need to show
that for n≥ 8, if G≇C3(Pn− 2), C4(Pn− 3), C

u1 ,u2
3 (P2, Pn− 3),

andC3(T(n − 5, 1, 1)), then W(G)≤W(C
u1 ,u2
3 (P3, Pn− 4)),

with equality if and only if G � C
u1 ,u2
3 (P3, Pn− 4). To prove

our result, we distinguish the following three cases
according to m. □

Case 4 (m≥ 5). In this case, we consider two subcases that
k � 0 and k≥ 1.

Subcase 8 (k � 0). In this case G � Cn. If n is even, then

W Cn( 􏼁 − W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 �

1
8
n
3

−
1
6

n
3

− 19n + 72􏼐 􏼑

� −
1
24

n
3

+
19
6

n − 12< 0.

(34)

If n is odd, then

W Cn( 􏼁 − W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 �

1
8

n n
2

− 1􏼐 􏼑

−
1
6

n
3

− 19n + 72􏼐 􏼑 � −
1
24

n
3

+
73
24

n − 12< 0.

(35)

Hence, W(G)<W(C
u1 ,u2
3 (P3, Pn− 4)) as desired.

Subcase 9 (k≥ 1). By Lemmas 2 and 4,

W(G)≤W C
u1 ,u2 ,...,uk

m Pl1+1, Pl2+1, . . . , Plk+1􏼐 􏼑􏼐 􏼑≤W Cm Pl+1( 􏼁( 􏼁.

(36)

We now prove that W(Cm(Pl+1))<W(C
u1 ,u2
3 (P3, Pn− 4)).

We first assume thatm is even.,en, m≥ 6 and by Lemma 1,

W Cm Pl+1( 􏼁( 􏼁 �
1
6

n
3

+ −
3
2

m
2

+ 3m − 1􏼒 􏼓n +
5
4

m
3

− 3m
2

+ m􏼒 􏼓􏼔 􏼕.

(37)

,us,

W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 − W Cm Pl+1( 􏼁( 􏼁

�
1
6

n
3

− 19n + 72􏼐 􏼑 −
1
6

n
3

+ −
3
2

m
2

+ 3m − 1􏼒 􏼓n􏼔

+
5
4

m
3

− 3m
2

+ m􏼒 􏼓􏼕

�
1
4

m
2

− 2m − 12􏼐 􏼑n −
1
24

5m
3

− 12m
2

+ 4m − 288􏼐 􏼑

≥
1
4

m
2

− 2m − 12􏼐 􏼑m −
1
24

5m
3

− 12m
2

+ 4m − 288􏼐 􏼑

�
1
24

m
3

−
19
6

m + 12> 0.

(38)

Now assume thatm is odd. ,en, m≥ 5 and by Lemma 1

W Cm Pl+1( 􏼁( 􏼁 �
1
6

n
3

+ −
3
2
m

2
+ 3m − 1􏼒 􏼓n +

5
4

m
3

− 3m
2

+ m􏼒 􏼓􏼔

−
1
4

n +
1
8

m􏼕.

(39)

,us,

W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 − W Cm Pl+1( 􏼁( 􏼁

�
1
6

n
3

− 19n + 72􏼐 􏼑 −
1
6

n
3

+ −
3
2
m

2
+ 3m − 1􏼒 􏼓n􏼔

+
5
4
m

3
− 3m

2
+ m􏼒 􏼓􏼕 +

1
4

n −
1
8

m

�
1
4

m
2

− 2m − 11􏼐 􏼑n −
1
24

5m
3

− 12m
2

+ 7m − 288􏼐 􏼑

≥
1
4

m
2

− 2m − 11􏼐 􏼑m −
1
24

5m
3

− 12m
2

+ 7m − 288􏼐 􏼑

�
1
24

m
3

−
73
24

m + 12> 0.

(40)

,erefore, we could conclude that W(Cm(Pl+1))<W

(C
u1 ,u2
3 (P3, Pn− 4)). □

Case 5 (m � 4). We consider subcases that k � 1, 2, 3, or 4.

u1 u2 un–5 un–4
un–3

un–2

(a)

u1 u2 un–5
un–4

un–3

un–2

un–6

(b)

Figure 2: Unicyclic graphs C3(T(n − 5, 1, 1)) (a) and C3(T(n − 6, 1, 2)) (b).
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Subcase 10 (k � 1). In this case, G � C4(T1) with T1 being
a tree of order n − 3. By assumption, G≇C4(Pn− 3) and so
T1 ≇Pn− 3. By Lemma 1,

W(G) � W C4 T1( 􏼁( 􏼁 � W C4( 􏼁 +(n − 3)ω

+ 3du1
T1( 􏼁 + W T1( 􏼁.

(41)

Noticing that T(n − 6, 1, 1) has the second maximum
Wiener index in Tn− 3 and dT1

(u1)≤dT(n− 6,1,1)(u1), we have

W(G) � W C4 T1( 􏼁( 􏼁≤W C4(T(n − 6, 1, 1))( 􏼁

�
1
6

n
3

− 19n + 54􏼐 􏼑.

(42)

,us, we have

W(G)≤
1
6

n
3

− 19n + 54􏼐 􏼑<
1
6

n
3

− 19n + 72􏼐 􏼑

� W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁,

(43)

as desired.

Subcase 11 (k � 2). By Lemma 2, we have

W(G) � W C
u1 ,u2
4 T1, T2( 􏼁( 􏼁≤W C

u1 ,u2
4 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑.

(44)

In addition, it has been shown in [24] that

W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 − W C

u1 ,u2
4 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑

� (3 − α)l1l2 − n + 6,
(45)

where α � 1 if u1 and u2 are adjacent and 2, otherwise.
Bearing in mind that l1 + l2 � n − 4, l1l2 ≥ n − 5 and

W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁 − W C

u1 ,u2
4 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑

>(3 − 2)(n − 5) − n + 6 � 1> 0.
(46)

So we have W(C
u1 ,u2
3 (P3, Pn− 4)) − W(G)> 0 as desired.

Subcase 12 (k � 3 or k � 4). In this case, it has been shown
in [24] that

W C
u1 ,u2,u3
4( 􏼁 T1, T2, T3( 􏼁≤W C

u1 ,u2 ,u3
4( 􏼁 Pl1+1, Pl2+1, Pl3+1􏼐 􏼑

<W C4(T(n − 6, 1, 1))( 􏼁,

W C
u1,u2,u3 ,u4
4( 􏼁 T1, T2, T3, T4( 􏼁≤W C

u1 ,u2 ,u3,u4
4( 􏼁

Pl1+1, Pl2+1, Pl3+1, Pl4+1􏼐 􏼑

<W C4(T(n − 6, 1, 1))( 􏼁.

(47)

As shown in Subcase 10, W(C4(T(n − 6, 1, 1)))<W

(C
u1 ,u2
3 (P3, Pn− 4)). ,us, it is done.

Case 6 (m � 3). We distinguish three cases according to
k � 1, 2, or 3.

Subcase 13 (k � 1). In this case, G � C3(T1). By assumption,
C3(T1)≇C3(Pn− 2), C3(T(n − 5, 1, 1)) and so T1 ≇Pn− 2, T

(n − 5, 1, 1). By Lemma 1,

W C3 T1( 􏼁( 􏼁 � W C3( 􏼁 + W T1( 􏼁 + 2(n − 3) + 2dT1
u1( 􏼁.

(48)

Since T(n − 6, 1, 2) has the third maximum Wiener
index in Tn− 2 and T1 ≇Pn− 2, T(n − 5, 1, 1), we readily have
W(C3(T1))≤W(C3(T(n − 6, 1, 2))). It is easily verified
that

W C3(T(n − 6, 1, 2))( 􏼁 �
1
6

n
3

− 19n + 48􏼐 􏼑

<W C
u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁,

(49)

as desired.

Subcase 14 (k � 2). In this case, G � C
u1 ,u2
3 (T1, T2). Without

loss of generality, we suppose that l1 ≤ l2. For convenience,
we distinguish the following two cases:

(1) l1 � 1; that is, T1 � P2. Since G≇C3(P2, Pn− 3),
T2 ≇Pn− 3. It is easy to compute that

W C3 P2, T2( 􏼁( 􏼁 � W C3 P2( 􏼁( 􏼁 + W T2( 􏼁 + 3dT2
u2( 􏼁 + 2(n − 4).

(50)

Since T(n − 6, 1, 1) has the second maximum Wiener
index in Tn− 3 and T2 ≇Pn− 3, we have

W C3 P2, T2( 􏼁( 􏼁≤W C3 P2, T(n − 6, 1, 1)( 􏼁( 􏼁 �
1
6

n
3

− 19n + 54􏼐 􏼑.

(51)

Noticing that W(C3(P2, T(n − 6, 1, 1)))<W(C
u1 ,u2
3

(P3, Pn− 4)), we complete the proof.
(2) l1 ≥ 2. In this case, we have

W(G) � W C
u1 ,u2
3 T1, T2( 􏼁( 􏼁≤W C

u1,u2
3 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑.

(52)

By Lemma 1, simple calculation shows that

W C
u1 ,u2
3 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑 �

1
6
n
3

−
7
6

n − l1l2 + 2. (53)

On the other hand,

W C
u1 ,u2
3 Pl1+1, Pl2+1􏼐 􏼑􏼐 􏼑 − W C

u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁

�
1
6

n
3

−
7
6

n − l1l2 + 2 −
1
6

n
3

− 19n + 72􏼐 􏼑

� 2n − 10 − l1l2 ≤ 2n − 10 − 2(n − 5) � 0,

(54)
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with equality if and only if l1 � 2 (and thus, l2 � n − 5), that
is, if and only if C

u1 ,u2
3 (Pl1+1, Pl2+1) � C

u1 ,u2
3 (P3, Pn− 4). Hence,

W(G) � W(C
u1 ,u2
3 (T1, T2))≤W(C

u1 ,u2
3 (P3, Pn− 4)), with

equality if and only if G � C
u1 ,u2
3 (P3, Pn− 4).

Subcase 15 (k � 3). By Lemma 2, we have

W(G) � W C
u1 ,u2 ,u3
3 T1, T2, T3( 􏼁( 􏼁

≤W C
u1 ,u2 ,u3
3 Pl1+1, Pl2+1, Pl3+1􏼐 􏼑􏼐 􏼑.

(55)

It has been shown in [25] that

W C
u1 ,u2 ,u3
3 Pl1+1, Pl2+1, Pl3+1􏼐 􏼑􏼐 􏼑 �

1
6

n
3

−
7
6

n + 2

− l1l2l3 + l1l2 + l1l3 + l2l3( 􏼁.

(56)

Hence,

W C
u1 ,u2 ,u3
3 Pl1+1, Pl2+1, Pl3+1􏼐 􏼑􏼐 􏼑 − W C

u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁

�
1
6

n
3

−
7
6

n + 2 − l1l2l3 + l1l2 + l1l3 + l2l3( 􏼁

−
1
6

n
3

− 19n + 72􏼐 􏼑

� 2n − 10 − l1l2l3 + l1l2 + l1l3 + l2l3( 􏼁.

(57)

Since it has been shown in the proof of ,eorem 2 that
l1l2 + l1l3 + l2l3 ≥ 2n − 9, it immediately follows that

W C
u1 ,u2 ,u3
3 Pl1+1, Pl2+1, Pl3+1􏼐 􏼑􏼐 􏼑 − W C

u1 ,u2
3 P3, Pn− 4( 􏼁( 􏼁< 0,

(58)

and the proof is complete. □
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