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In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of
a chemical compound. In 1947, Harry Wiener introduced “path number” which is now known as Wiener index and is the oldest
topological index related to molecular branching. Hosoya polynomial plays a vital role in determining Wiener index. In this
report, we compute the Hosoya polynomials for hourglass and rhombic benzenoid systems and recover Wiener and hyper-Wiener

indices from them.

1. Introduction

Cheminformatics is a new branch of science which relates
chemistry, mathematics, and computer sciences. Quantita-
tive structure-activity (QSAR) and structure-property re-
lationships (QSPR) are the main components of
cheminformatics which are helpful to study physicochemical
properties of chemical compounds [1-3].

A topological index is a numeric quantity associated with
a graph which characterizes the topology of graph and is
invariant under graph automorphism [4-8]. There are nu-
merous applications of graph theory in the field of structural
chemistry. The first well-known use of a topological index in
chemistry was by Wiener in the study of paraffin boiling
points [9]. After that, in order to explain physicochemical
properties, various topological indices have been introduced.

The Hosoya polynomial of a graph is a generating
function about distance distribution, introduced by Haruo
Hosoya in 1988 [10]. This polynomial has many chemical

applications [11]; in particular, Wiener index can be directly
obtained from the polynomial and studied extensively
[12-14].

The Wiener index was first introduced by Harold Wiener
in 1947 to study the boiling points of paraffin [9]. It plays an
important role in the so-called inverse structure-property
relationship problems [15]. For more details about this
topological polynomial and index, see the paper series and
the references therein [16-20]. In this report, we study
Hosoya polynomials, Wiener index, and hyper-Wiener in-
dex of hourglass and rhombic benzenoid systems.

2. Preliminaries

Definition 1 (simple graph). A simple graph G = (V,E) is
a finite nonempty set V (G) of objects called vertices together
with a (possibly empty) set E(G) of unordered pairs of
distinct vertices of G called edges.
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Definition 2 (Hosoya polynomial [10]). The Hosoya poly-
nomial of a connected graph G is denoted by H (G, x) and
defined as follows:

HGx =3 ¥ ¥ 0, ()

veV (G) ueV (G)

where d (u, v) denotes the distance between vertices u and v.

Definition 3 (Wiener index [9]). The Wiener index of
a connected graph G is denoted by W (G) and defined as the
sum of distances between all pairs of vertices in G, i.e., it can
be formulated as follows:

W(G)z% Y Y dww). (2)

veV (G) ueV (G)

Note that the first derivative of the Hosoya polynomial at
x =1 is equal to the Wiener index:

0H (G)
ox

W(G) = (3)

x=1

Definition 4 (modified Wiener index). The modified Wiener
index of a connected graph G is denoted by W, (G) and
defined as the sum of A power distances between all pairs of
vertices in G, where A = 1,2, 3,4, ... i.e, it can be formulated
as follows:

W(G):% Z Z)d(u,v)k- (4)

veV (G) ueV (G

For detailed survey about this index, see [21-23].

Definition 5 (hyper-Wiener index). Hyper-Wiener index is
another distance-based graph invariants used for predicting
physicochemical properties of organic compounds [24]. The
hyper-Wiener index was introduced by Randi¢ [25] as
follows:

WW(G):% YooY (dwv)+dwv)?). (5

veV (G) ueV (G)

Definition 6 (modified hyper-Wiener index). Modified
hyper-Wiener index (see [26, 27]) of a connected graph G is
denoted by WW, (G) and defined as follows:

WWA(G):% Yoy (dwv +dwv)?), (6

veV (G) ueV (G)

where 1 =1,2,3,4,.. ..

Definition 7 (Harary polynomial). The Harary polynomial
(see [28, 29]) of a connected graph G is denoted by /1 (G) and
defined as follows:

1 v,u
h(G) = Z Z —d(v,u)xd( ), (7)

veV (G) ueV (G)
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Definition 8 (generalized Harary index). The generalized
Harary index (see [30, 31]) of a connected graph G is
denoted by k, (G) and defined as follows:

1
hG= Y > Tom b (8)

veV (G) ueV (G)

where t = 1,2,3,4,.. ..

Definition 9 (multiplicative Wiener index). The multipli-
cative wiener index (see [32, 33]) of a connected graph G is
denoted by 7 (G) and defined as follows:

(G = [] dww. 9)
)

u,veV (G

For detailed applications of topological indices in
chemistry, we refer [34-41] and the references therein.

3. Methodology

To compute the Hosoya polynomial of a graph G, we need to
compute number of pairs of vertices at distance
1,2,3,...dia(G), where dia (G) = max{d (u, v); u,
v € V(G)}. For this purpose, we use mathematical induction.
Here, the dia(X,)=4n-1 and dia(R,) =2n+1. The
general view of Hosoya polynomial is as below, where d is
the diameter of graph.

H(G;x) =a, (n)x" + a (n)x' + a, (x> + -+ a, (n)xd.
(10)

4. Computational Results

Benzenoid hydrocarbons play a vital role in our environ-
ment and in the food and chemical industries. Benzenoid
molecular graphs are systems with deleted hydrogens. It is
a connected geometric figure obtained by arranging con-
gruent regular hexagons in a plane, so that two hexagons
are either disjoint or have a common edge. This figure
divides the plane into one infinite (external) region and
a number of finite (internal) regions. All internal regions
must be regular hexagons. Benzenoid systems are of
considerable importance in theoretical chemistry because
they are the natural graph representation of benzenoid
hydrocarbons. A vertex of a hexagonal system belongs to, at
most, three hexagons. A vertex shared by three hexagons is
called an internal vertex.

Definition 10 (benzenoid hourglass system). Let X,, denotes
the benzenoid hourglass, which is obtained from two copies
of a triangular benzenoid T, by overlapping their external
hexagons (Figure 1).

4.1. Results for Benzenoid Hourglass System. The benzenoid
hourglass system has 2 (n* + 4n — 2) vertices and 3n* + 9n —
6 edges.
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FIGURE 1: Benzenoid hourglass system X,,.

Theorem 1. For the benzenoid hourglass system X,,, we have

H(X,;x) = 2(n” +4n-2) +(3n” + 9n— 6) +(6n” + 121~ 12)x’

19m3
24

+

m=1mod(2),l<m< 2n<

19m7°
+

m=0mod (2),2<m< 2n<

+ (
m=0mod (2),2<m<2n-2 24 4

+
m—lmod(2))3<m<2n2( 24 4

<133n 11(n-17° @n-1)°
+ + + -—

6 2 3

Proof. To prove this theorem, we need to compute |a,, ()]
where m =1,2,3,...,4n— 1. It is easy to verify that

lag ()] = V] = 2(r” + 4n - 2),
|a, (n)| =|E| = 37 +9n—6, (12)
|a2 (n)| =6n" +12n - 12.

The remaining proof is divided into six parts which are
according to the parity of m. O

Case 1. m = 1mod(2), 1<m<2n.
It can be observed from Figure 1 that

221m
—3m*n - 5m* + 3mn® + 12mn + YR 17)xm

59
—3m’n — 5m® + 3mn® + 12mn + Tm - ZO)xm

|a; (D] =0,
|as (2)] = 41,
|as (3)] =95,
|as (4)] = 167,
|as (5)] = 257.

Now, one can conclude that
las(m)| =9(n-1)*+27(n-1) +5.

Using a similar fashion, we have

(11)

(13)

(14)



4
|as (1)] =0,
las (2)] = 0,
|a5 (3)| =93,
|as (4)] = 183,
|as (5)] = 303,
|as (6)] = 453.

It implies that

|as (n)] = 15(n - 2)* + 45 (n - 2) + 33.

In a similar fashion, we infer

|a, (n)] = 21 (n-3)* + 63 (n-3) + 74,
|ag (n)] = 27 (n - 4)* + 81 (n - 4) + 130,
|ay; (n)| = 33 (n—5)" + 99 (n - 5) + 203,

In terms of mathematical induction, we yield

9((m/2) - (1/2))*>  ((m/2) - (1/2))°
+ +

2
217 73m
_—+—’
12 12
19m?
|a (n)| = _3m’n-5m’ +3mn’ + 12mn +
" 24

Case 2. m=0mod(2),2<m<2n.

It can be observed from Figure 1 that

|a4 (1)| =0,
|a4 (2)| = 38,
|a4 (3)| =98,
|a, (4)] = 182,
|a, (5)] = 290.

Now, one can conclude that

|a4(n)| =12(n-1*+24(n-1)+2.

By means of the same trick, we obtain

las (V)] =0,
|as (2)] =0,
|as (3)] = 84,
|as (4)] = 174,
|as (5)] = 300,
|as (6)] = 462,

(15)

(16)

(17)

(18)

(19)

(20)

(21)

which reveals that
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|ag (n)] = 18 (1 - 2)* + 36 (n - 2) + 30. (22)

In light of the similar approach, we get

|ag ()] = 24(n-3)> +48(n-3) + 72,

|ayo (m)| = 30(n - 4)* + 60 (n - 4) + 130,

(23)

|ay, (n)| = 36 (n - 5)* + 72 (n - 5) + 206,

Hence, by mathematical induction, we have

|am(n)| = 3m<n—%+ 1)2 + 6m<n—%+ 1>2

m
+5<——1
2

19m°

3 3 3

>

>2 (ml2)-1)° 74 16m
+——

2 2 2 59m
a, (n)|=——-3m"n-5m" +3mn" + 12mn + — - 20.
" 24 6

Case 3. m=1mod(2),3<m<2n-2.
It can be observed from Figure 1 that

(24)
|a5(1)| =0,
la; (2)] =0,
|as (3)] = 44,
|ay, (4)] = 41, (25)
|ay; (5)] = 101,
|ays (6)| = 177,
|ay; (7)] = 274.

Now, one can conclude that

|22 ()] = (-2 +§(n -2)° +1—z3 (n-2)+4.
(26)

Using a similar fashion, we have

|as (D] =0,

|a; (2)] =0,

|a9 (3)| =0,

|ay, (4)] =0,

|ays (5)] = 101, (27)

|ays (6)| = 150,

|ay; (7)] = 254,

|a (8)] = 383,

|ay1 (9)] = 539.

It implies that
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|a2n+m(n)|: (n3 ) +7(7’l—3)2+?(’1_3)+9-
(28)
In a similar fashion, we infer
(n-4) 23 , 433
|a2n+m(n)|: 3 +7(n—4) +?(n—4)+16,
(n-5)°> 27 589
s ()] = 3 +7(n—5)2+?(n—5)+25,
-6) 31 769
|a2n+m(n)| = (n 3 ) +7(n -6)* +? (n-6) + 36,
(29)

In terms of mathematical induction, we yield

(n-((m+1)/2)° 1
+

|a2n+m (n)l = ( 3 2

1675 v)

() @)

m
+ 72(

_1>+109><n

m* mPn  , mn?
|a2n+m(n)|:_ﬂ_7_m =
» 101n
+4n" +——-5
12

Case 4. m =0mod (2),2<m<2n-2.

-(*57))

(30)

It can be observed from Figure 1 that

|a, (1] =0,
|ag (2)] = 16,
|as (3)] = 108,
|ayo (4)] = 41,
|ay, (5)] = 180,
|ay, (6)] = 272,
|ays (7)| = 386.

Now, one can conclude that
(n-1)°

|a2n+m (I"l)| =

Using a similar fashion, we have

53
+6(n—1)2+?(n—1)—8.

(31)

(32)

5
|a4 (1)| = Os
|a6 (2)| = Os
|a8 (3)| = 0)
|ay (4)] = 28, (33)
|as, (5)] = 86,
|a, (6)] = 164,
|as (7)] = 264.
It implies that
-2)° 95
g ()] = =2 g (n - 2p? +Sm-2-12. (1)
In a similar fashion, we infer
-3)° 149
la2n+m(n)| = (n-3) + 10(”—3)2‘*7(”—4)— 16,
- 4)° 215
la2n+m(n)| = (n-4) + 12(”—4)2+T(n—5)—20,
-5)} 293
@2 (W] = (n 3 ) +14(n-5)° 5 (n—6)-24,
(35)
In terms of mathematical induction, we yield
(n—(ml2))* m my\2
om0 = (2 (o(5) +4) (n~(5))
(6(m/2)2 +24(m/2) + 23)< (m))
+ n—(—
3 2
m
()
2
m 2 (m/2) —n ’
P RO L N L
m m? 23
—2m—<——n> —+4dm+— | -4,
2 2 3
m> mPn mn®
|a2n+m(n)| = —ﬁ—T‘FT'{‘?—mZ +4n2
6 3
(36)

Case 5. m=2n+1.
It can be observed from Figure 1 that
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|as (1) = 0, It can be observed from Figure 1 that
|a, (2)] = 29, |as (D] =3,
|as (3)] = 70, |a; (2)] = 6,
oy (4)] = 126, (37) 11 (3)] = 11,
()] = 199, s 0] = 15, )
02(6)] = 291 (5] = 2.
|ay; (7)] = 404. |23 (6)] = 38,
a,; (7)| = 51.
Now, one can conclude that a2 7)
n-17> 11 , 133 Now, one can conclude that
Ay (M)| = +—m-1)"+—n-1)+1,
|Gy ()] = ===+ o |yt (m)] = 1 + 2. (40)
133n 11(n-1% m-1)7° 127 By what have been mentioned above, we get our required
|az”+1 (n)| = + + -—
6 2 3 6 result.
(38)
Theorem 2. For the benzenoid hourglass system X,, the
Case 6. m = 4n — 1. Harary polynomial is given by
h(X,;x) = (3n2 +9n— 6)x +(3n2 +6n-— 6)x2
1(19m° 221
+ Z 2 3P 5 4 3w + 12mn + S 17 )x™
B m\ 24 24
m=1mod(2),l <m<2n
1(19m’ 59
+ Z 2 3P 5 4 3w + 12mn+ 2~ 20 |
24 6

m=0mod (2),2<m<2n

+
m=0mod (2),2<m<2n-2

1 m 2 ((m/2) —n)’ m m? 23 ot
il ome (5 ) - () (a2 < )

1
" Z 2n+m

m=1mod(2),3<m<2n-2

1 (13311 11(n-17° @n-1)° 127) -
+ -— |x

+ + (n2 + 2)x4”_ !
2n+1 6 2 3 6 n-1
(41)
Proof. From the information about the number of pairs of ((m/2) = n)*/3) = 2m — (m/2) — n) (M2/2) +
vertices at different distances given in Theorem 1, it is easy to am+ (23/3)) —42n+m)") +
get our desired result. O +Y e imod (2) 3<meon2 (— (M7/24) — (m*n/4) — m* +

(mn?/2) — (143m/24) + (n*/3) + 4n* + (101n/12) —
5)(2n +m)* + ((133n/6)+
(11(n-1)*/2) + ((n-1)*/3) -
(i) W (X,) = 3n? +9r;—6) + (61122 + 12n2— 12)2*;r (127/6)) (2n + 1)} + (2 +2) (4n — 1Y
_ ((19m°/24) — 3m*n — 5m* + 3mn ..
%ﬁﬁﬁ%zé’ﬁqﬁ}m) —17)mt + (i) WW, (X,) = (3r + 9n - 6) (11 + 1)+
Y m=0mod (2).2<mean ((19m3/24) = 3m*n — 5m? + (6n" +12n - 12) (2" + 23 )+ 2 2
’ N Zmzlmod(Z),KmsZn ((19m /24) —-3m°n—->5m" +

3mn? + 12mn + (59m/6) — 20)m* +
Zmno d(z)rzm 2( . (Trz 1 2 (()mm/z) - 3mn? + 12mn + (221m/24) - 17) (m* + m*) +
m=0mo ,2<m<2n—

Theorem 3. For the benzenoid hourglass system X,,, we have
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ZmEOmod (2),2<m<2n ((( 191’7’13/24) - 3m2n - 577’12 +
3mn? + 12mn + (59m/6) — 20) (m* + m*})) +
szOmOd(Z),ZSmSZH—Z ((m + 4) ((m/2) - n)Z -
((m/2) =n)’/3) = 2m — (m/2) — n) (M2/2) +
dm+ (23/3)) - 4)(2n+m)* + Cn+m)?) +
Zrnzlmod(Z)jsrnsZn—Z (_ (m3/24) - (m2n/4) - m*+
(mn?/2) — (143m/24) + (n3/3) + 4n* + (101n/12) —
5)(2n+m)' + 2n+m)*) + ((133n/6) +
(11(n-1)*2+ ((n-1)*/3)) -
(127/6)) (2n+ D' + 2n+ D) + (n* +
2)((4n -1+ (4an - 1))

(iii) H,(X,) = 3n* +9n—6)(1/(1 +1)) +
(6n* + 12n—12)(1/(2 + 1)) +
Zmzlmod(Z),KmSZn (( 191’}’13/24) - 3m?n —5m? +
3mn? + 12mn + (221m/24) — 17) (1/m + t) +
ZmEOmod(Z),2<m§2n (( 197’”3/24) —3m*n—5m> +
3mn? + 12mn + (59m/6) — 20) (1/m +t) +
Zszmod(Z),2<m$2n—2 ((m + 4) ((m/2) - n)2 -
((m/2) = n)*/3) = 2m ((m/2) - n) (m/2) -
n) (m?/2)dm + (23/3) —4)(12n+m+1t) +
Y m=imod (2).3<mean2 (= (M°/24) = (m*n/4) — m* +
(mn?/2) — (143m/24) + (n*/3) + 4n* + (1011/12) —
5 (1/2n+m+1t) + ((133n/6) + (11 (n—1)*/2) +

5

4n 4 2170
WWwW (Xn) = T +36n +

2 31n
+92n +T— 116

19m3 2
+ Z m(m+1) = _3mPn-5m® + 3mn’ + 12mn +
24

m=1mod(2),1<m<2n

((n=1)°/3) = (127/6)) (1/2n+ 1 +t) + (n* +
2)(1/4n—1+1).

. 2 2
(IV) T[(Xn) — 1(3n +9n—6) x 2(6n +12n—12) x
1mod (2),1<m<2 m((19m~‘/24)—3m2n—5m2+3mn2+12mn+(221m/24)—17) X
m=1mo ,1<m<2n
m=0mod (2),2<m32nm((19m3/24)7 3m?n—5m’+3mn*+12mn+(59m/6)-20) y¢
omod (2) 2&mez 2(2n+m)((m+4)((m/z)-n)2-(((m/2)—n>3/
m=0mo ,2<m<2n—

3) - 2m— ((m/2) — n)(m*/2) + 4m +(23/3)) -
4) X Hmzlmod(Z),SSmSZH—Z (2‘” + m) (/2= (/)
—m? + (mn?/2) — (143m/24) + (n*/3) + 4n® +
(1011/12) - 5) x (2n + 1)((133n/6)+(11(n—1)2/2)+
((n- 1%/3) = (127/6)) x (4n— 1)+,

From the above theorem, we get the following results
immediately.

Corollary 1. For the benzenoid hourglass system X,,, we have

52n°  80m* 116n*> 37
W(Xn)zl—;l+ 3n +34n° — 3n o

+4.  (42)

Corollary 2. For the benzenoid hourglass system X,,, we have

m
- 17>

19m3 59m
+ Z m(m+1) — _3m’n—-5m* + 3mn’ + 12mn + —— — 20
24 6

m=0mod (2),2<m<2n

3

3
+ 2n+m+(2n+m) (m+4)m—nz—w—2m— o m—2+4m+§ -4
2

m=0mod (2),2<m<2n-2

+ z (2n+m+(2n+m)2)<———m +

m=1mod(2),3<m<2n-2

Corollary 3. The Harary index of benzenoid hourglass graph
X, is as follows:

(43)
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_296n* +910n° — 161n* — 667n + 180

h(X,) =
(%.) 6(8n2 +2n— 1)
1(19m? 21m
+ Z —< —3m*n—5m® + 3mn® + 12mn + - 17)
mzlmod(2),l<m52nm 24 24
1(19m° 59m
+ Z —( - 3m’n - 5m” + 3mn® + 12mn + — — 20) (44)
mEOmod(Z),2<mS2nm 24 6

1 m 2 ((mf2) -n)’ m m? 23
I I R ) B e ()| CRTERE )

m=0mod (2),2<m<2n-2

+

m=1mod(2),3<m<2n-2

4.2. Benzenoid Rhombus System. Consider a benzenoid  Lemma 1. The benzenoid rhombus system has 2n* +4n
system in which hexagons are arranged to form a rhombic  vertices and 3n*> + 4n — 1 edges.

shape, say, R,,, where n represents number of hexagons along

each boundary of the rhombic as given in Figure 2. Theorem 4. For the benzenoid rhombus system R,,, we have

H(R,;x) = 1% + 4n +(3n2 +4n - l)x +(6n2 +4n - 4)x2
7m3 41m

+ (3mn2—2m2n++6mn—2m2+—1>xm
m=1mod(2),] <m<2n+l 24 24

7m3 1lm
3mn® - 2m" + it 6mmn — 2m* T 2>xm

+
mEOmod(Z),2<ms2n< (45)
.\ Z ((—m+2n—2)3+ (—m+2n—2)2+23(—m+2n—2)_l)xz,,w+2
m=1mod(2),1 <m<2n-3 24 2 24 2
(-m + 2n)* ( (-m+2n)* 5(-m+ 211)) mtm
+ + + x
m=0mod (2),2<m<2n-2 24 2 6
Proof. To prove this theorem, we need to compute |a,, (n)] |as (D] =3,
where p =1,2,3,...,2n+ 1. It is easy to verify that
|a0 (n)| =|V| = 2n* + 4n, |a3 (2)| =30,
|ay ()| =1E| = 3n* + 4n - 1, (46) |as (3)] = 75, (47)
a;(4)| = 138,
|a2(n)|=6n2+4n—4. Jas (4]
The remaining proof is divided into two parts which are a3 (5)] = 219.
according to the parity of m. O Now, one can conclude that
|a3 (n)| =9’ - 6. (48)

Case 7. m=1mod(2),1<m<2n+ 1.
It can be observed from Figure 2 that In a similar fashion, we have
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FIGURE 2: Benzenoid rhombus system R,,.

|as ()] =0,
|as (2)] = 24,
|as (3)] = 76,
|as (4)] = 152,
|as (5)] = 252,
|as (6)] = 376.

It implies that
|a5(n)| =15(n-1>+10(n—-1) - 11.
In a similar fashion, we infer
|a, ()| = 21(n-2)> +28(n-2) - 15,
|ag (n)] = 27 (n - 3)* + 54 (n - 3) - 16,

|ay, ()] =33(n-4)* +88(n-4) - 12,

In terms of mathematical induction, we yield

(49)

(50)

(51)

9
m—3\\?
|a,, (n)| = 3m<n —(—))
2
2 m— 3))
+(m* -3 -(—=
o
1 1 13
+—m’ ——m’ - —m—1,
24 2 24
7m? 41
|am (n)| =3mn® - 2m’n + m +6mn —2m* + Zm_ 1.
24 24
(52)
Case 8. m =0mod(2),2<m<2n.
It can be observed from Figure 2 that
|a4(1)| = 0)
|a, (2)] =24,
|a, (3)] =76, (53)
|a, (9)] = 152,
|a, (5)] = 252.
Now, one can conclude that
la,(m)| =12(n-1)* +16(n-1) - 4. (54)
By means of the same trick, we obtain
la6(1)l = 0)
la6 (z)l = 0)
a. (3)| = 54,
3 3) (55)
|ag (4)] = 144,
|as (5)] = 270,
|ag (5)] = 432,
which reveals that
|ag (n)] = 18 (n - 2)* + 36 % (n - 2). (56)
In light of the similar approach, we get
|as (n)] = 24(n - 3)* + 64 (n - 3) + 10,
|a ()] = 30 (n— 4)* + 100 (n - 4) + 28, 57
|ay, (n)| = 36 (n - 5)* + 144(n - 5) + 56,
Hence, by mathematical induction, we have
|a,, (n)| = 3m<n—m+ 1)2 +m2<n—m+ 1)
" 2 2
3 7
+—m —--m-2,
24 6
7m? 11
|am(n)| = 3mn? —2m" + 2 6mn—2m? + 2 _ 2,
24 6
(58)
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Now for m = 2n + 2 to m = 4n — 1, we will generalize in
this way. By observing Table 1, values in italics show the
distances from 2n + 2 to 4n — 1, but the values in the table are
in descending order, so first we generalized this in ascending

Journal of Chemistry

For m = 1mod(2),1<m<2n-3.
So to reverse its order put i = (-m + 2n — 2), we get
(-m+2n-2)° N (-m +2n-2)>?

24 2

|am (”)| =

order and then reverse its order as required, let p; be the (61)
values in ascending order as follows (from Table 1). N 23(-m+2n-2) 1
p =1, 24 2
p=4
p3=38 Case 10. i = Omod (2).
p, =14, Hence, one can conclude that
.3 .2 .
=22, =P 62
Ps (59) Pty (62)
Pe = 32,
_ 45 For m = 0mod (2),2<m<2n-— 2.
b7 =% So to reverse its order put i = (—m + 2n), we get
pg = 60, gy, ()] = (-m+2n)? (-m+2n)? 5(-m+2n) (63)
py=79 e Y, 2 6
P1o = 100 By what has been mentioned above, we get our desired
result.
Case 9. i = 1mod (2).
Hence, one can conclude that Theorem 5. For the benzenoid rhombus system R,, the
B2 231 Harary polynomial is as follows:
pi=s;t5+5, 5 (60)
24 2 24 2
h(R,;x) = (3n2 +4n— l)x +(3n2 +2n— Z)xz
7m 41m o
+ 3mn® - 2m’n+ ——+ 6mn - 2m° + ——— 1
m=1mod(2),1 <m<2n+l m 24 24
1 7m’ 11
+ Z —(3mn2 —om"+ L 6mn - 2m + — 2>xm
szmod(Z),2<m§2nm 24 6 (64)
.\ 1 ((—m+2n—2)3+ (—m+2n—2)2+23(—m+2n—2)_l)x2n+m+2
m=1mod(2),1 <m<2n-3 2n+m+2 24 2 24 2
1 -m+2n)°  (-m+2n)* 5(-m+2
+ Z (( m I’l) + ( m Yl) + ( m n)>x2n+m.
m=0mod (2),2<m<2n-2 2n+m 24 2 6

Proof. From the information about the number of pairs of
vertices at different distances given in Theorem 4, one can
easily get this result. O

Theorem 6. For the benzenoid rhombus system R,, we have
Q) W, (R,)= (3n%+4n—1)+ (6n* +4n—4)2"

Zm 1mod(2) 1<m<2n+1 (}—31’}’11’1 —2m’n+ (77’1’13/24) +
6mn—2m*+ (41m/24)— Dm +
Y m=omod (2)2<me2n (3MN? =2m" + (7m*/24) + 6mn —

2m* +11m/6— 2)”’1 +D e 1mod (2).1<m<gn-3
(((~m+2n-2)*/24)+ ((-m+2n-2)* /2)+
(23 (-m+2n-2)/24)- (1/2))(2n+m+2) +
Zm Omod(2)2<m<2n 2((( m+2n) /24)+(( m+
21)2/2) + (5 (-m+2n)/6)) 2n+m)".

(i) WW, (R,) = (3> +4n—1) (1 +1%') + (61% + 4n—4)
(2')l +2M) + Zrn 1mod ( % ,1<m<2n+1 (3mn2 —2m2n +
(7m3/24) + 6mn—2m?* + (41m/24) - 1) (m* + m*) +
Zszmod(z),kmszn Bmn? - 2m" + (7m>/24) + 6mn —
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TaBLE 1: Number of pair of vertices at different distances.

n

Distance (1)

2 3 4 5 6 7
1 19 38 63 94 131 174
2 28 62 108 166 236 318
3 30 75 138 219 318 435
4 24 76 152 252 376 524
5 14 69 154 269 414 589
6 4 54 144 270 432 630
7 1 34 125 258 433 650
8 14 98 234 418 650
9 8 65 200 389 632
10 4 32 158 348 598
11 1 22 109 296 549
12 14 60 236 488
13 8 45 168 415
14 4 32 100 334
15 1 22 79 244
16 14 60 154
17 8 45 126
18 4 32 100
19 1 22 79
20 14 60
21 8 45
22 4 32
23 1 22
24 14
25 8
26 4
27 1

2m2+ (11m/6)—2) (m)t+m2/1)+ Zmzlmod(Z),
1<m<2n-3(((-m+2n-2)%/24) + ((-m+2 n—
2)2/2)+ (23 (-m+2n-2)/24) - (1/2)((2n

WW (R,) = 42n” + 32n - 26

11

+m+2)'+ 2n+m+2)h) +Y mzomod  (2),2<m<2n —
2(((—m+2n)°/24) + ((—=m+2n)*/2) + 5 (-m +2n)/
6) ((2n+m)* + 2n+m)")

(iii) h,(R,) = 3n® +4n—1)(1/(1 + 1)) + (6n* + 4n—
4) (1/(2 + t)) + ZmElmod(Z),1<ms2n+l (317’11’12 -2m’n+
(7m3/24) + 6mn — 2m? + (41m/24) —

DA/ (m+t)+),.- 0mod (2)2<m<an (3mn? — 2m" +
(7m3/24) + 6mn - 2m*+ (11m/6) - 2) (1/ (m+ t)) +
Y= 1mod (2),1sm<2n- s((-m+2n-2)°24)+ ((-m+
2n—2)2/2) + (23 (-m + 2n - 2)/24) — (1/2))(1/
(21’[ tm+2+ t)) + Zm 0mod (2),2<m<2n-2 ((( —-m+
2n)°/24) + ((=m +2n)*/2) + (5 (=m + 2n)/6))
(I/2n+m+1)).

n(R) = 1(3n2+4n—1) x 2(6n2+4n—4)
n

(iv)
[Tr=1mod2 21<m<2n+1m(3mn —2mPn+ (7m’/24)+
6mn —2m* + (41m/24) — 1) X [T = —0mod (2).2<m<2n
m(3mn = 2m"+ (7m>/24)+6mn— 2m>+ (11m/6)— 2)w
Hm 1mod(2), 1<m<2n 3 (211 +m+ 2) (o ms2n-2/20)+

m+2n— + m+2n— -
((- 2 2) /2) + (23 (- 2 2)/24)

(1/2)) X Hm Omod (2),2sm<2n-2 (21’1 + m)
(= m+2n)*/24)+ ( (= m+2n)%/2)+5 (- m+2n)/6)

From the above results, we get following results
immediately.

Corollary 4. For the benzenoid rhombus system R,, we have

34n°  34m* 40m® 2n® 3n
W(R,) = 5 + 3 + 3 +T_?' (65)

Corollary 5. For the benzenoid rhombus system R,, we have

3

7m 41m
+ Z m(m+ )| 3mn® = 2m*n+ — + 6mn—2m* + —— — 1
24 24

m=1mod(2),1 <m<2n+l

7m 11m
+ z m(m+ 1) 3mn® = 2m" + — + 6mn —2m> + — -2
_ 24 6
m=0mod (2),2<m<2n
-m+2n-2)° (-m+2n-2)% 23(-m+2n-2) 1
+ z (2n+m+2+(2n+m+2)2)><(( mr e )+( mr e )+ (m+2n-2) 1
m=1mod(2),l <m<2n-3 24 2 24 2
-m +2n)® -m+2n)* 5(-m+2n
+ Z (2n+m+(2n+m)2)<( VLl ) + ( )>
m=0mod (2),2<m<2n-2 2 6

(66)
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Corollary 6. The Harary index of benzenoid rhombus graph
R, is as follows:

h(R,) =6n" +6n-3+ —(
m= 1mod(2),1<m§2n+1m

Journal of Chemistry

24

2 2 7m3 2 41m
3mn” - 2m n+ﬂ+6mn—2m +——1

2 n 7m 2 11m
+ —| 3mn” -2m + ——+6mn-2m" +——-2
szmod(Z),2<ms2nm 24 6
(67)
. Z 1 <(—m+2n—2)3+(—m+2n—2)2+23(—m+2n—2) 1)
m= lmod(21 sm<2an—3 2N+ M +2 2 24 2

+

1 / (—=m+2n)® (—-m+2n)* 5(-m+2n)
+ +

m = 0mod (2),2<m<2n-2 2n+ m\ 24

5. Conclusions

Wiener demonstrated that the Wiener index is firmly
connected to the boiling point of alkane. Later work on
quantitative structure-activity connections demonstrated
that it is additionally corresponded to different amounts
including the parameters of its basic point the thickness,
surface strain, and consistency of its fluid stage and the
van der Waals surface territory of the molecules. Wiener
index is a valuable topological index in the structure-
property relationship since it is the measurement of
compactness of particle regarding its basic characteristics,
for example, spreading and cyclicity. Utilizations of
benzene follow a long history. In the nineteenth and
midtwentieth centuries, benzene was utilized as an af-
tershave lotion due to its wonderful smell. Before the
1920s, benzene was as often as possible utilized as
a modern dissolvable, particularly to degrease metal. As
its lethality wound up self-evident, benzene was displaced
by different solvents, particularly toluene (methyl-
benzene), which has comparable physical properties yet is
not as cancer-causing. In 1903, Ludwig Roselius promoted
the utilization of benzene to decaffeinate espresso. This
disclosure prompted the creation of Sanka. This procedure
was later ended. Benzene was generally utilized as
a noteworthy part in numerous shopper items, for ex-
ample, Liquid Wrench, a few paint strippers, elastic
concretes, spot removers, and different items. Produce of
a portion of these benzene-containing details stopped in
around 1950, albeit Liquid Wrench kept on containing
critical measures of benzene until the late 1970s. In this
present paper, we computed Hosoya polynomial, Wiener
index, and hyper-Wiener index of zigzag and benzenoid
rhombus systems. It is an interesting problem to find out
distance-based topological indices for the families of
graphs studied in [42-47].

o S,

Data Availability

All the data are included within this paper.

Conflicts of Interest

The authors of this paper declare that they have no conflicts
of interest.

Authors’ Contributions

All authors have equal contribution.

Acknowledgments

This research was funded by the Anhui Provincial De-
partment of Education Natural Science Foundation (Project
code: KJ2017A739).

References

[1] J.-B. Liu, C. Wang, S. Wang, and B. Wei, “Zagreb indices and
multiplicative Zagreb indices of eulerian graphs,” Bulletin of
the Malaysian Mathematical Sciences Society, vol. 42, no. 1,
pp. 67-78, 2019.

[2] J.-B. Liu, X.-F. Pan, F.-T. Hu, and F.-F. Hu, “Asymptotic
Laplacian-energy-like invariant of lattices,” Applied Mathe-
matics and Computation, vol. 253, pp. 205-214, 2015.

[3] J.-B. Liu and X.-F. Pan, “Minimizing Kirchhoff index among
graphs with a given vertex bipartiteness,” Applied Mathe-
matics and Computation, vol. 291, pp. 84-88, 2016.

[4] M. Munir, W. Nazeer, S. Rafique, and S. Kang, “M-polynomial
and degree-based topological indices of polyhex nanotubes,”
Symmetry, vol. 8, no. 12, p. 149, 2016.

[5] S. Kang, Z. Igbal, M. Ishag, R. Sarfraz, A. Aslam, and
W. Nazeer, “On eccentricity-based topological indices and
polynomials of phosphorus-containing dendrimers,” Sym-
metry, vol. 10, no. 7, p. 237, 2018.

[6] M. Ajmal, W. Nazeer, M. Munir, S. Kang, and Y. Kwun,
“Some algebraic polynomials and topological indices of



Journal of Chemistry

generalized prism and toroidal polyhex networks,” Symmetry,
vol. 9, no. 1, p. 5, 2016.

[7] A. Ali, W. Nazeer, M. Munir, and S. Min Kang, “M-poly-
nomials and topological indices of zigzag and rhombic
benzenoid systems,” Open Chemistry, vol. 16, no. 1, pp. 73-78,
2018.

[8] W. Gao, B. Muzaffar, and W. Nazeer, “K-Banhatti and K-
hyper Banhatti indices of dominating David derived net-
work,” Open Journal of Mathematical Analysis, vol. 2017,
no. 1, pp. 13-24, 2017.

[9] H. Wiener, “Structural determination of paraffin boiling
points,” Journal of the American Chemical Society, vol. 69,
no. 1, pp. 17-20, 1947.

[10] H. Hosoya, “On some counting polynomials in chemistry,”
Discrete Applied Mathematics, vol. 19, no. 1-3, pp. 239-257,
1988.

[11] I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, “On
Hosoya polynomials of benzenoid graphs,” MATCH Com-
munications in Mathematical and in Computer Chemistry,
vol. 43, pp. 49-66, 2001.

[12] G. G. Cash, “Relationship between the Hosoya polynomial
and the hyper-Wiener index,” Applied Mathematics Letters,
vol. 15, no. 7, pp. 893-895, 2002.

[13] W. Yan, B.-Y. Yang, and Y.-N. Yeh, “The behavior of Wiener
indices and polynomials of graphs under five graph deco-
rations,” Applied Mathematics Letters, vol. 20, no. 3,
pp. 290-295, 2007.

[14] M. R. Farahani, “On the Schultz polynomial and Hosoya
polynomial of circumcoronene series of benzenoid,” Journal
of Applied Mathematics ¢ Informatics, vol. 31, no. 5-6,
pp. 595-608, 2013.

[15] J.-B. Liu, J. Zhao, and Z. Zhu, “On the number of spanning
trees and normalized Laplacian of linear octagonal-quadri-
lateral networks,” International Journal of Quantum Chem-
istry, vol. 119, no. 17, Article ID e25971, 2019.

[16] J. Cao, J.-B. Liu, and S. Wang, “Resistance distances in corona
and neighborhood corona networks based on Laplacian
generalized inverse approach,” Journal of Algebra and Its
Applications, vol. 18, no. 3, Article ID 1950053,12 pages, 2019.

[17] J.-B. Liu, J. Zhao, J. Min, and J. Cao, “On the Hosoya index of
graphs formed by a fractal graph,” Fractals, vol. 27, no. 8,
Article ID 1950135, 2019.

[18] Z. Zhu and J.-B. Liu, “The normalized Laplacian, degree-
Kirchhoff index and the spanning tree numbers of generalized
phenylenes,” Discrete Applied Mathematics, vol. 254,
pp. 256-267, 2019.

[19] J.-B. Liu, S. Javed, M. Javaid, and K. Shabbir, “Computing first
general Zagreb index of operations on graphs,” IEEE Access,
vol. 7, pp. 47494-47502, 2019.

[20] J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui, and W. Nazir,
“Computing metric dimension of certain families of Toeplitz
graphs,” IEEE Access, vol. 4, pp. 1-8, 2019.

[21] S. Nikoli¢, N. Trinajsti¢, and M. Randi¢, “Wiener index
revisited,” Chemical Physics Letters, vol. 333, no. 3-4,
pp. 319-321, 2001.

[22] M. Ghorbani and S. Klavzar, “Modified Wiener index via
canonical metric representation, and some fullerene patches,”
Ars Mathematica Contemporanea, vol. 11, no. 2, pp. 247-254,
2015.

[23] H. Shabani and A. R. Ashrafi, “The modified Wiener index of
some graph operations,” Ars Mathematica Contemporanea,
vol. 11, no. 2, pp. 277-284, 2015.

13

[24] 1. Lukovits and W. Linert, “A novel definition of the hyper-
Wiener index for cycles,” Journal of Chemical Information and
Modeling, vol. 34, no. 4, pp. 899-902, 1994.

[25] M. Randi¢, “On generalization of Wiener index for cyclic
structures,” Acta Chimica Slovenica, vol. 49, no. 3, pp. 483-
496, 2002.

[26] G. Cash, S. Klavzar, and M. Petkovsek, “Three methods for
calculation of the hyper-Wiener index of molecular graphs,”
Journal of Chemical Information and Computer Sciences,
vol. 42, no. 3, pp. 571-576, 2002.

[27] W. F. Xi and W. Gao, “A-modified extremal hyper-Wiener
index of molecular graphs,” Journal of Applied Computer
Science & Mathematics, vol. 18, no. 8, pp. 43-46, 2014.

[28] E. J. Farrell, “An introduction to matching polynomials,”
Journal of Combinatorial Theory, Series B, vol. 27, no. 1,
pp. 75-86, 1979.

[29] M. R. Farahani, “On the Schultz and modified Schultz
polynomials of some Harary graphs,” International Journal of
Applications of Discrete Mathematics, vol. 1, no. 1, pp. 1-8,
2013.

[30] S. Wagner, H. Wang, and X.-D. Zhang, “Distance-based graph
invariants of trees and the Harary index,” Filomat, vol. 27,
no. 1, pp. 41-50, 2013.

[31] E. Estrada, “Three-dimensional generalized graph matrix,
Harary descriptors, and a generalized interatomic Lennard-
Jones potential,” The Journal of Physical Chemistry A, vol. 108,
no. 25, pp. 5468-5473, 2004.

[32] I. Gutman, W. Linert, I. Lukovits, and 7. Tomovi¢, “The
multiplicative version of the Wiener index,” Journal of
Chemical Information and Computer Sciences, vol. 40, no. 1,
pp. 113-116, 2000.

[33] 1. Gutman, W. Linert, I. Lukovits, and 7. Tomovié, “On the
multiplicative Wiener index and its possible chemical ap-
plications,” Chemical Monthly, vol. 131, no. 5, pp. 421-427,
2000.

[34] M. S. Anjum and M. U. Safdar, “K Banhatti and K hyper-
Banhatti indices of nanotubes,” Engineering and Applied
Science Letters, vol. 2, no. 1, pp. 19-37, 2019.

[35] Z. Shao, A. R. Virk, M. S. Javed, M. A. Rehman, and
M. R. Farahani, “Degree based graph invariants for the
molecular graph of Bismuth tri-iodide,” Engineering and
Applied Science, vol. 2, no. 1, pp. 1-11, 2019.

[36] A. U.R. Virk, M. N. JThangeer, and M. A. Rehman, “Reverse
zagreb and reverse hyper-Zagreb indices for silicon carbide
Si,Cs1[r, s] and Si,C311(r, s],” Engineering and Applied Science
Letters, vol. 1, no. 2, pp. 37-50, 2018.

[37] N. De, “Computing reformulated first Zagreb index of some
chemical graphs as an application of generalized hierarchical
product of graphs,” Open Journal of Mathematical Sciences,
vol. 2, no. 1, pp. 338-350, 2018.

[38] L. Yan, M. R. Farahani, and W. Gao, “Distance-based indices
computation of symmetry molecular structures,” Open
Journal of Mathematical Sciences, vol. 2, no. 1, pp. 323-337,
2018.

[39] M. Imran, A. Asghar, and A. Q. Baig, “On graph invariants of
oxide network,” Engineering and Applied Science Letters,
vol. 1, no. 1, pp. 23-28, 2018.

[40] W.Gao, A. Asghar, and W. Nazeer, “Computing degree-based
topological indices of Jahangir graph,” Engineering and Ap-
plied Science Letters, vol. 1, no. 1, pp. 16-22, 2018.

[41] R. Kanabu and S. Hosamani, “Some numerical invariants
associated with V-phenylenic nanotube and nanotori,” En-
gineering and Applied Science Letters, vol. 1, no. 1, pp. 1-9,
2018.



14

[42] G. Liu, Z. Jia, and W. Gao, “Ontology similarity computing

(43]

(44]

(45]

(46]

(47]

based on stochastic primal dual coordinate technique,” Open
Journal of Mathematical Sciences, vol. 2, no. 1, pp. 221-227,
2018.

S. Noreen and A. Mahmood, “Zagreb polynomials and
redefined Zagreb indices for the line graph of carbon
nanocones,” Open Journal of Mathematical Analysis, vol. 2,
no. 1, pp. 66-73, 2018.

Z. Tang, L. Liang, and W. Gao, “Wiener polarity index of
quasi-tree molecular structures,” Open Journal of Mathe-
matical Sciences, vol. 2, no. 1, pp. 73-83, 2018.

M. Riaz, W. Gao, and A. Qudair Baig, “M-polynomials and
degree-based topological indices of some families of convex
polytopes,” Open Journal of Mathematical Sciences, vol. 2,
no. 1, pp. 18-28, 2018.

N. De, “Hyper Zagreb index of bridge and chain graphs,”
Open Journal of Mathematical Sciences, vol. 2, no. 1, pp. 1-17,
2018.

H. Siddiqui and M. R. Farahani, “Forgotten polynomial and
forgotten index of certain interconnection networks,” Open
Journal of Mathematical Analysis, vol. 1, no. 1, pp. 44-59,
2017.

Journal of Chemistry



