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In this paper, we give a geometric interpretation of the Laplacian matrix of a connected nonsingular mixed graph which
generalizes the results ofM. Fiedler (M. Fiedler, Geometry of the Laplacian, Linear Algebra Appl., 2005, 403: 409–413). In addition,
the relations of geometric properties between a connected (singular or nonsingular) mixed graph, and all its resigned graphs will
be characterized.

1. Introduction

Let G � (V, E) be amixed graph with vertex set V � V(G) �

v1, v2, . . . , vn􏼈 􏼉 and edge set E � E(G) � e1, e2, . . . , em􏼈 􏼉,
which is obtained from an undirected simple graph by
orienting some (possibly none or all) of its edges such that
one of its endpoint forms a head and the another one is a tail.
,e incidence matrix of G is an n × m matrix M � M(G) �

(mij) whose entries are defined by mij � 1 if ej is an
unoriented edge incident to vi or ej is an oriented edge with
head vi, mij � − 1 if ej is an oriented edge with tail vi, and
mij � 0 otherwise. ,e Laplacian matrix of G is defined as
L(G) � (lij)n×n � MMT (see [1–4]), where the matrix MT

denotes the transpose of M. Obviously L(G) is a Gram
matrix and thus is positive semidefinite. G is called singular
(or nonsingular) if L(G) is singular (or nonsingular).

A mixed graph is called quasi-bipartite if it does not
contain a nonsingular cycle, or equivalently, it contains no
cycles with an odd number of unoriented edges (see (1,
Lemma 1)). ,e all-oriented graph obtained from the mixed
graph G by arbitrarily orienting every unoriented edge of
G (if one exists) will be denoted by G

→
, the signature matrix

with 1 or − 1 along its diagonal of a diagonal matrix will be
denoted by D. A graph is called a resigned graph of G if it is
obtained from G by resigning under the signature matrix D,
and that the labelling of the vertices is the same as that of G,

denoted by DG. ,en each resigned graph of G gives a
resigning of the edges of G (that is, some oriented edges of G
may turn to be unoriented and vice versa), and
L(DG) � DTL(G)D. ,e following results are well known.

Lemma 1 (see [3], Lemma 2.2, and [5], Lemma 5). Let G be a
connected mixed graph. ,en, G is singular if and only if G is
quasi-bipartite.

Theorem 1 (see [1],,eorem 4). Let G be a connected mixed
graph. ,en, G is quasi-bipartite if and only if there exists a
signature matrix D such that DTL(G)D � L(G

→
).

In this paper, we firstly give a geometric interpretation of
the Laplacian matrix of a connected nonsingular mixed graph
which generalizes the results of Fiedler [6] from undirected
graphs to mixed graphs. Finally, the relations of geometric
properties between a connected (singular or nonsingular)
mixed graph and its resigned graphs will be characterized.

2. Geometric Properties

2.1. Nonsingular Mixed Graphs. Let L � L(G) � (lij)n×n be
the Laplacian matrix of a connected nonsingular mixed
graph on n(n≥ 3) vertices. ,en, rank(L) � n. By the well-
known equivalence of positive definite and Gram matrices,
there exists uniquely n linear independent vectors denoted
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by u1, . . . , un, in a Euclidean space En of dimension n, such
that the inner products of the vectors ui satisfy

ui, uj􏼐 􏼑 � lij for all 1≤ i, j≤ n. (1)

Observe that the vectors ui and uj(i≠ j) are orthogonal if
and only if there is no edge in G between the vertices i and j.
If (i, j) ∈ E(G), then the angle between ui and uj is obtuse if
(i, j) is oriented, the angle is acute otherwise.

Let U � (u1, . . . , un) ∈ En, then we have the following
geometric interpretation of L(G).

Theorem 2. Let L � L(G) � (lij)n×n be the Laplacian matrix
of a connected nonsingular mixed graph G on n(n≥ 3) ver-
tices. ,en, there exists a unique quadric Q:

x
T
K

− 1
x � 1, (2)

such that

(i) Q contains all the end-points of the vectors ui, and
(ii) ,e tangent hyperplane at each of these end-points is

parallel to the hyperplane containing the remaining
n − 1 vectors,

From the above equation, x means the column vector of
orthonormal coordinates in En and K � UUT.

Proof. Note that K− 1 � (UUT)− 1 � (UT)− 1U− 1, then
Z � UTK− 1U � In. ,us, all diagonal entries of Z are equal
to 1, i.e.,

u
T
i K

− 1
ui � 1, i � 1, 2, . . . , n, (3)

and all nondiagonal entries of Z are 0, which proves that
quadric equation (2) contains all the end-points of the
vectors ui.

,e equation of the tangent hyperplane at the end-points
of uk to the quadric equation (2) is

1
2

x
T

K
− 1

uk + u
T
k K

− 1
x􏼐 􏼑 � 1. (4)

Note that (xTK− 1uk)T � uT
k K− 1x, then

x
T
K

− 1
uk � 1. (5)

On the contrary, the hyperplane containing all vectors ui

for i≠ k satisfies the relation:

x
T
K

− 1
uk � 0, (6)

since uT
i K− 1uk � (Z)ik � 0 for i≠ k. ,us, both the hyper-

planes are parallel, and equation (2) is indeed the equation of
Q.

Assume there exists another quadric Q′:

x
T
Bx � 1, (7)

which holds properties (i) and (ii) mentioned above. ,en,
by property (i), we have

u
T
i Bui � 1, for i � 1, . . . , n. (8)

,us, the equation of the tangent hyperplane at the end-
points of uk to the quadric equation (2) is

x
T
Buk � 1. (9)

Consequently, by property (ii), the equation of the hy-
perplane containing all the remaining n − 1 vectors is

x
T
Buk � 0, (10)

since, for each i, the vector ui contains the origin as one end-
point.

Associating equations (3) and (6), we have

U
T
BU � I. (11)

,en, B � K− 1. Hence, the uniqueness follows.
,e quadric Q is an ellipsoid, usually called the Steiner

circumscribed ellipsoid of the simplex with vertices in the
end-points of the vector ui.

Now, suppose that v is an eigenvector of L corresponding
to the eigenvalue λ. We have UTUv � λv. Consequently,
UUTUv � λUv.,e vector z � Uv is thus an eigenvector ofK
as well as K− 1 corresponding to the same λ and is thus the
direction of an axis of the quadric Q. Indeed, the halfline
x � μz, μ≥ 0, meets the quadric in the point in which the
tangent is parallel to xTz � 0, thus orthogonal to z. We have
thus a correspondence Γ between the eigenvector of L and
the axis of Q. If the eigenvector corresponds to the eigen-
value λ, then the length of the corresponding half axis is

�
λ

√
.

Applying the method similar to that of ,eorem 1 in [6], we
have the following. □

Theorem 3. ,e coordinates of the eigenvector v of the
Laplacian matrix L are proportioned to the Euclidean co-
ordinates of the points on the one-dimensional line generated
by the vector z (corresponding in Γ) obtained as orthogonal
projections of the vectors ui on z.

Let us transform the original orthogonal coordinate
system in En into an other orthogonal coordinate system in
which the axes coincide with the axes of the quadric Q. ,is
will be performed algebraically as follows.

,e matrix K can be written as OΛOT, where O is an
orthogonal matrix and Λ is a diagonal matrix of the ei-
genvalues of K. Since K− 1 � OΛ− 1OT, equation (2) of Q
will be transformed into

x
T
OΛ− 1

O
T
x � 1

ory
TΛ− 1

y � 1,
(12)

where y � OTx is again the column vector of orthogonal
coordinates in the transformed system. ,en, in the new
system, the quadric Q has the equation:

􏽘

n

i�1

y2
i

di

� 1. (13)

Of course, the numbers di are positive. ,ey are equal to
the eigenvalues of L. Let d(G) � max di | i � 1, . . . , n􏼈 􏼉 and
α(G) � min di | i � 1, . . . , n􏼈 􏼉. ,en,

�����
d(G)

􏽰
(respectively,�����

α(G)
􏽰

) is the semimajor (respectively, semiminor) axis of
the quadric. On the contrary, d(G) is the spectral radius of
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L(G), and α(G) is the smallest eigenvalue of L(G). ,en, the
radius of the externally tangent circle of Q is

�����
d(G)

􏽰
, and the

radius of the internally tangent circle of Q is
�����
α(G)

􏽰
.

,en, the vectorui transforms into the vectorwi � OTui for
i � 1 to n.,e following result seems interesting, we say as usual
that an affine transformation is such a linear transformation
which transforms points at infinity into points at infinity.

Theorem 4. Let A be the affine transformation in En which
transforms the ellipsoid Q into a hypersphere:

yi �

��

di

􏽱

Yi. (14)

,en, A transforms the vector wi into vector
Wi � d

(− 1/2)
i wi which form an eutactic star, being all of equal

length and spanning equal mutual angles.

Proof. By equation (14), we obtain the matrix form

y � Λ(− 1/2)
Y, (15)

where Λ was defined earlier. Since wi � OTui and
Wi � Λ(− 1/2)wi, we have for the matrix W whose columns
are the coordinates of the vectors Wi, W � Λ(− 1/2)OTU.
,erefore, the Gram matrix of the vectors Wi is

W
T
W � U

T
OΛ− 1

OTU � U
T
K

− 1
U � U

T
UU

T
􏼐 􏼑

− 1
U � In,

(16)

since this is the matrix Zmentioned above. Immediately, the
last matrix is the Gram matrix of an eutactic star. □

2.2.Mixed Graphs with the SameUnderlying. In this section,
we will characterize the relations of geometric properties
between the graph G (singular or nonsingular) and all its
resigned graphs DG.

Denoted by K− 1(G), the matrix of quadric corre-
sponding to the graph G, by Dui the column vector of the
matrix U D since more than one graph is under discussion.
Assume L � L(G) � (lij)n×n be the Laplacian matrix of a
connected mixed graph G on n vertices. Let ℵ(G) be the set
of all resigned graphs of a mixed graph G. Obviously, ℵ(G)

has the following properties:

(i) G ∈ ℵ(G)

(ii) All elements of ℵ(G) have the same singularity as
that of the graph G

(iii) All elements of ℵ(G) can be considered as the
resigned graphs of a (arbitrary) element of ℵ(G)

By Lemma 1 and,eorem 1, if G is nonsingular, we have

L(
D

G) � D
T
L(G)D � D

T
U

T
U D � (U D)

T
U D. (17)

,us,

K
− 1

(
D

G) � U D(U D)
T

􏼐 􏼑
− 1

� UU
T

􏼐 􏼑
− 1

� K
− 1

(G), (18)

where U � (u1, . . . , un) has been defined above.
Consequently, we have the following.

Theorem 5. Let G be a connected nonsingular mixed graph
on n vertices, and letℵ(G) be the set of all its resigned graphs.
,en, there exists a unique quadric Q:

x
T
K

− 1
(G)x � 1, (19)

such that, for all DG ∈ ℵ(G), the quadric Q contains all the
endpoints of the vectors Dui of DG, and the tangent hyperplane
at each of these endpoints is parallel to the hyperplane
containing the remaining n − 1 vectors, where K− 1(G) �

UUT ∈ En has been defined above.
Similarly, by the result of [6], we have the following.

Theorem 6. Let G be a connected singular mixed graph on n
vertices, and let ℵ(G) be the set of all its resigned graphs.
,en, there exists a unique quadric Q:

x
T
K

− 1
(G)x �

n − 1
n

, (20)

such that, for all DG ∈ ℵ(G), the quadric Q contains all the
endpoints of the vectors Dui of DG, and the tangent hyperplane at
each of these endpoints is parallel to the hyperplane containing
the endpoints of the remaining n − 1 vectors, , where
K− 1(G) � UUT ∈ En− 1, U � (u1, u2, . . . , un) which holds that
􏽐

n
i�1 ui � 0 and UTU � L(G′) the Laplacian matrix of the

undirected graphG′ with the same underlying graph as that of G.

Proof. Let G be a connected singular mixed graph, then
G
→
∈ ℵ(G). By Lemma 1 and ,eorem 1 and by the def-

inition of the Laplacian matrix, the matrix L(G
→

) is the
same as that of the undirected graph G′ with the same
underlying graph. To graph G′, by [6], there exists n
vectors, u1, . . . , un, in a Euclidean space En− 1 of dimension
n − 1, such that

􏽘

n

i�1
ui � 0,

L G′( 􏼁 � U
T

U,

(21)

where U � (u1, . . . , un)

And by [6], there exists a unique quadric Q:

x
T

K
− 1

G′( 􏼁x −
n − 1

n
� 0, (22)

such that the quadric Q contains all the endpoints of the
vectors ui, and the tangent hyperplane at each of these
endpoints is parallel to the hyperplane containing the
endpoints of the remaining n − 1 vectors, where
K− 1(G′) � UUT ∈ En− 1.

Let DG be a arbitrary element of ℵ(G); now, we discuss
the relation of the matrices between K− 1(DG) and K− 1(G′).
By Lemma 1 and ,eorem 1, there exists a signature matrix
D such that

L(
D

G) � D
T
L G′( 􏼁D � D

T
U

T
U D � (U D)

T
U D. (23)

,us,
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K
− 1

(
D

G) � U D(U D)
T

􏼐 􏼑
− 1

� UU
T

􏼐 􏼑
− 1

� K
− 1

G′( 􏼁. (24)

,e result follows immediately. □
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