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With the serious pollution of the ecological environment, there are a large number of harmful gases in the chemical gases emitted
by the industry. Relevant intelligent chemical algorithms control the emission of chemical gases, which can effectively reduce
emissions and predict emissions more accurately.-is paper proposes a gray wolf optimization algorithm based on chaotic search
strategy combined with extreme learning machine to predict chemical emission gases, taking a 330MW pulverized coal-fired
boiler as a test object and establishing chemical emissions of CNGWO-ELM. -e prediction model, by using the relevant data
collected by DCS as training samples and test samples, trains and tests the model. Simulation experiments show that the chemical
emission prediction model of CNGWO-ELM has better accuracy and stronger generalization ability, with higher practical value.

1. Introduction

In recent years, with the release of chemical gases, envi-
ronmental pollution problems have become increasingly
serious [1, 2]. In order to effectively control environmental
pollution, it is necessary to monitor the degree of envi-
ronmental pollution in a timely manner and analyze the
composition of environmental pollutants in order to better
solve environmental pollution problems. More and more
experts and scholars have found that analytical chemistry is
an important way to effectively monitor the environment
and is of great significance to environmental protection.

With the continuous advancement of industrialization,
the dependence of economic and social development on
energy will be further increased. Strengthening the alter-
native strategic research on fossil energy such as coal, oil,
and natural gas is a necessary measure to solve energy supply
shortage and promote economic development and envi-
ronmental friendliness. Among the chemical emissions
emitted from the ecological environment, circulating flu-
idized bed (CFB) combustion is one of the main coal
combustion methods in China. It has the advantages of wide

fuel application range, good load regulation performance,
low pollutant discharge, and easy utilization of ash [2–4].
-e combination of CFB combustion mode and ultra-
supercritical parameter technology will be the inevitable
development direction of CFB boilers in the future. -e
original NOX emission concentration of conventional
CFB boilers is between 100 and 300mg/Nm3 [5, 6], which
cannot meet the national standard limit of NOX emission
concentration below 100mg/Nm3, and the NOX emission
concentration in some areas is lower than 50mg/Nm3.-e
ultralow emission standards, CFB boilers face the problem
of having to further reduce NOx emissions.

Many scholars at home and abroad have devoted
themselves to the study of optimizing combustion condi-
tions to control NOx formation. Rajan and Wen [7] first
established a comprehensive model of fluidized bed coal
combustion chamber (FBC) simulation. -e model can
predict combustion efficiency, particle size distribution of
coke and limestone, slag discharge rate of bed material, bed
temperature change, and the distribution of SO2, NOx, O2,
CO, CO2, and volatile matter along the furnace height. -e
factors influencing NOx emission from the CFB boiler are
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combustion temperature and uniformity, excess air coeffi-
cient, staged combustion, and so on [8, 9]. In addition, the
study of deep reduction of NOx in the CFB boiler with
the selective noncatalytic reduction (SNCR) technology as
the mainstream is also affected by reductant type, reaction
temperature, ammonia-nitrogen ratio, and other factors
[10–12]. Edelman et al. added the dynamic mathematical
model of a steam-water system to the overall mathematical
model of a circulating fluidized bed boiler on the basis of the
Wei model [13] andMuir model [14].-e dynamic models of
combustion chamber temperature, heat transfer rate of heat
exchanger, and oxygen content in flue gas in circulating
fluidized bed (CFB) were established, and the dynamic
predictions were made.

-e structure of this paper is as follows. Firstly, the basic
algorithm of CWO is explained and a chaotic nonlinear grey
wolf optimization algorithm is proposed. Secondly, an ELM
optimization model is proposed. Finally, the CNGWO-ELM
algorithm proposed in this paper is tested to achieve the
prediction effect and the relevant evaluation indicators are
given.

2. Standard GrayWolf Optimization Algorithm

-e grey wolf optimization algorithm (GWO) is a group
intelligence algorithm proposed by Mirjalili et al. in 2014 for
the inspired grey wolf predation behavior [15].-e gray wolf
group has a 4-layer hierarchical mechanism of α, β, δ, and ω.
Among them, α wolf is the leader with the best fitness in
the grey wolf group; β and δ are the two individuals with
the second best fitness, and their task is to assist the α wolf
in the management and hunting of the wolves; ω is the
remaining common wolves. -e predation process is de-
scribed as follows: first, the α wolf leads the gray wolf group to
search, track, and approach the prey; then, the β and δ wolves
attack the prey under the command of the wolf and summon
the ordinary wolf to attack the prey until the prey is captured.
-e GWO algorithm completes the predation behavior by
simulating predation behaviors such as gray wolf enveloping,
hunt, and attack, thus achieving a global optimization process.

Assume that, in the dimensional space, the gray wolf
group Xi, i � 1, 2, . . . , N􏼈 􏼉 consists of N gray wolves. -e
GWO algorithm is described as follows.

Surrounding stage: after the wolves determine the position
of the prey, they first surround the prey. -e mathematical
description is as follows:

D � C · Xp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X(t + 1) � Xp(t) − A · D,

(1)

where D is the distance between the grey wolf and the prey,
Xp(t) is the position of the prey after the t-th iteration
(current optimal solution), X(t) is the position of the grey
wolf after the t-th iteration (feasible solution), and A and C
are coefficient factors, defined as follows:

A � 2a×r1 − a,

C � 2×r2,
􏼨 (2)

where r1 and r2 are random numbers in [0, 1] and a is a
convergence factor, which decreases linearly from 2 to 0 as
the number of iterations increases.

Hunting phase: after the encirclement phase is com-
pleted, a wolf leads β and δ wolves to hunt down the prey.
During the hunt, the individual positions of the wolves move
as the prey escapes:

X1 � Xα − A1 C1Xα(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

X2 � Xβ − A2 C2Xβ(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X3 � Xδ − A3 C3Xδ(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where Xα, Xβ, andXδ represent the current position of α, β,
and δ wolves, X(t) represents the current gray wolf position,
and C1, C2, and C3 are random vectors.

Update the location of ω wolf as follows:

X(t + 1) �
X1 + X2 + X3

3
. (4)

2.1. Chaotic Nonlinear Grey Wolf Optimization Algorithm.
-e literature [16] pointed out that the optimization process
of the GWO algorithm is essentially dominated by three
optimal solutions, α, β, and δ wolves, which easily cause the
algorithm to prematurely converge and fall into local op-
timum. Chaos is a kind of nonlinear linearity with phase
space ergodicity and inherent randomness. Combining
chaotic variables for optimal search can effectively jump
out of local optimum and achieve global optimization.-e
literature [17] pointed out that Kent chaotic maps have
better performance than logistic chaotic maps. -erefore,
the introduction of Kent chaos optimization strategy in
the basic GWO algorithm to optimize the solution that
falls into the local optimum will effectively help the algorithm
find a better solution. In addition, the introduction of non-
linear dynamic weighting strategy in the GWO algorithm will
effectively balance the development and exploration capa-
bilities of the algorithm and further improve the global op-
timization performance of the GWO algorithm.

2.1.1. Kent Chaotic Search Strategy. -e Kent chaotic map
model is described as follows:

Z
t+1

�

Zt

a
, 0<Zt ≤ a,

1 − Zt

1 − a
, a<Zt < 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where the control parameter a ∈ (0, 1) and the Lyapunov
exponent of the Kent map is greater than 0 which is in a
chaotic state. In this paper, the probability density function
obeys a uniform distribution in (0, 1), that is, ρ(Z) � 1. -e
Lyapunov exponent can be used to characterize the diver-
gence ratio of the initial state of small uncertainty. -e
Lyapunov exponent of Kent chaos is 0.696, which is greater
than the classical logistic of 0.693.
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In the chaotic search process, the ergodicity of the
chaotic motion is used to generate the chaotic series based
on the solution of the current search stagnation. -e
optimal solution in the sequence is taken as the global
optimal solution, which makes it jump out of the local
optimum. In the GWO algorithm, it is assumed that the
solution does not improve significantly after continuous
limit iterative search, indicating that the solution falls into
local optimum, so Kent is used to optimize chaos. Chaos
optimization is performed on α, β, and δ wolves of the
GWO algorithm. -e solution space of the optimization
problem is [Xmin, Xmax]. -e Kent chaos optimization
steps are as follows:

Step 1: use equation (3) Xα, Xβ, andXδ to map into the
domain [0, 1] of the Kent:

Z
0

�
Xα − Xmin

Xmax − Xmin
. (6)

Step 2: generate chaotic sequences. Iteratively generate
Cmax chaotic variable sequences by Kent equation
Zk(k � 1, 2, . . . , Cmax).
Step 3: using the carrier operation, Zk is first amplified
and then loaded onto the gray wolf individual
Xα, Xβ, andXδ to be searched so that the new gray
wolf individual position Uk in the field of the original
solution space after the chaotic operator operation is
obtained from formula (7), where k � 1, 2, . . . , Cmax:

Uk � Xα,β,δ +
Xmax − Xmin

2
× 2Zk − 1( 􏼁. (7)

Step 4: calculate the fitness value f(Uk) of Uk and
compare it with the fitness value f(X) ofX to retain the
best solution.

2.1.2. Nonlinear DynamicWeights. For the GWO algorithm,
global exploration capabilities mean detecting a wider range
of search areas, while local development emphasizes the use
of existing information to perform detailed searches on
certain areas of the group. -ere is no doubt that how the
GWO algorithm seeks the balance between global explo-
ration and local development is the key to ensuring the
global search performance of the algorithm. In the GWO
algorithm, A adjusts the balance between global exploration
and local development. From equation (6), it can be found
that the value of A changes with the change of control
parameter α. -erefore, the control parameters largely de-
termine the global balance between exploration and local
development.

In the standard GWO algorithm, the control parameter
A decreases linearly from 2 to 0 as the number of iterations
increases. However, this linearly decreasing strategy cannot
fully reflect the actual complex optimization process of the
algorithm.-e nonlinear control parameters obtained better
performance than the linear decreasing strategy. Based on
this, the following nonlinear exponential decreasing strategy
is proposed:

α � αend
αstart
αend

􏼠 􏼡

1/( (1+10t)/tmax􏼁
2

, (8)

where αstart � 2, αend � 0.01, and t � 0 and the weight in
equation (8) is α � αstart � 2. When t � tmax, α converges to
0.01. In the initial stage, α has a large weight and α weight
decreases rapidly with the increase of the number of it-
erations. In the latter part of the iteration, the descending
speed gradually slows down, compared with the linear
decreasing adjustment scheme, the weighting strategy of
the nonlinear exponential decreasing. It can improve the
optimization performance of the GWO algorithm.

2.2. CNGWO Algorithm Steps. -e following are the basic
steps of the CNGWO algorithm, as shown in Algorithm 1.

3. Extreme Learning Machine
Optimization Model

3.1. Fundamental Principles of Extreme Learning Machine
(ELM). ELM is a new single hidden layer forward neural
network learning algorithm that has received extensive
attention in recent years. -e difference from traditional
neural network training is that the ELM hidden layer does
not need to be iterated and the input weight and hidden
layer node offset are randomly selected. With the mini-
mum training error as the goal, the hidden layer output
weight is finally determined. -e algorithm is described as
follows.

Let m, M, and n be the number of nodes in the network
input layer, hidden layer, and output layer, respectively,
g(x) is the activation function of the hidden layer neurons,
and bi is the threshold. Let N samples be (xi, ti), where xi �

[xi1, xi2, . . . , xim]T ∈ Rm is the network input vector and ti �

[ti1, ti2, . . . , tin]T ∈ Rn is the target output vector.
-e ELM model is described as follows:

􏽘

M

i�1
βig ωi · xi + bi( 􏼁 � oj, j � 1, 2, . . . , N, (9)

where ωi � [ω1i,ω2i, . . . ,ωmi] represents the input weight
vector connecting the network input layer node and the
first hidden layer node, βi � [βi1, βi2, . . . , βin]T represents
the output weight vector connecting the first hidden
layer node and the network output layer node, and oj �

[oj1, oj2, . . . , ojn]T represents the network output value.
S � (ωi, bi, i � 1, 2, . . . , M) contains the network input

weight and the hidden layer node threshold. ELM’s training
goal is to find the optimal S, β. min(E(S, β)) can be further
described as follows:

minE � min ‖H(ω, b, x)β − T‖, (10)

where H represents the hidden layer output matrix of
the network with respect to the sample, β represents the
output weight matrix, and T represents the target value
matrix of the sample set. H, β, andT are defined as
follows:
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H(ω, b, x) �

g ω1x1 + b1( 􏼁 · · · g ωMx1 + bM( 􏼁

⋮ ⋮

g ω1xN + b1( 􏼁 · · · g ωMxN + bM( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×M

,

β �

βT
1

⋮

βT
M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M×n

,

T �

tT1

⋮

tTN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×n

.

(11)

-e ELM network training process can be reduced to a
nonlinear optimization problem. When the activation func-
tion g(x) is infinitely divisible, the network input weight ωi

and the threshold bi can be randomly assigned. At this time,
the matrix H is a constant matrix and the learning process of
the extreme learning machine can be equivalent to obtaining
the linear system Hβ � T. -e least squares solution of the
minimum norm 􏽢β is calculated as follows:

􏽢β � H†T, (12)

where H† is the Moore–Penrose generalized inverse of the
hidden layer output matrix H; after 􏽢β is solved, ELM’s
network training process is completed. -e implementation
steps of the ELM algorithm are as follows:

Step 1: given a training set (xi, ti), the activation function
g(x), and the number of hidden layer nodes M, ran-
domly generate the input weight ωi and the threshold bi

Step 2: calculate the hidden layer output matrix H
Step 3: calculate the output weight β from formula (12)

3.2. ELMOptimization Model. Although the ELM learning
algorithm has certain advantages in the computational
performance and accuracy of the regression problem, the

ELM lacks the a priori knowledge to randomly determine
the input weight and the hidden layer threshold and
obtain the output weight of the network. If the input
weight and hidden layer threshold are not properly se-
lected, it will affect the prediction accuracy and gener-
alization ability of the ELM. Aiming at this problem, the
CNGWO algorithm is used to optimize the extreme learning
machine prediction model (CNGWO-ELM). -e core idea is
to use the sample data as the input of ELM and search and
adjust the CNGWO optimization algorithm to get the best
input weight and hidden layer node threshold. -e regression
effect of the ELM algorithm is best when the hidden layer
nodes are as small as possible, and the output weight β is
obtained by parsing the MP generalized inverse. Figure 1
depicts the process by which CNGWO optimizes ELMmodel
parameters.

-e specific steps of CNGWO to optimize ELM model
parameters are as follows:

Step 1: population initialization: randomly gener-
ate a population consisting of N individuals, each
consisting of input weights and thresholds, enco-
ded according to xj � (ω11, . . . ,ω1M,ω21,ω22, . . . ,

ωm1, . . . ,ωmM, b1, b2, . . . , bM).
Step 2: variable selection and data acquisition:
when modeling gas emissions, select reasonable input
and output modes, collect and process operational data
related to modeling from the combustion system, and
divide into training data sets and test data sets.
Step 3: determine the fitness function J defined as
follows:

J �
1

1 +

������������������

􏽐
N
j�1 oj − tj

�����

�����
2

2
􏼒 􏼓􏼬nN

􏽲 ,
(13)

where ti � [ti1, ti2, . . . , tin]T is the target output vector
and oi � [oi1, oi2, . . . , oin]T is the network predicted
output value.
Step 4: model selection: the random initialization
method generates the initial population, establishes the
gas emission prediction model according to the initial

Step 1: algorithm parameter setting: gray wolf group size N, maximum iteration number tmax, iteration number t.
Step 2: randomly initialize the population and order.
While (t< tmax) do
Calculate the fitness value of the gray wolf group, update the α, β, δ wolf according to the fitness value, and record the positions Xa,

Xb, and Xδ.
For i� 1 to N do

Calculate the value of the control parameter Aaccording to equation (7).
Update the values of parameters A, C according to equation (2).
Update the position of the remaining ω wolves according to equations (3) and (4).
Update the position of α, β, δ wolf.
According to Kent chaotic search strategy.

End for
t� t+ 1

End while

ALGORITHM 1: CNGWO algorithm flow (CNGWO algorithm pseudocode).
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population (ω11, . . . ,ω1M,ω21, ω22, . . . ,ωm1, . . . ,ωmM,

b1, b2, . . . , bM), and calculates the fitness value. If the
fitness value does not meet the requirements, the
CNGWO algorithm is used to optimize the model pa-
rameters of the ELM until satisfactory. As a result, the
CNGWO-ELM model was established.
Step 5: model validation: validate model performance
using test data.

4. Experimental Comparative

4.1. Experimental Index. -e CFB boiler adopts a single
furnace, single air distribution plate, M-type arrangement
structure, and circulating fluidized bed combustion mode.

-e boiler consists of 1 furnace, 4 steam-cooled cyclones, 4
return valves, 4 external heat exchangers, 8 slag coolers, and
2 rotary air preheaters. -e tail is double flue. -e preheater
adopts the baffle to adjust the temperature, and the me-
chanical feeding mode of the starting bed material adding
system is shown in Table 1.

-e CFB boiler burns coal blended with coal slime,
vermiculite, and terminal coal. -e mixing ratio of designed
coal slime, vermiculite, and terminal coal is 55 : 20 : 25; the
ratio of coal mine slime, vermiculite, and end coal is 35 : 35 :
30.-e specific coal quality information is shown in Table 2.

-e boiler design has low nitrogen content in the coal
quality, which reduces the formation of fuel-type NOX, but its
high volatile content is not conducive to controlling NOX
emissions. Data modeling and the modeling method pro-
posed above are used to establish a CNGWO-ELM-based
NOx emission prediction model and a boiler load prediction
model. Among them, the boiler load prediction model in-
cludes 9 input characteristics, corrected total fuel quantity,
feed water flow rate, A coal mill inlet air volume, B coal mill
inlet air volume, D coal mill inlet air volume, E coal mill inlet
air volume, the total primary air volume, the total secondary
air volume, and the boiler load per unit time before the
measurement time, and the boiler load as the output.-eNOx
emission prediction model includes 16 input characteristics,
corrected total fuel quantity, main feed water flow rate, A coal
mill inlet air volume, B coal mill inlet air volume, D coal mill
inlet air volume, E coal mill inlet air volume, total primary air
volume, total secondary air volume, furnace pressure, A coal
mill inlet primary air temperature, B coal mill inlet primary
air temperature, D coal mill inlet primary air temperature, E
coal mill inlet primary air temperature, front wall outlet
flue gas oxygen content, rear wall outlet flue gas oxygen
content, and measurement time. -e experimental data are
the output values of each NOx emission index, as shown in
Table 3.

4.2. Comparison of Model Prediction Control Results. -e
comparison results of the CNGWO-ELM predictive control
and the widely used actual values of the power plant
proposed in this paper are shown in Figures 2 and 3. It
can be seen from Figure 2 that there is a high degree of
consistency between the load predicted value and the
actual load value and the accuracy of the data higher. In
Figure 3, the chemical gas emission prediction model
proposed in this paper compares the actual emission with

Table 1: CFB boiler design indicators and parameters.

Item Value
Stand-alone capacity (MW) 660
Main steam pressure (MPa) 29.4
Main steam temperature (°C) 605
Reheat steam temperature (°C) 623
Boiler efficiency (%) >93.5
Coal consumption for power supply (g/(kWh) <290
SO2 emission concentration (mg/Nm3) <35
NOX emission concentration (mg/Nm3) <50
Dust emission concentration (mg/Nm3) <10

Set CNGWO scale population,
number of iterations, etc.

Enter training samples and test samples

Sample data processing

Y

N

Y

N

Start

Set the model accuracy and
several degrees of input space

Using CNGWO to optimize
model parameters

Calculate and compare
fitness values

Whether the
termination condition

is satisfied

Whether iteration
number is satisfied

Get optimal model parameters
and optimize ELM models

Data prediction using
optimal models

Output result

Updating the model
parameters through the

GNGWO algorithm to form
a new candidate solution

Figure 1: Optimized parameters of ELM by CNGWO.
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the predicted value, which shows that the effect of the gas
emission prediction model is better and the error between
the actual value and the predicted value is small. At the
same time, the model’s generalization ability test results
show that the maximum relative error of chemical gas emis-
sions is 3.56%, indicating that the model has strong general-
ization ability.

In order to better understand the algorithm applied in
this paper, other methods are used to compare the pre-
dicted values. Figure 4 shows the prediction results of
50 models with heat consumption rate of 3 models. It can
be seen that the CNGWO-ELM model can predict the test
samples well. Compared with the other two models, the
prediction accuracy is higher, indicating that CNGWO-
ELM model has strong generalization ability.

Table 2: CFB boiler burning coal quality data.

Item Chemical symbol Unit Design coal type Check coal type
Full moisture Mt % 19.1 14
Air drying base moisture Mad % 2.41 2.32
Receiving base ash Aar % 31.34 37.18
Dry ashless base volatiles Vdaf % 33.52 35.37
Receiving fixed carbon FCar % 32.95 31.55
Receiving base carbon Car % 39.51 37.96
Receiving hydrogen Har % 2.21 2.28
Receiving base nitrogen Nar % 0.4 0.39
Receiving oxygen Oar % 6.81 7.39
Received total sulfur S t,ar % 0.63 0.8
Received low base heat Qnet,v,ar MJ/kg 14.52 13.99

Table 3: Overview of experimental data.

Project Value
Boiler load (MW) 450∼850
NOx concentration before denitration (mg/m3) 403∼773
Total fuel quantity (t/h) 133∼188
Main feed water flow (t/h) 862∼1125
Coal mill inlet air volume (A, B, D, E) (t/h) 67∼93
Total primary air volume (t/h) 305∼362
Total secondary air volume (t/h) 1083∼1089
Furnace pressure (Pa) –144∼–6
Primary air temperature at the coal mill inlet (A, B, D, E) (°C) 187∼258
Front wall outlet flue gas oxygen content (%) 3∼6
After the wall outlet flue gas oxygen content (%) 3∼6
Flue gas temperature (°C) 102∼106
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4.3. Performance Comparison. In order to facilitate the
evaluation of the performance of the model, this paper
defines root mean squared errors (RMSE), mean relative
error (MRE), and decision coefficient R2 as follows:

RMSE �

������������

􏽐
n
i�1 yi
′ − yi( 􏼁

2

n

􏽳

,

MRE �
1
n

􏽘

n

i�1

yi
′ − yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
∗100%,

R
2

� 1 −
yi
′ − yi( 􏼁

2

􏽐
n
i�1 yi − yi( 􏼁

2.

(14)

where n is the number of samples, yi is the actual measured
value, yi

′ is the corresponding predicted value, and yi is the
average of the actual measured values.

It can be seen that the predicted value and the true value
are roughly distributed in the CNGWO-ELM model, which
is relatively close to the one mentioned in the paper, indi-
cating that the model can better predict the chemical gas.
-e effect is shown in Table 4.

-e CNGWO-ELM model has smaller RMSE and
MRE for the training samples and the least error for the
test samples, which indicates that the generalization
ability of the CNGWO-ELMmodel will be better when the
input variables are larger. As the sample size changes, the
values of RMSM, MRE, and R2 also have related changes,
and the values also change well. In the optimization
process of the ELM algorithm, the relevant data can be
optimized and analyzed.

5. Conclusions

-e characteristics of chemical gas emissions are affected by
many factors, and the influence relationship is complex. In
order to accurately predict the chemical gas emissions, a
prediction model based on improved standard gray wolf
optimization algorithm (GWO) and extreme learning ma-
chine (ELM) is proposed. CNGWO-ELM is used to preselect
ELM model parameters to improve the accuracy and gen-
eralization capabilities of the predictive model. Taking a
330MW pulverized coal-fired boiler as a test object and
establishing a predictive model of chemical emissions of
CNGWO-ELM, the model was trained and tested by using
the relevant data collected by DCS as training samples and
test samples. Simulation experiments show that CNGWO-
ELM’s chemical emission prediction model has good ac-
curacy and strong generalization ability and has higher
practical value. In the future, other optimization algorithms
will be introduced to achieve fast and accurate prediction
and improve the global optimization effect.
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baidu.com/s/1YHr7hRz25evFtIB1iNIpYw. Download code:
dju4.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

450

500

550

600

650

700

750

800

850

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Sample number

Actual
POS-ELM

Ch
em

ic
al

 g
as

 em
iss

io
ns

 m
g/

m
3

WOA-ELM
CNGWO-ELM

Figure 4: Comparison of CNGWO-ELM with other algorithms.

Table 4: Precision analysis of forecast results of 3 algorithms for testing set.

Sample no.
POS-ELM WOA-ELM CNGWO-ELM

RMSE MRE % R2 RMSE MRE% R2 RMSE MRE % R2

10 24.321 6.342 0.864 33.22 8.212 0.786 5.321 2.232 0.923
30 22.216 7.433 0.885 30.87 10.651 0.793 3.234 2.013 0.942
50 18.987 9.547 0.892 27.65 11.562 0.821 3.126 1.245 0.981
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