## Supporting Information

Preparation, adsorption and recognition properties of a facile solid symmetric tetramethylcucurbit[6]uril-based porous supramolecular assembly

Fei Yang Tian, Rui Xue Cheng, Yun Qian Zhang, Zhu Tao,\* Qian Jiang Zhu

<sup>†</sup> Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China.

\*Corresponding Email Address: gzutao@263.net

## EXPERIMENTAL SECTION



Fig. S1 Stacking structure from *ab* plane in compound A.



Fig. S2 Powder X-ray diffraction analyses of A (top) and comparison with simulation (bottom)



**Fig. S3** TG (top) and DTA (bottom) curves of  $\mathbf{A}$  in  $N_2$ .

Table S1 (in the first column) Selected 15 fluorophore guests (FGs); (in the second column) General survey of loading A with 15 fluorophore guests (FGs) to form luminescent assemblies (FG@As) by comparison of coulur and fluorescence spectra of FG and solid FG@As, respectively.













**Fig. S4** <sup>1</sup>H NMR spectra in deuterated acetonitrile: (a) 0.5 mL 0.01 M **FG2** added 10 mg **A**; (b) 0.5 mL 0.01 M **FG2**; (c) 0.5 mL 0.01 M **FG5** added 10 mg **A**; (d) 0.5 mL 0.01 M **FG5**; (e) 0.5 mL 0.01 M **FG10** added 10 mg **A**; (f) 0.5 mL 0.01 M **FG10**; (g) 0.5 mL 0.01 M **FG11** added 10 mg **A**; (h) 0.5 mL 0.01 M **FG15**; (i) 0.5 mL 0.01 M **FG15** added 10 mg **A**; (j) 0.5 mL 0.01 M **FG15**;

|   | 1                         |                           | 5 1                       |  |
|---|---------------------------|---------------------------|---------------------------|--|
| Α | (b) <b>FG</b>             | (d) <b>FG5</b>            |                           |  |
|   | (a) 2.11×10 <sup>-6</sup> | (c) 2.75×10 <sup>-7</sup> |                           |  |
|   | (f) <b>FG10</b>           | (h) <b>FG11</b>           | (j) <b>FG15</b>           |  |
|   | (e) 1.11×10 <sup>-7</sup> | (g) 1.15×10 <sup>-6</sup> | (i) 5.98×10 <sup>-6</sup> |  |

Table S2. Normalized adsorption data of A for five dyes, respectively (mol/g)



Fig. S5 General survey of fluorescence spectra of FG1@A loaded with the 12 VOCs, respectively.

![](_page_8_Figure_4.jpeg)

Fig. S6 General survey of fluorescence spectra of FG2@A loaded with the 12 VOCs, respectively.

![](_page_9_Figure_0.jpeg)

Fig. S7 General survey of fluorescence spectra of FG3@A loaded with the 12 VOCs, respectively.

![](_page_9_Figure_2.jpeg)

Fig. S8 General survey of fluorescence spectra of FG5@A loaded with the 12 VOCs, respectively.

![](_page_10_Figure_0.jpeg)

Fig. S9 General survey of fluorescence spectra of FG6@A loaded with the 12 VOCs, respectively.

![](_page_10_Figure_2.jpeg)

Fig. S10 General survey of fluorescence spectra of FG8@A loaded with the 12 VOCs, respectively.

![](_page_10_Figure_4.jpeg)

Fig. S11 General survey of fluorescence spectra of FG9@A loaded with the 12 VOCs, respectively.

![](_page_11_Figure_0.jpeg)

Fig. S12 General survey of fluorescence spectra of FG10@A loaded with the 12 VOCs, respectively.

![](_page_11_Figure_2.jpeg)

Fig. S13 General survey of fluorescence spectra of FG11@A loaded with the 12 VOCs, respectively.

![](_page_11_Figure_4.jpeg)

Fig. S14 General survey of fluorescence spectra of FG12@A loaded with the 12 VOCs, respectively.

![](_page_12_Figure_0.jpeg)

Fig. S15 General survey of fluorescence spectra of FG13@A loaded with the 12 VOCs, respectively.

![](_page_12_Figure_2.jpeg)

Fig. S16 General survey of fluorescence spectra of FG14@A loaded with the 12 VOCs, respectively.

![](_page_12_Figure_4.jpeg)

Fig. S17 General survey of fluorescence spectra of FG15@A loaded with the 12 VOCs, respectively.

![](_page_13_Figure_0.jpeg)

Fig. S18 (a) Titration fluorescence spectra of the loading of FG10@A with acetone; (b) Change in fluorescence intensity of FG10@A with increasing adsorption time; (c) Adsorption profile of the loading of acetone in FG10@A; (d) Plot of  $\Delta I vs$ . the amount of acetone adsorbed by solid FG10@A.

![](_page_13_Figure_2.jpeg)

Fig. S19 (a) Titration fluorescence spectra of the loading of FG2@A with ethanol; (b) Change in fluorescence intensity of FG2@A with increasing adsorption time; (c) Adsorption profile of the loading of ethanol in FG2@A; (d) Plot of  $\Delta I vs$ . the amount of ethanol adsorbed by solid FG2@A.

![](_page_14_Figure_0.jpeg)

Fig. S20 (a) Titration fluorescence spectra of the loading of FG2@A with dichloromethane; (b) Change in fluorescence intensity of FG2@A with increasing adsorption time; (c) Adsorption profile of the loading of dichloromethane in FG2@A; (d) Plot of  $\Delta I vs$ . the amount of dichloromethane adsorbed by solid FG2@A.

![](_page_14_Figure_2.jpeg)

Fig. S21 (a) Titration fluorescence spectra of the loading of FG11@A with ethanol; (b) Change in fluorescence intensity of FG11@A with increasing adsorption time; (c) Adsorption profile of the loading of ethanol in FG11@A; (d) Plot of  $\Delta I vs$ . the amount of ethanol adsorbed by solid FG11@A.

![](_page_15_Figure_0.jpeg)

Fig. S22 (a) Titration fluorescence spectra of the loading of FG11@A with dichloromethane; (b) Change in fluorescence intensity of FG11@A with increasing adsorption time; (c) Adsorption profile of the loading of dichloromethane in FG11@A; (d) Plot of  $\Delta I vs$ . the amount of dichloromethane adsorbed by solid FG11@A.

![](_page_15_Figure_2.jpeg)

**Fig. S23** (a) Titration fluorescence spectra of the loading of **FG**11@**A** with benzol; (b) Change in fluorescence intensity of **FG**11@**A** with increasing adsorption time; (c) Adsorption profile of the loading of benzol in **FG**11@**A**; (d) Plot of  $\Delta I vs$ . the amount of benzol adsorbed by solid **FG**11@**A**.

![](_page_16_Figure_0.jpeg)

Fig. S24 Lifetime experiments of fluorescence strength of solid FG@As for selected volatile compounds.

![](_page_17_Figure_0.jpeg)

Fig. S25 Lifetime experiments of adsorption capacities of selected solid FG@As for selected VOCs.

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_0.jpeg)

Fig. S26 the adsorption of neat FG for VOCs.