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In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is calculated based on the graph of a
chemical compound. Topological indices help us collect information about algebraic graphs and give us mathematical approach to
understand the properties of algebraic structures. With the help of topological indices, we can guess the properties of chemical
compounds without performing experiments in wet lab. There are more than 148 topological indices in the literature, but none of
them completely give all properties of under study compounds. Together, they do it to some extent; hence, there is always room to
introduce new indices. In this paper, we present first and second reserve Zagreb indices and first reverse hyper-Zagreb indices,
reverse GA index, and reverse atomic bond connectivity index for the crystallographic structure of molecules. We also present first
and second reverse Zagreb polynomials and first and second reverse hyper-Zagreb polynomials for the crystallographic structure

of molecules.

1. Introduction

Topological indices enable us to collect information about
algebraic structures and give us a mathematical approach to
understand the properties of algebraic structures. Here, we
will discuss some newly introduced first and second reverse
Zagreb indices, hyper-Zagreb indices, and their polynomials
for the crystallographic structure of molecules [1-9].

A graph having no loop or multiple edges is known as
simple graph. A molecular graph is a simple graph in which
atoms and bonds are represented by vertex and edge sets,
respectively. The vertex degree is the number of edges at-
tached to that vertex [10-16]. The maximum degree of vertex
among the vertices of a graph is denoted by A(G). Kulli et al.
(17] introduce the concept of reverse vertex degree C,,
defined as C,=A(G) - dg (v) + 1.

In discrete mathematics, graph theory in general is not
only the study of different properties of objects but it also tells
us about objects having same properties as investigating

object. These properties of different objects are of main in-
terest. In particular, graph polynomials related to graph are
rich in information. Mathematical tools like polynomials and
topological-based numbers have significant importance to
collect information about the properties of chemical com-
pounds. We can find out many hidden information about
compounds through these tools. Multifold graph polynomials
are present in the literature. Actually, topological indices are
numeric quantities that tell us about the whole structure of
graph. There are many topological indices [18, 19] that help us
to study physical, chemical reactivities, and biological
properties. Wiener, in 1947 [20], firstly introduce the concept
of topological index while working on boiling point. In
particular, Hosoya polynomial [21] plays an important in the
area of distance-based topological indices; we can find out
Wiener index, hyper-Wiener index, and Tratch-
Stankevich-Zefirov index by Hosoya polynomial [22, 23].
Other well-established polynomials are Zagreb and hyper-
Zagreb polynomials introduced by Gao.
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The first and second reverse Zagreb indices are as
follows:

CM,(G)= )Y (c,+¢,),
uveE (G)

CM,(G) = Y (cnc))
uveE (G)

(1)

Now, the first and second reverse hyper-Zagreb indices
are given by
HCM, (G) = Y (¢, +¢,)%
uveE (G)

HCM,(G) = Y (c,.c,)”
uveE (G)

(2)

Atom-bond connectivity index can be abbreviated as
ABC index. It is defined as follows:

d (G)+d.(G) -2
ABC(G) = u v
BC(G) m;@y d, (G).d,(G)

(3)

Another degree-based topological index that utilizes the
difference between the geometric and arithmetic means was
invented by Vukicevic and Furtula, namely, geometric-
arithmetic index and is defined as follows:

vd, (G).d, (G)

GA(G) = ) (1/2)[d, (G) +4,(G)] W

uveE (G)

With the help of reverse Zagreb and hyper-Zagreb in-
dices, we are now able to write the reverse Zagreb and hyper
Zagreb polynomials:

CM, (G, x) = Z x(Cu'H:V),
uveE (G)

CM,(Gx) = Y x(we),
uveE (G)

HCM, (G, x) = Z 5 (ate) i
uveE (G)

HCM2 (G,x) = Z x(Cu.cv) .
uveE (G)

(5)

We introduce the idea of reverse atom-bond connec-
tivity index and reverse geometric-arithmetic index, and it is
defined as follows:

e, (G) +¢,(G) -2

CABC(G) = MEZ(G) ¢ (G)e,(Q) ©
~ C, (G)-Cv (G)
CGA(G) = WeEZ(G) (1/2)[¢, (G) +¢,(G)]
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2. Main Results

Here, we will compute reverse Zagreb and reverse hyper-
Zagreb indices for the crystallographic structure of
molecules.

2.1. Crystallographic Structure of the Molecule Cu,0. The
unit cell of the crystallographic structure of the molecule
Cu,0 is given in Figure 1 and the crystal structure of Cu,O
[3, 3, 3] is given in Figure 2.

Theorem 1. Let G be the chemical graph of Cu,O, with m, a,
t > 1. The first and second reverse Zagreb indices are as
follows:

(1) CM(Cu,0) = 32mat + 20ma + 20mt + 20at + 36 —
28m — 28« — 28t

(2) CM,(Cu,0) = 24mat + 24ma + 24mt + 24t — 12m —
1200 — 12t

Proof. From Figure 2, we can say that there are 3 types of
edges in Cu,O:
E, (Cu,0) ={uve E(Cu,0);d, = 1,d, = 2},
E,(Cu,0) ={uve E(Cu,0);d, =2,d, =2},  (7)
E;(Cu,O) ={uve E(Cu,0);d, = 2,d, = 4}.

We have |E;(Cu,0)| = 4a + 4m + 4t — 8, |Ex(Cu,O)| =
dam + 4at + 4mt — 8a — 8m — 8t + 12, and |E3(Cu,0)| =
4Q2amt — am — at — mt + « + m + t — 1). In this structure, the
maximum edge degree is 4, and then, the reverse edges are
given as follows:

c,=AG) —dg(u) +1=5-dg (w). (8)

The reverse edge set of Cu,O is given as follows:

CE, (Cu,0) ={uve E(Cu,0);c, = 4,¢, = 3},
CE, (Cu,0) ={uve E(Cu,0);c, =3,¢, =3},  (9)
CE; (Cu,0) ={uve E(Cu,0);¢c, = 3,¢, = 1}.

We have |CE;(Cu,0)| = 4a + 4m + 4t — 8, | CE,(Cu,0)| =
dam + 4at + 4mt — 8a — 8m — 8t + 12, and |CE3(Cu,0)| =
4Q2amt —am — at — mt + « + m + t — 1).

(i) The first reverse ZI for Cu,O is given by
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FiGgure 1: Unit cell of Cu,O [1, 1, 1].
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FIGURE 2: Crystal structure of Cu,O [3, 3, 3].

CM, (Cu,0) = Z (c, +c,)
uveE (G)

=(4+3)da+4m+4t —8) + (3 +3) (dam + 4dat + dmt — 8a — 8m — 8t + 12) + (3 + 1)
-(4Qamt —am—at —mt+a+m+t—1))
= 32mat + 20ma + 20mt + 20at + 36 — 28m — 28« — 28t.

(ii) The second reverse ZI for Cu,O is given by

CMZ(CuZO)= Z (Cu'cv)
uveE (G)

=(4%x3)(4a+4m+ 4t — 8) + (3 x 3) (4am + 4at + 4mt — 8o — 8m — 8t + 12)
+(3x1)4QRamt —am—at —mt +a+m+t—1))

= 24mat + 24ma + 24mt + 24at — 12m — 12« — 12t.

(10)

(11)
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Theorem 2. The first and second reverse Zagreb polynomials
for Cu,0 with m, n, t > 1 are as follows:

1.CM, (Cu,0, x) = x” (4a + 4m + 4t — 8) + x° (4am + 4at + 4mt — 8o — 8m — 8t + 12)

+x aQamt —am—at —mt +a+m+t—1),

(12)
2.CM, (Cu,0,x) = x'2 (4o + 4m + 4f — 8) + x°” (dam + 4at + 4mt — 8o — 8m — 8t + 12)
+x°(4Qamt —am—at —mt + a+m+1t — 1).
Proof. Now, by the reverse edge partitions of Cu,O, we have (i) The first reverse Zagreb polynomial for Cu,O is given
the following results: as follows:
CM, (Cu,0,x) = Y x (o)
uveE (G)
= (4o +4m + 4t — 8)x ™ + (4am + dat + 4mt — 8a — 8m — 8t + 12)x**Y
+(4(20cmt—ocm—oct—mt+oc+m+t—l)x(SH) (13)
= x (4a +4m + 4t — 8) + x° (4am + 4at + 4mt — 8o — 8m — 8t + 12)
+x4(4(2(xmt—ocm—oct—mt+oc+m+t— 1).
(ii) The second reverse Zagreb polynomial for Cu,O,
with m, a, t > 1, is given as follows:
CM, (Cu,0,x) = Y x (o)
uveE (G)
= (4o + 4m + 4t — 8)x®Y + (dam + dat + 4mt — 8o — 8m — 8t + 12)x )
14
+(4(20cmt—ocm—oct—mt+oc+m+t—l)x(3X1) (14)
= x"(4a +4m + 4t — 8) + x° (4am + 4at + 4mt — 8a — 8m — 8¢ + 12)
+x (4Qamt —am—at —mt +a+m+1t—1).
O
Theorem 3. The first and second reverse hyper-Zagreb in-  Proof. Let G be a graph of Cu,O. Then, by reverse edge
dices of silicon-carbon Cu,O with m, a, t > I are as follows:  partition and definition of reverse hyper-Zagreb indices, we
(1) HCM,(Cit,0) = 32mat + 128mac + 128mt + 128at —  12ve the following results:
76m — 76 — 76t + 24 (i) The first reverse hyper-ZI for Cu,O is given by
(2) HCM,(Cu,0) = 18mat + 315ma + 315mt + 315at —
63m — 63a — 63t — 189
CM, (Cu,0) = Z (c, + cv)2
uveE (G)
= (4 +3)* (4o + 4m + 4f — 8) + (3 + 3)* (4am + 4at + 4mt — 8a — 8m — 8t + 12) (15)

+(B3+1)*(4Qamt —am—at —mt +a+m+t—1))
= 32mat + 128ma + 128mt + 128at — 76m — 76« — 76t + 24.
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(ii) The second reverse hyper-ZI for Cu,O is given by

CM, (Cu,0) = Z (cu.cv)2
uveE (G)

= (4x3)*(4a + 4m + 4t — 8) + (3 x 3)* (4am + dat + 4mt — 8o — 8m — 8¢ + 12) (16)
+(3><1)2(4(2(xmt—ocm—oct—mt+oc+m+t—1))

= 18mat + 315ma + 315mt + 315at — 63m — 63a — 63t — 189.

O
Theorem 4. The first and second reverse hyper-Zagreb
polynomials of Cu,O with m, a, t > 1 are as follows:
LHCM, (Cu,0, x) = x"** (4a + 4m + 4t — 8) + x"' (4am + 4at + 4mt — 8a — 8m — 8t + 12)
+x°(4Qamt —am—at —mt +a+m+t—1), 17)
17
2.HCM, (Cu,0, x) = x"** (4 + 4m + 4t — 8) + x*' (4am + 4at + 4mt — 8o — 8m — 8t + 12)
+x (4Qamt —am—at —mt +a+m+1t—1).
Proof. Now, by the reverse edge partitions for Cu,O, we (i) The first reverse Zagreb polynomial for Cu,O is given
have the following results: as follows:
2
HCM, (Cu,0,x) = Y x(ate
uveE (G)
= (4o + 4m + 4t — 8)x(3+4)2 + (4am + 4at + 4mt — 8o — 8m — 8t + 12)x(3+3)2
(3417 (18)
+ (4Qamt —am —at —mt + a+m+1t—1)x
= x" (4 + 4m + 4t — 8) + x°° (dam + dat + 4mt — 8a — 8m — 8t + 12)
+x16(4(2ocmt—ocm—oct—mt+(x+m+t— 1).
(ii) The second reverse Zagreb polynomial for Cu,O is
given as follows:
)Z
HCM, (Cu,0, x) = Z x (e
uveE (G)
= (4o + 4m + 4t — 8)x(3X4)2 + (4am + 4at + 4mt — 8o — 8m — 8t + 12)x(3X3)2 (19)
19

2
+ (4Qamt —am —at —mt +a+m+1t — 1)x

= x" (4o + 4m + 4t — 8) + x*" (4dam + 4at + 4mt — 8a — 8m — 8t + 12)

+x°(4Qamt —am—at —mt +a+m+t—1).



Theorem 5. Let G be the graph of Cu,0 with m, «, t > 1. The
reverse atom-bond connectivity index and reverse geometric-
arithmetic index for Cu,O with m, «a, t > 1 are as follows:

Journal of Chemistry

1.CABC(Cu,0) = % [(8V6)mat + (8 — 32V/6) (ma + mt + at) + (2V15 — 16 + 32V6 ) (m + a + t) + (24 — 16V15 - 326)],

2.CGA (Cu,0) = 1—14 [(56V/3 )mat + (56 — 28+/3 ) (ma + at +mt) + (=112 +39V3 ) (m + a + £) + (168 — 71V3)].

Proof. By the reverse edge partition, we have the following
results:

c, (G)+c,(G)-2
CABC(Cu,0) = u v
(Cu,0) WGEZ@\J ¢, (G)c, (G)

4+3-2
= [4m + 4o + 4t — 8] a3 + [4ma + 4at + 4mt — 8m — 8« — 8t + 12]

(20)

(i) The reverse atom-bond connectivity index for Cu,O
is given by

3+3-2
3x3

3+1-2
+[4(2moct—moc—mt—(xt+m+oc+t—1)][w/ﬁ]

%[(8\/€)mat+(8—32x/€)(ma+mt+oct)+(2\/E —16+32V6)(m+a+1t) + (24 - 16V15 —32V6)].

(21)
(ii) The reverse geometric-arithmetic index for Cu,O is
given by
\e, (G).c, (G)
CGA(Cu,0) =
(Cu;0) MZ(G) (1/2)[¢, (G) + ¢, (G)]

=[4m + 4o + 4t — 8] _Vax3 + [4ma + 4at + 4mt — 8m — 8« — 8t + 12] __Y3xX3

(1/2)[4 + 3] (1/2)[3 + 3]
(22)

V3x1
+[4Q2mat —ma—mt —at +m+a+t— 1)][m
= 11—4 [(56V3 Ymat + (56 — 283 ) (ma + at + mt) + (=112 + 393 ) (m + a + t) + (168 — 71/3)].

O

The values of calculated topological indices of Cu,O at
different levels are given in Table 1.

2.2. Titanium Difluoride TiF,[m, «, t]. The unit cell of
crystallographic structure of titanium difluoride TiF,[m, «, t]
is given in Figure 3 and the crystal structure of TiF, [1, 2, 4] is
given in Figure 4.

Theorem 6. Let G be the graph of titanium difluoride
TiF,[m, a, t], with m, &, t > 1. The first and second reverse
Zagreb indices are as follows:

(1) CM(TiF,[m, «, t]) = 192mat + 64ma + 64dmt + 64at
— 16m — 16a — 16t + 8

(2) CM,(TiF5[m, a, t]) = 160mat + 320ma + 320mt +
320at — 80m — 80« — 80t + 40
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TaBLE 1: Values of calculated topological indices of Cu,O at different levels.
m=1 m=2 m=3 m=1 m=3 m=3 m=2
a=1 a=2 a=3 a=2 a=2 a=4 a=4
t=1 t=2 t=3 t=3 t=1 m=>5 t=6
First reverse ZI 44 364 1188 280 280 2560 2116
Second reverse ZI 60 408 1188 336 336 2424 2064
First reverse hyper-ZI 212 1360 3660 1168 1168 7048 6280
Second reverse hyper-ZI 585 3357 8235 3006 3006 14940 13779
Reverse ABC index -252.9 -117.5 —285.5 -117.4 -117.4 -469.1 —430.1
Reverse GA index 222 46.02 176.17 31.63 31.63 405.96 321.24
< >
FiGuUre 3: Unit cell of TiF,[m, «, t].
A\ A A A
< x = X >
o x = x »
' N 4 '

FIGURE 4: Crystal structure of TiF, [1, 2, 4].

Proof. Let G be a graph of titanium difluoride TiF,[m, «, t].
The vertex and edge sets of titanium difluoride TiF,[m, a, t]
are |V(TiF,[m, a, t])| = 12mat + 2ma + 2mt + 2at + m+ a + ¢
+ 1 and |E(TiF,[m, «, t])| = 32mat, respectively. From
Figure 4, we can say that there are five type of edges in
TiF,[m, «, t]. The edge set of |TiF,[m, a, t]| = 32mat is

We have |E,(TiF,[m, a, t])| = 8, |Ex(TiF,[m, «, t])| = 8(m
+a+t-3), |Es(TiFy[m, a, t])| = 16(ma + at + mt) — 16(m + «
+ 1) + 24, and |Ey(TiF,[m, o, t])| = 32mat — 16(mt + ma + at)
+ 8(m + a + t) — 8. The maximum edge degree is 8; then, the
reverse edges are given as follows:

portioned into four edge sets: ¢, = AG) —dg (1) +1 =9 —dg (u). (24)
E, (TiF, [m, a, t]) = E(TiF,[m, a,t]);d, = 1,d, = 4},
1 (TiF [m, a,£1) = {uveE (TiF, [m, a £]) } The reverse edge set of TiF,[m, a, t] is given as follows:
E, (TiF, [m, a, t]) ={uveE (TiF, [m, a, t]);d,, = 2,d, = 4},
E; (TiF, [m, a, t]) = {uveE (TiF,[m, a, t]);d, = 4,d, = 4},
E, (TiF, [m, a, t]) ={uveE (TiF, [m, a, t]);d, = 4,d, = 8}.
(23)

CE, (TiF, [m, a, t]
CE, (TiF, [m, a, t]
CE, (TiF, [m, a, t]
CE, (TiF, [m, a, t]

—_~ o~

)=
) =
)=
)=

{uveE (TiF, [m, a, t]);c, = 8,¢, = 5}
{uveE (TiF, [m, a, t]),cu 7,¢, =5}
{uveE (TiF, [m, a, t]); }
{uveE (TiF,[m, a, t]); }

(25)



We have |E|(TiF,[m, «, t])| = 8, |E»(TiF,[m, a, t])| = 8(m
+a+t-3), |Es(TiFa[m, a, t])| = 16(ma + at + mt) — 16(m + «
+ 1) + 24, and |E,(TiF,[m, a, t])| = 32mat — 16(mt + ma + at)
+8m+a+t) - 8.

CM, (TiF,[m, a,t]) =

Z (Cu + Cv)

uveE (G)

Journal of Chemistry

(i) The first reverse ZI for TiF,[m, a, t] is given by

=(8+4+5)(8)+(7+5)[8(m+a+t—3)]+(5+5)[16(mn+at + mt) —16(m+ a +1t) + 24] (26)
+(5+1)[32mat — 16 (mt + ma + at) + 8(m + o + t) — 8]
= 192mat + 64mo + 64mt + 64at — 16m — 16 — 16t + 8.

(ii) The second reverse ZI for TiF,[m, a, t] is given by

CM, (TiF, [m, a, t]) = Z (cu-cy)
uveE(G)

=(8x%x5)(8)+(7x5)[8(m+a+t—3)]+(5x5)[16(ma+ at +mt) —16(m + a +1t) + 24] (27)
+ (5% 1)[32mat — 16 (mt + ma + at) + 8(m + a + t) — 8]
= 160mat + 320ma + 320mt + 320at — 80m — 80« — 80t + 40.

Theorem 7. The first and second reverse Zagreb polynomials
for TiF,[m, a, t] are as follows:

(1) CM(TiFs[m, o, t], x) = 8x™> + [8(m + a + t— 3)]x"2 +
[16(ma+ at + mt) — 16(m + a + t) + 24]x"° + [32mat —
16(mt + ma + at) + 8(m + o + t)— 8]x°

(2) CM,(TiE5[m, o, t], x) = 8x™ + [8(m + a + t— 3)]x° +
[16(ma + at + mt) — 16(m + a + t) + 24]x”° + [32mat —
16(mt + ma + at) + 8(m + a + t) — 8]x°

CM, (TiF, [m, a, t], x)

Z X (cute,)

uveE (G)

=8)x® 1 [8(m+a+t-3)]x"" +[16(ma + at + mt) — 16 (m + a +1) + 24]x"

+ [32mat — 16 (mt + ma + at) +8(m+0c+t)—8]x(

O
Proof. Now, by the reverse edge partitions for TiF,[m, «, t],
we have the following results:

(i) The first reverse Zagreb polynomial for TiF,[m, a, t] is
given as follows:

5+5)
5+1) (28)

=8x" +[8(m+a+t—23)]x" +[16(ma+at +mt) — 16(m + a +1t) + 24]x"°

+[32mat — 16 (mt + ma + at) + 8(m + a + 1) — 8]x°.

(ii) The second reverse Zagreb polynomial for TiF,[m,
t] is given as follows:

CM, (TiE, [m,a t],x) = Y x (%)
uveE (G)

=8)x®Y 1 [8(m+a+t-3)]x" +[16(ma + at + mt) — 16(m + a + £) + 24]x "

+ [32mat — 16 (mt + ma + at) +8(m+0c+t)—8]x(

5%5)
5x1) (29)

= 8x™ +[8(rn+oc+1‘—3)]x35 +[16 (ma + ot + mt) — 16(m+oc+t)+24]x25

+[32mat —16(mt +ma+at) +8(m+a+t)—8]x".
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Theorem 8. The first and second reverse hyper-Zagreb in-
dices of TiF,[m, w, t] are as follows:

Proof. Let G be a graph of silicon-carbon TiF,[m, «, t]. Then,
by reverse edge partition and definition of reverse hyper-

(1) HCM,(TiFs[m, @, t]) = 1152mat— 160(m + a + t) + Zagreb indices, we have the following results:

1024(ma + at + mt) — 2152

(2) HCM,(TiF,[m, «, t]) = 800mat + 9600(ma + ot + mt)
— 14600

(i) The first reverse hyper-ZI for TiF,[m, a, t] is given by

CM, (TiF, [m, a,t]) =

Z (Cu + Cv)2

uveE (G)
=(8+5)7(8)+(7+5)72[8(m+a+t—3)]+(5+5)[16(ma+af + mt) — 16(m + a + t) + 24] (30)
+(5+ 1)2[32m0ct— 16(mt + ma+at) +8(m+a+1t)— 8]

= 1152mat — 160 (m + a + t) + 1024 (ma + at + mt) — 2152.

(ii) The second reverse hyper-ZI for TiF,[m, a, t] is given
by

CM, (TiF, [m, a, t]) =

> (ewe)’

uveE (G)

= (8x5)*(8) +(7x 5’ [8(m+a+t=3) +(5x5)’[16(ma+at +mt) —16(m+a+1)+24] (3)
+(5x 1)*[32mat — 16 (mt + ma + at) + 8(m + a + t) — 8]

= 800mat + 9600 (ma + at + mt) — 14600. -

Proof. Now, by the reverse edge partitions for TiF,[m, «, t],
we have the following results:

Theorem 9. The first and second reverse hyper-Zagreb
polynomials of TiF,[m, o, t] are as follows:

(1) HCM(TiFs[m, o, t], x) = 8x'%° + [8(m + a + t—3)]
X+ [16(ma + at + mt) — 16(m + a + t) + 24]x"%° +
[32mat — 16(mt + ma + at) + 8(m + a + t) — 8]x°°

(2) HCM (TiFy[m, o, t], x) = 8x"% + [8(m + a + t - 3)]
1?2 4+ [16(ma + at + mt) — 16(m + o + t) + 24]x5%° +
[32mat — 16(mt + ma + at) + 8(m + a + t) — 8]x*°

(i) The first reverse Zagreb polynomial for TiF,[m, «, t] is
given as follows:

CM, (TiF2 [m, a, t], x) = Z x (cute,)
uveE (G)

2 2 2
=@)x® 1 [8m+a+t-3)x"" +[16(ma + at + mt) — 16(m + a + t) + 24]x ™)

(32)
+[32mat — 16 (mt + ma+ at) +8(m+ a +1) — 8]x(5“)2

144 100

=8x" +[8(m+a+t-3)x" +[16(ma+ at + mt) — 16(m + a + £) + 24]x

+[32mat — 16(mt + ma+ at) + 8(m+ a +t) — 8]x36.
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(ii) The second reverse Zagreb polynomial for TiF,[m, a,
t] is given as follows:

CM, (TiF [m, o, t,x) = Y (o)

uveE (G)
= @) x®Y y[8(m+a+t-3)]xT £[16(ma+ at +mt) - 16(m + a + 1) + 24]x >
(sx1Y? (33)
+[32mat — 16 (mt + ma + at) + 8(m+ a +t) — 8]x
=8x'%% 4+ [8(m+a+t- 3)]x1225 +[l6(ma+at + mt) —16(m+a+t)+ 24]x625
+[32mat — 16 (mt + ma + at) + 8(m + a + ) — 8]x”.
O
Theorem 10. Let G be the graph of Cu,O withm, &, t > 1. The
reverse atom-bond connectivity index and reverse geometric-
arithmetic index for Cu,0O with m, «, t > 1 are given by
1
(DCABC(TiF, [m, a,t]) = - [(2240V/5 )mat + (1225V2 - 1225+/5 ) (ma + mt + at) + (40V/350 — 224+/50
+560V5) (m + & +t) + (70V110 — 600014 +1680V2 - 2800v/5)],
1 (34)
(2)CGA (TiF,[m, a,t]) = 3 (325 )mat + (48 — 165 ) (ma + mt + at) + (435 +8V5 —48) (m + a +1)]
1
+ 39 (96V10 —104V/5 + 15635 +936).
Proof. By the reverse edge partition, we have the following (i) The reverse atom-bond connectivity index for

results: TiF,[m, «a, t] is given by

6, (G) +¢,(G) -2
¢, (G).c,(G)

CABC(TiF, [m,a,t]) = )
uveE (G)

:[8][\w] +[8(m+oc+t—3)][\w] +[16 (ma + at + mt) — 16 (m + o + t) + 24]
8 x5 7 %5
[ /5+5—2] [ /5+1—2]
| A\—— | +[32mat - 16(ma+mt +at) +8(m+a+1t) - 8]| \[———
5x5 5x1

1
= [(2240/5 Ymat + (1225V2 — 1225V/5 ) (ma + mt + at) + (40v/350 — 224+/50 + 560/5)

- (m+a+1t)+(70V/110 - 6000V14 + 1680V2 — 2800+/5)].
(35)
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TaBLE 2: Values of calculated topological indices of TiF,[m, a, t] at different levels.
m=1 m=2 m=3 m=1 m=3 m=3 m=2
a=1 o =2 a=3 a=2 oa=2 a=4 oa=4
t=1 t=2 t=3 t=3 t=1 m=>5 t=6
First reverse ZI 344 2216 6776 1768 1768 14344 11848
Second reverse ZI 920 4680 12280 4040 4040 23720 20840
First reverse hyper-ZI 1592 18392 55160 15064 15064 113176 96280
Second reverse hyper-ZI 15000 107000 266200 95800 95800 484600 446200
Reverse ABC index -127.8 27.9 492.6 -23.57 -23.6 1346.4 860.3
Reverse GA index 79.1 276.3 784.1 224.5 224.5 1634.1 1241.3
(ii) The reverse geometric-arithmetic index for TiF,[m,
a, t] is given by
. \e, (G).c, (G)
CGA (TiF, [m,a,t]) = “ -
W;G) (1/2)[¢, (G) +¢, (G)]
V8x5 V7 x5
=[8]| ———— | +[8(m+a+t-3)]| ———— | +[16 (ma+at +mt) — 16 (m + a+1) + 24]
(1/2)[8+5] (1/2)[7+5]
V5x%5 V5x1 36
| —— | +[32mat - 16 (ma+mt+at) +8(m+a+t)—-8]| ———— (36)
(1/2)[5+5] (1/2)[5+1]
1
=3 [(32V5)mat + (48— 16\/5) (ma+mt + at) + (4V35 + 85 —48) (m +a+1t)]
1
*39 (9610 —104+/5 +156/35 +936).
O

The values of calculated topological indices at different
levels are given in Table 2.

3. Conclusion

In this paper, we computed first and second reverse Zagreb
indices, first and second reverse hyper-Zagreb indices, re-
verse GA index, reverse atomic bond connectivity index, first
and second reverse Zagreb polynomials, and first and second
reverse hyper-Zagreb polynomials for the crystallographic
structure of molecules [24, 25]. Our results are important to
guess the properties [26-28] and study the topology of the
crystallographic structure of molecules and can be used in
drug delivery [29-31].
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