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Recently, there has been increasing attention on the system network due to its promising applications in parallel hanging
architectures such as distributed computing (Day (2004), Day and Al-Ayyoub (2002)). Related networks differ in the cir-
cumstances of topology, and the descriptors were freshly examined by Hayat and Imran (2014) and Hayat et al. (2014). Distance-
based descriptors, counting-related descriptors, and degree-based descriptors are all examples of topological descriptors. *ese
topological characteristics are linked to chemical features of a substance, such as stability, strain energy, and boiling point. *e
specifications for the 1st Zagreb alpha, 1st Zagreb beta, 2nd Zagreb, sum-connectivity, geometric-arithmetic, Randic, harmonic,
and atom-bond connectivity indices for mesh networks (MNm×n) based on VE and EV degree are discussed in this paper.

1. Introduction

Cheminformatics is a relatively new field that combines
chemistry, mathematics, and information science. Chem-
informatics is primarily used to store, index, and retrieve in-
formation on chemicals. In index factors, graph theory is very
essential. Biological activity is used as an introduction to nu-
merous structural properties of molecules in the study of
(QSAR) models. Topological indicators are a fascinating subset
of these factors. Topological indices can be calculated using
simply nodes (atoms) and edges in a graph representation
(chemical bonds) [1, 2]. A series of numbers, a polynomial, or a
numeric number can all be used to identify a graph. A complete
graph is represented by numbers or an array, and for those
graphs, these interpretations are supposed to be unique. *e
topological index is amathematical term that belongs to a graph
and is unaffected by graph automorphism. It identifies the
structure of the graph. Degree-based topological indices,
counting-related polynomials, and graph indices are some of the
most common types of topological indices in [3, 4]. A topo-
logical index is a function “Top” from Σ to the set of real

numbers. Topological indicators in a network are, of course, the
number of nodes and links present in the network. Numerous
networks having an atomic or molecular structure, such as
honeycomb, grid networks, and hexagonal, are comparable.
Topological properties of this network are very interesting,
which are studied in various aspects in [5, 6]. Hexagonal and
honeycomb structures have also been identified as important in
biological evolution, where intersecting triangles are critical for
transmission of aid in societal problems, particularly for the
development of collaboration [7, 8]. Appropriate research on
this topic and further benefit from the new research findings are
given in [9–12]. While working on paraffin breaking, Wiener’s
approach [13] gave the impression of being a topological de-
scription. *is identifier is known as the route number. After
this, Wiener index is used to remember the route number. In
terms of theory and practice, this topological descriptor served
as the foundation for the topological index, see [14, 15] for
details. *erefore, the topological lesions in the chemical and
quantitative literature are Weiner, Zagreb, and Randic [16, 17].
By using the previous degree concepts, all of the above works
were completed. In grid history, Chellali et al. [18] developed
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two additional degree theories, namely, VE degrees and EV
degrees, after some time. *ese concepts are a twist on the
previous degree-based concept.

2. Preliminaries

In this section, we recall some fundamental definitions
concerned to network which is usually represented by
N � (P, C), where P is the set of points and C is the set of
connections of network. *e degree of a point is the number
of connections joined to that point. *e open neighborhood,
indicated as N(v), for a point v, is written as
N(v) � u ∈ P|u, v ∈ C in networks. If we add the point v to
the set ofN(v), we get the same as the closed neighborhood of
v, represented by N[v]. *e number of connections that are
connected to any points from the closed neighbourhood of v

is equal to the vertex-edge degree, denoted by ϕve(v), specified
in [19], of the point v ∈ P. Furthermore, the number of points
in the union of the closed neighbourhoods of u and v is equal
to the edge-vertex degree of the connection e � uv ∈ C, in-
dicated by ϕev(e) specified in [19]. Let N be a simple network
and e � uv ∈ C(N). *e EV and VE degree topological de-
scriptor-related details can be seen in [18, 19].

Consider N to be a basic network in all of the illus-
trations and v ∈ V(N).

*e Zagreb indices for edge-vertex degree are specified
as

M
ev

(N) � 􏽘
e∈C(N)

ϕev(e)
2
. (1)

*e first Zagreb alpha indices for vertex-edge degree are
specified as

M
αve
1 (N) � 􏽘

u∈P(N)

ϕve(u)
2
. (2)

*e first Zagreb beta indices for vertex-edge degree are
specified as

M
βve
1 (N) � 􏽘

uv∈C(N)

ϕve(u) + ϕve(v)( 􏼁. (3)

*e second Zagreb indices for vertex-edge degree are
specified as

M
ve
2 (N) � 􏽘

uv∈C(N)

ϕve(u) × ϕve(v)( 􏼁. (4)

*e Randic indices for vertex-edge degree are specified
as

R
ve

(N) � 􏽘
uv∈C(N)

ϕve(u) × ϕve(v)( 􏼁
− (1/2)

. (5)

*e Randic indices for edge-vertex degree are specified
as

R
ev

(N) � 􏽘
e∈C(N)

ϕve(e)
− (1/2)

. (6)

*e atom-bond connectivity indices for vertex-edge
degree are specified as

BC
ve

(N) � 􏽘
uv∈C(N)

����������������
ϕve(u) + ϕve(v) − 2
ϕve(u) × ϕve(v)

􏽳

. (7)

*e geometric-arithmetic (ve − GA) indices for vertex-
edge degree are specified as

GA
ve

(N) � 􏽘
uv∈C(N)

2
�������������
ϕve(u) × ϕve(v)

􏽰

ϕve(u) + ϕve(v)
. (8)

*e harmonic (ve − H) indices for vertex-edge degree
are specified as

H
ve

(N) � 􏽘
uv∈C(N)

2
ϕve(u) + ϕve(v)

. (9)

*e sum-connectivity (ve-χ) indices for vertex-edge
degree are specified as

χve
(N) � 􏽘

uv∈C(N)

ϕve(u) + ϕve(v)( 􏼁
− (1/2)

. (10)

3. Result for Mesh Network (MNm×n)

In this part, we calculate several mesh network (MNm×n)

topological indices based on EV and VE degree, seen in
Figure 1. Let (MNm×n) be a mesh network. (MNm×n) has
mn points and 2mn − (m + n) connections. Table 1 shows
how we partition the set of connections of (MNm×n) into
four components on the behalf of degrees of end points.-
Similarly, partition the collection of points into three
components based on the degrees of points, as shown in
Table 2.

Depending on the EV degree of the links of (MNm×n) for
n≥ 5, we separate them in Table 3 and partition the points
and connections in Table 4 and Table 5 depending on the VE
degree of (MNm×n) for n≥ 5.

3.1. Edge-Vertex Degree-Based Indices. Now, we will calcu-
late Zagreb and Randic indices for the mesh network
(MNm×n) depending on the EV degree.
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3.1.1. Zagreb Index. Employing Table 3, the Zagreb index is
calculated as follows:

M
ev

MNm×n( 􏼁 � 􏽘

e∈E MNm×n( )

ϕev(e)
2
,

M
ev

MNm×n( 􏼁 � 8 × 52 +(2(m + n) − 12) × 62 +(2(m + n) − 8) × 72 +(2mn − 5(m + n) + 12) × 82

� 200 + 72(m + n) − 432 + 98(m + n) − 392 + 128mn − 320(m + n) + 768

� 128mn − 150(m + n) + 144.

(11)

3.1.2. 2e Randic Index. Employing Table 3, the Randic
index is calculated as follows:

R
ev

MNm×n( 􏼁 � 􏽘

e∈E MNm×n( )

ϕev(e)
− (1/2)

,

R
ev

MNm×n( 􏼁 � 8 × 5− (1/2)
+(2(m + n) − 12) × 6− (1/2)

+(2(m + n) − 8) × 7− (1/2)
+(2mn − 5(m + n) + 12) × 8− (1/2)

�
1
�
2

√ mn +
2
�
6

√ +
2
�
7

√ −
5

2
�
2

√􏼠 􏼡(m + n) +
8
�
5

√ −
12

�
6

√ −
8
�
7

√ +
6
�
2

√􏼠 􏼡

� 0.707mn − 0.195(m + n) − 0.102.

(12)

Figure 1: Mesh network (MN)5×7.

Table 1: Connection division of (MNm×n).

No. of connections (deg(u), deg(v))

8 (2, 3)

2m + 2n − 12 (3, 3)

2m + 2n − 8 (3, 4)

2mn − 5m − 5n + 12 (4, 4)

Table 2: Points partitioning of (MNm×n).

No. of points deg(u)

4 2
2(m + n − 4) 3
mn − 2(m + n) + 4 4

Table 3: Link partitioning of (MNm×n).

No. of connections Degree of end points EV degrees
8 (2, 3) 5
2m + 2n − 12 (3, 3) 6
2m + 2n − 8 (3, 4) 7
2mn − 5(m + n) + 12 (4, 4) 8

Table 4: Points partitioning of (MNm×n).

No. of points Degree (u) VE degrees
4 2 6
8 3 9
2(m + n) − 16 3 10
4 4 14
2(m + n) − 16 4 15
mn − 4(m + n) + 16 4 16

Table 5: *e VE degree of the end points of connections of
(MNm×n).

No. of connections Degree of end
points

VE degree of end
points

8 (2, 3) (6, 9)

8 (3, 3) (9, 10)

2(m + n) − 20 (3, 3) (10, 10)

8 (3, 4) (9, 14)

2(m + n) − 16 (3, 4) (10, 15)

8 (4, 4) (14, 15)

2(m + n) − 20 (4, 4) (15, 15)

2(m + n) − 16 (4, 4) (15, 16)

2mn − 9(m + n) + 40 (4, 4) (16, 16)
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3.2. Vertex-Edge Degree-Based Indices. Now, we will calcu-
late the 1st Zagreb alpha, 1st Zagreb beta, 2nd Zagreb,
geometric-arithmetic, sum-connectivity, Randic, harmonic,
and atom-bond connectivity indices for the mesh network
(MNm×n) depending on VE.

3.2.1. 2e 1st Zagreb Alpha Index. Employing Table 4, the
1st Zagreb alpha index is calculated as follows:

M
αve
1 MNm×n( 􏼁 � 􏽘

u∈V MNm×n( )

ϕve(u)
2
,

M
αve
1 MNm×n( 􏼁 � 4 × 62 + 8 × 92 +(2(m + n) − 16) × 102 + 4 × 142 +(2(m + n) − 16) × 152 +(mn − 4(m + n) + 16) × 162

� 144 + 648 + 200(m + n) − 1600 + 784 + 450(m + n) − 3600 + 256mn − 1024(m + n) + 4096

� 256mn − 374(m + n) + 472.

(13)

3.2.2. 2e 1st Zagreb Beta Index. Employing Table 5, the 1st
Zagreb beta index is calculated as follows:

M
βve
1 MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

ϕve(u) + ϕve(v)( 􏼁,

M
βve
1 MNm×n( 􏼁 � 8 × 15 + 8 × 19 +(2(m + n) − 20) × 20 + 8 × 23 +(2(m + n) − 16) × 25 + 8 × 29

+(2(m + n) − 20) × 30 +(2(m + n) − 16) × 31 +(2mn − 9(m + n) + 40) × 32

� 120 + 152 + 40(m + n) − 400 + 184 + 50(m + n) − 400 + 232 + 60(m + n) − 600

+ 62(m + n) − 496 + 64mn − 288(m + n) + 1280

� 64mn − 76(m + n) + 72.

(14)

3.2.3. 2e 2nd Zagreb Index. Employing Table 5, the 2nd
Zagreb index is calculated as follows:

M
ve
2 MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

ϕve(u) × ϕve(v)( 􏼁,

M
ve
2 MNm×n( 􏼁 � 8 × 54 + 8 × 90 +(2(m + n) − 20) × 100 + 8 × 126 +(2(m + n) − 16) × 150

+ 8 × 210 +(2(m + n) − 20) × 225 +(2(m + n) − 16) × 240 +(2mn − 9(m + n) + 40) × 256

� 432 + 720 + 200(m + n) − 2000 + 1008 + 300(m + n) − 2400 + 1680 + 450(m + n)

− 4500 + 480(m + n) − 3840 + 512mn − 2304(m + n) + 10240

� 512mn − 874(m + n) + 1340.

(15)

3.2.4. 2e Randic Index. Employing Table 5, the Randic
index is calculated as follows:
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R
ve

MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

ϕve(u) × ϕve(v)( 􏼁
− (1/2)

,

R
ve

MNm×n( 􏼁 � 8 × 54− (1/2)
+ 8 × 90− (1/2)

+(2(m + n) − 20) × 100− (1/2)
+ 8 × 126− (1/2)

+(2(m + n) − 16) × 150− (1/2)
+ 8 × 210− (1/2)

+(2(m + n) − 20) × 225− (1/2)

+(2(m + n) − 16) × 240− (1/2)
+(2mn − 9(m + n) + 40) × 256− (1/2)

�
1
8

mn +
1
5

+
2

5
�
6

√ +
2
15

+
1

2
��
15

√ −
9
16

􏼠 􏼡(m + n)

+
8

3
�
6

√ +
8

3
��
10

√ − 2 +
8

3
��
14

√ −
16
5

�
6

√ +
8
���
210

√ −
4
3

−
4
��
15

√ +
5
2

􏼠 􏼡

0.125mn + 0.063(m + n) + 0.0241.

(16)

3.2.5. 2e Atom-Bond Connectivity Index. Employing Ta-
ble 5, we calculate the above said index as follows:

BC
ve

MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

����������������
ϕve(u) + ϕve(v) − 2
ϕve(u) × ϕve(v)

􏽳

,

BC
ve

MNm×n( 􏼁 � 8 ×

�����
15 − 2
54

􏽲

+ 8 ×

�����
19 − 2
90

􏽲

+(2(m + n) − 20) ×

�����
20 − 2
100

􏽲

+ 8 ×

�����
23 − 2
126

􏽲

+(2(m + n) − 16) ×

�����
25 − 2
150

􏽲

+ 8 ×

�����
29 − 2
210

􏽲

+(2(m + n) − 20) ×

�����
30 − 2
225

􏽲

+(2(m + n) − 16) ×

�����
31 − 2
240

􏽲

+(2mn − 9(m + n) + 40) ×

�����
32 − 2
256

􏽲

�

��
30

√

8
mn +

3
�
2

√

5
+
2

��
23

√

5
�
6

√ +
4

�
7

√

15
+

��
29

√

2
��
15

√ −
9

��
30

√

16
􏼠 􏼡(m + n)

+
8

��
13

√

3
�
6

√ +
8

��
17

√

3
��
10

√ − 6
�
2

√
+
8

�
3

√

3
�
2

√ −
16

��
23

√

5
�
6

√ +
24
��
70

√ −
4

��
28

√

3
−
4

��
29

√

��
15

√ +
5

��
30

√

2
􏼠 􏼡

� 0.68mn − 0.048(m + n) − 0.138.

(17)

3.2.6. 2e Geometric-Arithmetic Index. Employing Table 5,
the above said index is calculated as follows:
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GA
ve

MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

2
�������������
ϕve(u) × ϕve(v)

􏽰

ϕve(u) + ϕve(v)
,

GA
ve

MNm×n( 􏼁 � 8 ×
2

��
54

√

15
+ 8 ×

2
��
90

√

19
+(2(m + n) − 20) ×

2
���
100

√

20
+ 8 ×

2
���
126

√

23

+(2(m + n) − 16) ×
2

���
150

√

25
+ 8 ×

2
���
210

√

29
+(2(m + n) − 20) ×

2
���
225

√

30

+(2(m + n) − 16) ×
2

���
240

√

31
+(2mn − 9(m + n) + 40) ×

2
���
256

√

32

� 2mn + 2 +
4

�
6

√

5
+ 2 +

16
��
15

√

31
− 9􏼠 􏼡(m + n)

+
16

�
6

√

5
+
48

��
10

√

19
− 20 +

48
��
14

√

23
−
32

�
6

√

5
+
16

���
210

√

29
− 20 −

128
��
15

√

31
+ 40􏼠 􏼡

� 2mn − 1.041(m + n) − 0.037.

(18)

3.2.7. 2e Harmonic Index. Employing Table 5, the har-
monic index is calculated as follows:

H
ve

MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

2
ϕve(u) + ϕve(v)

,

H
ve

MNm×n( 􏼁 � 8 ×
2
15

+ 8 ×
2
19

+(2(m + n) − 20) ×
2
20

+ 8 ×
2
23

+(2(m + n) − 16) ×
2
25

+ 8 ×
2
29

+(2(m + n) − 20) ×
2
30

+(2(m + n) − 16) ×
2
31

+(2mn − 9(m + n) + 40) ×
2
32

�
1
8

mn +
1
5

+
4
25

+
2
15

+
4
31

−
9
16

􏼒 􏼓(m + n)

+
16
15

+
16
19

− 2 +
16
23

−
32
25

+
16
29

−
4
3

−
32
��
31

√ +
5
2

􏼠 􏼡

� 0.125mn + 0.063(m + n) + 0.0241.

(19)

3.2.8. 2e Sum-Connectivity Index. Employing Table 5, the
sum-connectivity index is calculated as follows:
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χve
MNm×n( 􏼁 � 􏽘

uv∈E MNm×n( )

ϕve(u) + ϕve(v)( 􏼁
− (1/2)

,

χve
MNm×n( 􏼁 � 8 × 15− (1/2)

+ 8 × 19− (1/2)
+(2(m + n) − 20) × 20− (1/2)

+ 8 × 23− (1/2)
+(2(m + n) − 16) × 25− (1/2)

+ 8 × 29− (1/2)
+(2(m + n) − 20) × 30− (1/2)

+(2(m + n) − 16) × 31− (1/2)

+(2mn − 9(m + n) + 40) × 32− (1/2)

�
1

2
�
2

√ mn +
1
�
5

√ +
2
5

+
2
��
30

√ +
2
��
31

√ −
9

4
�
2

√􏼠 􏼡(m + n)

+
8
��
15

√ +
8
��
19

√ −
10

�
5

√ +
8
��
23

√ −
16
5

+
8
��
29

√ −
20
��
30

√ −
16
��
31

√ +
10

�
2

√􏼠 􏼡

� 0.3533mn − 0.0194(m + n) − 0.071.

(20)

4. Conclusion

It’s crucial to explore the structure using graphs, and to-
pological indicators are crucial for grasping the network’s
core topology. *is sort of analysis has a wide range of
applications in computer science, where different indexes
based on graph invariance are used to evaluate multiple
stimulation summaries. Invariants stats are essential factors
for analyzing and predicating the features of chemical
structures in the quantitative structure-property relationship
(QSPR) and quantitative tructure-activity relationship
(QSAR) explorations. We offer several finished products for
VE degree and EV degree-based indices, such as the indices
depending on the vertex-edge degree are the 1st Zagreb
alpha, 1st Zagreb beta, 2nd Zagreb, geometric-arithmetic,
sum-connectivity, Randic, harmonic, and atom-bond con-
nectivity indices, in this article, for the mesh network
(MNm×n), and EV degree Randic and Zagreb indices. *ere
will be some who are involved in designing new grids in the
future, and we are examining their topological indices in
order to grasp their core topology.
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