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Chagas is a neglected tropical disease caused by the parasite Trypanosoma cruziwith no effective treatment in all its forms.&ere is
a need to find more effective therapeutic alternatives with reduced toxicity. In this contribution, multiple linear regression models
were used to identify the molecular descriptors that best describe the inhibitory activity of 52 fenarimol analogues against
Trypanosoma cruzi. &e topological, physicochemical, thermodynamic, electronic, and charge descriptors were evaluated to cover
a wide range of properties that frequently encode biological activity. A model with high predictive value was obtained based on
geometrical descriptors and descriptors encoding hydrophobicity and London dispersion forces as necessary for the inhibition of
Trypanosoma cruzi-CYP51. Docking methodology was implemented to evaluate molecular interactions in silico. &e virtual
screening results in this study can be used for rational design of new analogues with improved activity against Chagas disease.

1. Introduction

Chagas, a tropical disease endemic to Latin America, is
caused by the parasite Trypanosoma cruzi (T. cruzi), first
described in 1909 [1–3].&emost affected population is very
low-income people, who do not have the economic re-
sources to pay for expensive treatments and live in condi-
tions of high vulnerability [4–6]. &e pharmacological
therapy currently used is aimed at preventing the chronicity
of the infection since the efficacy of antiparasitic drugs
decreases in the chronic phases of the disease. &e effec-
tiveness of the treatment in the acute phase has been
demonstrated [7], while the chronic stage can take up to 20
years resulting in multiple-organ damage [6–8]. Studies
show that treatment effectiveness in the acute phase is
50–70%, while in the chronic phase, the effectiveness is
reduced to 8–30% [9, 10]. Additionally, treatment depends
on age of the patient and long-term side effects.

&ere is no effective treatment for Chagas disease in all
its forms; treatment with nifurtimox and benznidazole is
highly toxic [6, 7, 11]. Both compounds are heterocyclic with

a furan and imidazole-nitrogenated ring, respectively, which
act by inducing cytotoxicity in the parasite by interacting
with the nitroreductase enzymes of the parasites [12–15].
Mutagenic and carcinogenic activities, hepatotoxicity, and
bone marrow suppression have been shown to be significant
with the use of these medications. Buschini et al. [16]
reassessed the genotoxic and mutagenic activity for nifur-
timox and benznidazole, respectively. &ey found that both
drugs damage the infectious agent and DNA of host cells at
concentrations in the range of plasma concentrations of
patients treated by chemotherapy. Benznidazole and
nifurtimox contain nitro groups that produce nitrogenated
metabolic radicals that affect the parasite and are responsible
for the toxicity, mutagenicity, genotoxicity, and carcinoge-
nicity attributed to them [17]. Owing to the high toxicity, few
therapeutic alternatives go to clinical trials [18]; a greater
selectivity of the drug and reduced adverse effects on the host
are required. &us, there is a need to develop therapeutic
alternatives with improved efficacy and reduced toxicity
[18–20]. Sterol 14α-demethylase cytochrome P450 (CYP51)
inhibitors with trypanocidal activity have been identified
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since 1990 [21]. CYP51 is an important target in the
treatment of Chagas disease because the inhibition of sterol
synthesis is lethal to the parasite. Urbina et al. reported the
use of triazoles as inhibitory compounds of CYP51 in
T. cruzi in 2002 [22–25]. &e binding site of the ligand in
CYP51 contains a hydrophilic region, a hydrophobic region,
and a channel formed by hydrophobic residues between the
β-helix and the N-terminal helix [26]. Azoles, such as D0870,
posaconazole, and ravuconazole, act through the coordi-
nation of nitrogen with heme iron of the CYP51 enzyme.&e
crystallographic structure of T. cruzi-CYP51 linked to
posaconazole and fluconazole (Figure 1) has been reported
[27] which favors the design of therapeutic alternatives
based on methods such as structure-based drug design. &e
active site on CYP51 takes the form of Y, one end being
longer than the other two. &e longer end is a pocket at an
angle to the heme group plane, which can interact with up to
four fused aromatic rings in this highly hydrophobic pocket.

Other types of substances, such as naphthoquinones,
diamines, nitroimidazoles, and their derivatives have been
evaluated, albeit with high toxicity. In addition to CYP51
inhibitors, other therapeutic targets for the development of
new drugs include inhibitors of cruzipain, inhibitors of
pyrophosphate enzymes, HGPRT (hypoxanthine-guanine
phosphoribosyltransferase), and trypanothione reductase,
the principal enzymes of T. cruzi metabolism [23, 28].

In the last 25 years, significant advances have been made
in the research of T. cruzi and the complete elucidation of its
genome [30, 31]; however, the role of many of the encoded
proteins is unknown. In addition, significant advances have
not been reported in the field of natural product research
owing to the lack of knowledge about human toxicity [17].
&us, the only treatment available for Chagas disease is the
use of nifurtimox and benznidazole. In two decades of re-
search, it has not been possible to find more effective
therapeutic alternatives with reduced toxicity, and the
therapeutic combinations of the drugs already available are
under clinical study. Cheminformatics and molecular
modeling approaches represent an important initiative
considering the high costs of traditional research [32, 33].

1 2

OH
Cl

N

ClN

N

N

R1

R1N

Fenarimol 1 is a fungicide discovered with moderate
activity in vitro (IC50, 350 nM) against T. cruzi [34].
Structure-activity relationship studies to improve the in-
hibitory capacity of CYP51 led to pharmacophore 2, in
which an aromatic ring is replaced by piperazine with
substitutions at the N-4 atom.

&e new derivatives with amide, sulfonamide, aromatic,
carbamate, and carbonate substituents were evaluated for

their ability to inhibit T. cruzi [35] in vitro and showed very
promising results. Additionally, Keenan et al. [35] dem-
onstrated that piperazine analogues of fenarimol do not
exhibit cytotoxicity. &ese findings make the piperazine
analogues of fenarimol excellent candidates for more ad-
vanced optimization studies.

Quantitative structure-activity relationship (QSAR) is an
approach that uses statistical models to correlate the mo-
lecular properties encoded in molecular descriptors with the
biological activity of a group of molecules that share a
pharmacophore. To the best of our knowledge, there is a lack
of QSAR studies of piperazine analogues of fenarimol
reported.

Several regression methods are available for establishing
the correlation between the activity and the molecular
structure descriptors [33]. Linear methods are efficient in
relating the structure to a given biological activity, but the
accuracy of nonlinear methods is considered superior [33].
However, nonlinear methods are harder to interpret and
suffer from overfitting when the number of descriptors is
greater than the number of samples in the dataset [36].
Consequently, we used the multiple linear regression (MLR)
model because of its reliability, accuracy, and ease of in-
terpretation, which is supported by an extensive number of
studies conducted in the field of medicinal chemistry. MLR
is one of the most widely applicable methods to the conduct
of QSAR studies [33, 37–39].

A large number of descriptors of molecular structures
are available; their selection is one of the most important
initial tasks of QSAR studies. Descriptors based on topo-
logical indexes contain information related to molecular
shape, size, flexibility, and the degree of branching. &eir
correlation with biological activity has been widely dem-
onstrated. &e physicochemical descriptors encode prop-
erties of hydrophobicity and electronic and steric effects,
properties that are attributed to different forms of chemical
interaction with biological targets, because of which they are
most frequently used for QSAR studies. &e partial charge
descriptors contain chemical information resulting from the
electronic distribution andmolecular geometry combined in
the same descriptor. &e charge descriptors allow prediction
of electronic density regions favorable for interaction with
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Figure 1: Fluconazole bound to T. cruzi-CYP51 [29].
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biological targets. A total of 53 descriptors were selected as
widely as possible to evaluate the structural diversity of the
analogues under study.

&ermodynamic and electronic molecular descriptors
have been calculated with Gaussian 09 [40]; other de-
scriptors including topostructural, topochemical, and to-
pological indexes; physicochemical descriptors; and charge
descriptors were calculated with MOE [41] to determine the
structural factors with greater relevance as determinants of
the biological activity against T. cruzi in the series of pi-
perazine analogues of fenarimol used in this article. Addi-
tionally, this study evaluated piperazine analogues of
fenarimol’s interaction with the CYP51 receptor through
docking methodology.

2. Materials and Methods

2.1. Descriptor Selection and Model Generation. Molecular
geometries of the compounds were optimized using the
MM2 molecular mechanics method; the generated struc-
tures were further optimized using DFT employing B3LYP
and 6-311+G(d,p) basis sets. &e results were used for
descriptor calculations. DFT calculations with B3LYP
functional have been successful in the prediction of several
molecular properties [42]. No imaginary frequencies were
found. &erefore, the calculated geometries were local
minima in a potential energy surface. Molecular-geometry
optimizations were performed using Gaussian 09 Revision-
A.02-SMP software [40]. For all calculations and com-
parisons in this study, only the most stable conformations
were considered. Several types of molecular descriptors
were calculated using MOE [41]. Microsoft Excel Data
Analysis add-in and several validation analyses were used
to evaluate the statistical significance of the employed
models.

Amolecular descriptor is a numerical representation of a
molecular property derived from a standardized experiment
or mathematical procedure. Any molecular property may be
used, and descriptors can be determined experimentally
from physical properties or computed from structural fea-
tures such as van der Waals forces, atomic and bond counts,
distances, pharmacophoric features, partial charges, volume,
and shape. To reduce the number of descriptors, the cor-
relation coefficients between each descriptor and pIC50 were
calculated. &e selected descriptors for the creation of the
model have a coefficient of determination (R2)≥ 0.5 [43]; in
total, 12 descriptors were selected, which are defined in
Table 1. &e values for the selected descriptors are found in
Table 2.

&e descriptors of Table 2 were selected using the suc-
cessive step mode [44], and the following parameters were
taken into account: use of 1 descriptor for every 5 compounds
[45] and selection of descriptors of different nature to avoid
collinearity between the variables [46]. Subsequently, multiple
linear regression (MLR) was used to study the linear rela-
tionship between pIC50 and the remaining descriptors, but
only those models with R2 higher than 0.568 were considered
valid [47]. &e linear relationship between pIC50 and de-
scriptors was determined using the standard equation:

Y � BX + ϵ, (1)

where Y is an nx1 vector of values of the dependent variable
pIC50, X is an nxkmatrix of explanatory variables (known as
molecular descriptors), B is a kx1 vector of the estimated
parameters, and ϵ is an nx1 residual vector whose compo-
nents are assumed to be independent, normal, random
variables with mean zero and known variance σ2.

Stepwise regression fitting was performed with the
successive addition of descriptors that significantly im-
proved the fit; this process was repeated until no further
improvement in the model was possible. Next, the de-
scriptors whose loss gives the most statistically insignificant
deterioration of the model fit were removed. &is process
was repeated until no further descriptors could be deleted
without a statistically significant loss of fit. Using these
conditions, 21 models were obtained; these models can be
accessed from supplementary Table S1 with their corre-
sponding statistics in supplementary Table S2. &e best
predictive model with the lowest number of descriptors, a
high determination coefficient (R2), and no collinearity
among the selected descriptors was selected for further
improvement.

&e “leave-one-out” (LOO) cross-validation scheme was
used to assess the validity of the models. During the vali-
dation process, themodel function is trained on data from all
molecules excluding one. pIC50 for the molecule that was left
out was then predicted using the descriptors for the model.
Statistical parameters such asQ2 (cross-validated correlation
coefficient), R2 (determination coefficient), standard devi-
ation (SD), and SE (standard error) were taken into account
to evaluate the quality of the proposed QSAR models:
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where yi,yi, and yi are the measured, predicted, and av-
eraged (over the whole dataset) values of the dependent
variable, respectively; σ2XY is the covariance of X and Y; σ2x is
the variance of X; σ2y is the variance of Y; and n is the number
of samples used for model building.

2.2. Enzyme Collection and Docking Preparation. &e
structure of the receptor was obtained from the Protein Data
Bank (https://www.rcsb.org/) database, identified in the
repository as a crystal structure of sterol 14α-demethylase
(CYP51) from Trypanosoma cruzi in complex with the in-
hibitor fluconazole. PDB ID: 3KHM. &e initial crystal
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structure was preprocessed by adding hydrogens and de-
leting water molecules and fluconazole. &e docking sim-
ulations were performed using the AutoDock Vina code
(version 1.1.2) employing 3-way multithreading, Lamarck-
ian genetic algorithm [48] for flexible-ligand docking in a
docking box center_x� 5.514, center_y� -26.332,
center_z� 21.612, size_x� 20.883, size_y� 20.600, and
size_z� 22.377, and exhaustiveness� 8. &e most favorable
interactions are indicated by the lowest free-bond energy
(ΔG). Figures were drafted using the Discovery Studio Vi-
sualizer [49] and UCSF Chimera viewers [50].

3. Results

Pharmacological data of 52 fenarimol analogues (molecules
3–54 in Table 3) were taken from the literature [35]. pIC50
(−logIC50) was used as a measure of biological activity, IC50
values corresponding to concentration of the compound
required to inhibit 50% of T. cruzimeasured under the same
experimental conditions.

Figure 2 shows the pIC50 distribution of the data,
spanning three orders of magnitude. We utilized the
principal component regression (PCR) and partial least
square regression (PLS) for examining the linear rela-
tionship between IC50 and the corresponding descrip-
tors. However, MLR afforded the best predictive model
with the lowest number of predictive variables and a high
determination coefficient (R2) of the most significant
variables.

Model 01 was obtained using MLR with 57% of the
variation in biological activity explained by the descriptors
and standard error (SE) 0.374 (Table 4).

Model 01:

pIC50 � 0.160 + 0.150(Length) + 0.186(LogP(o/w))

− 2.809(Q VSA FPPOS).

(3)

&e jackknife technique was implemented to eliminate
the outliers [51] to improve the statistical quality of model
01. After removing molecules 10, 11, 24, 25, 27, 45, 52, 53,
and 54 as outliers, model 02 was achieved. Occurrence of
outliers depends on three main factors [46]: errors in the

reported biological activity or calculated descriptors’
values; different mechanisms of action for the dataset used
to build the model; and sampling design errors. When
applied to the information used to build our model, none of
the above three factors were able to sufficiently explain why
molecules 10, 11, 24, 25, 27, 45, 52, 53, and 54 were
classified as outliers.

Model 02:

pIC50 � −0.168 + 0.168(Length) + 0.269(LogP(o/w))

− 3.318(Q VSA FPPOS).

(4)

&e coefficient of determination R2 increases from 0.568
in model 01 to 0.817 in model 2, and the SE decreases from
0.374 to 0.256 (Table 5). &e improved statistical quality of
model 02 is reflected since 82% of the variation in biological
activity is explained by the selected descriptors. Table 6
shows no collinearity in the selected descriptors, and
therefore, the resulting model 02 has good stability.

From the LOO cross-validation procedure in Table 7, the
square of the cross-validation coefficient LOO (Q2) is ob-
tained to evaluate the robustness and the predictive capacity
of the model. Complete LOO cross-validation statistics for
model 02 are available in supplementary Table S3. Good
internal prediction power was achieved because the corre-
lation coefficient of cross-validation LOO (Q2) was greater
than 0.5 [47]. Cross-validated pIC50 predicted values are
shown in Table 8.

On the contrary, the R2 value of the original model
should not be significantly greater than theQ2 value, and the
difference between R2 and Q2 should not be more than 0.3
[52]. In our case that the difference is 0.040 (R2 � 0.820;
Q2 � 0.780) indicates that the model is not overfitted, and
R2 � 0.820 indicates a good correlation between the observed
and predicted pIC50 (Table 7).

Model 02 was used to calculate pIC50 of all fenarimol
analogues (Table 8).

With these new values, the observed pIC50 vs. predicted
pIC50 graph is shown in Figure 3. Figure 3 demonstrates the
reproducibility of the predicted data with respect to that
observed in the pIC50 data taken to develop the model. &e
results showed a Pearson correlation coefficient of 0.904,

Table 1: Symbols, types, and definitions of selected descriptors.

Code Descriptor type Definition
Length Geometry Length to reach the binding pocket
Pmi Shape Principal moment of inertia
Std_dim1 Shape Standard dimension 1
Vsa Surface area van der Waals surface area
Vol Volume van der Waals volume
Weight Physical properties Molecular weight
apol Physical properties Sum of the atomic polarizabilities
SMR Physical properties Molecular refractivity
Log P(o/w) Physical properties Log of the octanol/water partition coefficient
ASA Surface area Water accessible surface area
Q_VSA_FPPOS Physical properties Partial charge and molecular surface area
Q_VSA_HYD Physical properties Partial charge and molecular surface area
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Table 3: Structural features of selected fenarimol analogues.

R1= R2=

R3 R4
R5

O O O O
Ar

X

X = O, NH
A X = H
B X = F

C X = H
D X = F

E F

X X

S

Cl CF3 CN OiPr

Molecule HETa R2 R3 T. cruzi IC50 (μM)
R1 � alkyl and aryl amides
3 3-Pyr B tBu 0.019
4 3-Pyr D tBu 0.024
5 3-Pyr B cPr 0.026
6 3-Pyr B cHex 0.028
7 3-Pyr C tBu 0.030
8 3-Pyr F iPr 0.035
9 3-Pyr B Hetb 0.036
10 3-Pyr A Ph 0.068
11 3-Pyr B Ph 0.070
12 5-Pyrim B tBu 0.081
13 5-Pyrim B cPr 0.171
14 3-Pyr A Me 0.240
15 3-Pyr E tBu 0.254
16 3-Pyr E cPr 0.281
17 3-Pyr E Hetb 0.513
R1 � alkyl and aryl sulfonamides HET R2 R4 T. cruzi IC50 (µM)
18 3-Pyr B Ph 0.008
19 3-Pyr A Ph 0.009
20 3-Pyr A cHex 0.010
21 3-Pyr A Ph(4-iPr) 0.012
22 5-Pyrim B Ph(4-iPr) 0.018
23 3-Pyr A Ph(4-Cl) 0.024
24 5-Pyrim D Me 0.025
25 3-Pyr D Me 0.028
26 3-Pyr A iPr 0.028
27 3-Pyr B Me 0.035
28 3-Pyr C Me 0.077
29 3-Pyr A Me 0.110
30 3-Pyr E Me 0.365
31 5-Pyrim C Me 0.769
32 5-Pyrim A Me 0.880
R1 � alkyl and aryl carbonates/carbamates HET R2 R5 T. cruzi IC50 (µM)
33 3-Pyr B OPh 0.005
34 5-Pyr B NHPh 0.006
35 5-Pyrim B NHPh(4-iPr) 0.007
36 3-Pyr A OPh 0.008
37 3-Pyr A NHPh 0.009
38 5-Pyrim B NHPh(4-Cl) 0.010
39 3-Pyr C OtBu 0.017
40 3-Pyr B OtBu 0.020
41 5-Pyrim A NHPh(4-Cl) 0.022
42 5-Pyrim B OtBu 0.024
43 5-Pyrim B NHtBu 0.054
44 3-Pyr A NMe2 0.120
R1 �Ar HET R2 Ar T. cruzi IC50 (μM)
45 3-Pyr D Hetb 0.017
46 3-Pyr B Ph 0.018
47 3-Pyr A Ph(2-OMe) 0.020
48 3-Pyr B 2-Pyrimidine 0.026
49 3-Pyr F Ph(2-OMe) 0.028
50 3-Pyr A Ph 0.034
51 3-Pyr E 2-&iazole 0.050
52 5-Pyrim B Ph(2-OMe) 0.065
53 5-Pyrim B Ph 0.078
54 2-Pyra C Ph(2-OMe) 0.240
aHET: 3-pyr (3-pyridine); 5-pyrim (5-pyrimidine). bHet� 2-(4-methyl-1,3-thiazole).
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which demonstrates a good linear correlation between ob-
served pIC50 and predicted pIC50, and an R2 correlation
coefficient of 0.817 (Table 9). In accordance with the sta-
tistical parameters discussed, model 02 meets the statistical
quality to predict the activity of new piperazine analogues of
fenarimol.

4. Discussion

4.1. Model Interpretation. A QSAR model with statistical
validity was obtained. &e coefficients of the descriptors in a
QSAR model can be used to evaluate the contribution of
each descriptor toward biological activity; this information
can be utilized to develop effective strategies in designing
compounds with improved specificity and biological
activity.

Figure 4 shows the estimates of the regression coeffi-
cients obtained from model 02. &ere are descriptors that

2.500

2.000

1.500

1.000

0.500

0.000

pI
C 5

0

0 10 20 30 40 50 60
Molecule

Figure 2: Distribution of pIC50 values showing a wide range of the
inhibitory potency of the molecules examined in this study.

Table 4: Statistics for regression model 01.

Multiple correlation coefficient 0.754
Coefficient R2 0.568
Adjusted R2 0.541
SE 0.374

Table 5: Statistics for regression model 02.
Multiple correlation coefficient 0.904
Coefficient R2 0.817
Adjusted R2 0.803
SE 0.256

Table 6: Correlation matrix of descriptors.

Log P(o/w) Q_VSA_FPPOS Length
Log P(o/w) 1
Q_VSA_FPPOS −0.589 1
Length 0.509 −0.255 1

Table 7: LOO cross-validation statistics for model 02.
Q2 0.780
Multiple correlation coefficient 0.900
Coefficient R2 0.820
Adjusted R2 0.810
SE 0.250

Table 8: Observed and predicted values of pIC50.

Molecule pIC50
Predicted
pIC50

Residual pIC50 cross-
validated

3 1.721 1.542 0.179 1.53
4 1.620 1.637 −0.018 1.64
5 1.585 1.283 0.302 1.27
6 1.553 1.941 −0.388 1.96
7 1.523 1.528 −0.005 1.53
8 1.456 1.436 0.020 1.44
9 1.444 1.464 −0.020 1.46
12 1.092 1.113 −0.021 1.11
13 0.767 0.707 0.060 0.70
14 0.620 0.825 −0.205 0.84
15 0.595 1.129 −0.534 1.15
16 0.551 0.788 −0.237 0.81
17 0.290 0.940 −0.650 0.98
18 2.097 1.694 0.403 1.57
19 2.046 1.600 0.446 1.76
20 2.000 1.784 0.216 1.77
21 1.921 2.181 −0.260 2.23
22 1.745 1.472 0.272 1.46
23 1.620 1.846 −0.227 1.86
26 1.553 1.389 0.164 1.38
28 1.114 0.798 0.315 0.77
29 0.959 1.063 −0.104 1.07
30 0.438 0.337 0.100 0.32
31 0.114 0.293 −0.179 0.32
32 0.056 0.254 −0.198 0.30
33 2.301 2.152 0.149 2.14
34 2.222 2.058 0.163 2.04
35 2.155 2.293 −0.138 2.37
36 2.097 2.120 −0.023 2.12
37 2.046 1.997 0.049 1.99
38 2.000 1.926 0.074 1.90
39 1.770 1.719 0.051 1.72
40 1.699 1.734 −0.035 1.74
41 1.658 1.721 −0.063 1.73
42 1.620 1.253 0.367 1.24
43 1.268 1.265 0.003 1.26
44 0.921 0.583 0.338 0.47
46 1.745 1.856 −0.111 1.87
47 1.699 1.668 0.031 1.64
48 1.585 1.265 0.320 1.25
49 1.553 1.750 −0.197 1.77
50 1.469 1.862 −0.394 1.92
51 1.301 1.030 0.271 1.02
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Figure 3: Correlation of observed vs. predicted pIC50 values using
model 02.
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have a positive contribution to the inhibition (Log P(o/w),
length) and Q_VSA_FPPOS with a negative contribution.
High values of descriptors Log P(o/w) and length and low
values of descriptor Q_VSA_FPPOS are favorable for
T. cruzi inhibition.

Remarkably, the biological activity in our proposed
model is explained by geometrical descriptors and de-
scriptors encoding hydrophobicity and London dispersion
forces. Descriptors such as length and Log P(o/w) describe
the molecular dimensions and hydrophobicity, respectively,
for successful binding with the substrate. Log P(o/w) is the
log value of the octanol/water partition coefficient. &is
property was calculated in MOE from a linear atom-type
model using 1,847 molecules [53].

Q_VSA_FPPOS is the code for fractional positive polar van
derWaals surface area. Q_VSA_FPPOS is the sum of vi (van der
Waals surface area of atom i) such that qi (partial charge of atom
i) is greater than 0.2, divided by the total surface area [54].
According to model 02, low positive polar surface areas favor
biological activity againstT. cruzi.&is highlights the importance
of descriptors Log P(o/w), length, and Q_VSA_FPPOS in
achieving T. cruzi inhibition over a wide range of pIC50 from
0.056 to 2.301, which in turn makes this model significant [52].

CYP51 is an enzyme with a rigid substrate-binding cavity;
fenarimol analogues interact via a coordination bond with
iron in the enzyme’s heme group, and the other two rings are
directed to substrate cavities via van der Waals contact with
residues Val213, Ile105, Tyr103, Met106, Tyr116, Ala115,
Phe110, Leu127, Met284, Leu130, Ala287, Phe290, Ala291,
&r295, Leu356, Met460, Met360, and Met358 [26]. Two
aromatic planar rings (pyridine/pyrimidine and substituted
benzene) and a heterocyclic nonplanar ring (piperazine) are
the pharmacophoric features of fenarimol analogues. Clearly,
the nature of the van der Waals interactions in the binding
pocket is due to multiple aromatic stacking and hydrogen
bonding. A decrease in the molecular surface area bearing a
polar positive charge would favor intermolecular interactions
and coordination with iron in the enzyme’s heme group.

Low polarity contributes to our model because 5 out of 7
residues (Val102, Ile105, Met106, Phe110, and Ala115) at the
active site in CYP51 are nonpolar [55]. Additionally, a 42
residue-long hydrophobic tunnel connects the heme group
with the protein surface [55], so high partition coefficients
such as Log P(o/w) values are required to enter the mostly
hydrophobic CYP51 active site. &e longer groups
substituted at R1 of the piperazine ring (length descriptor)
favor T. cruzi inhibition due to a deeper entrance in the
binding pocket allowing further contact with the residues.

Consequently, if we want to increase the value of the
activity, we will start with the most active group of fenarimol
analogues, carbonates, or carbamates 33–44 and then

(1) Increase Log P: substituents should favor
hydrophobicity

(2) Increase length: the substitution pattern in the pi-
perazine moiety should contain carbonates or car-
bamates substituted with a large aromatic ring

(3) Decrease Q_VSA_FPPOS: avoid polar positive
groups

4.2. Correlation of Biological Activity with Descriptor Values.
For the biological activity of amides 3–17, it appears that
the bulkier alkyl amides 3–8 are more potent than ben-
zamides 10 and 11 as well as being more potent than
amides 13, 14, and 16 possessing smaller alkyl groups
(Table 3). Amides generally have the shortest lengths
(7.596–7.951 Å) at the piperazine end of the pharmaco-
phore (length descriptor) (Table 2). &is shorter length of
amides at the piperazine end might limit the access to
active sites and interactions with residues that are more
important for activity. Pyrimidine amides 12 and 13 are
less potent than pyridine amides (Table 3) and have Log
P(o/w) values of 2.565 and 1.715, respectively (Table 2);
these structures have the lowest values of hydrophobicity
in the amide group. &erefore, the low hydrophobicity of
pyrimidine derivatives might determine their low activity
compared to pyridine derivatives.

In the sulfonamide group (18–32), aryl sulfonamides
18–23 showed higher activity than alkyls 24–32. &e length
of aryl sulfonamides ranged 8.006–10.866 Å, while that of
alkyls ranged 6.398–6.708 Å except for 26 (8.253 Å). Alkyl
sulfonamides 31 and 32 are pyrimidine derivatives that
showed lower potency than the pyridine derivatives. In
addition, low Log P(o/w) values (0.434–0.777) were ob-
served for alkyl sulfonamides 31 and 32 and aryl sulfonamide
30 (Table 2). In general, pyrimidinyl analogues were less
potent than the corresponding pyridyl compounds (e.g.,
amides 3, 12 and 5, 13; sulfonamides 24, 25 and 28, 31, as well
as 29, 32; and carbamates 42, 40 and 46, 53). Lower basicity
of pyrimidinyl rings could be accounted for the reduced
coordination of nitrogen with heme iron of the CYP51
enzyme and hence lower activity against T. cruzi.

Carbonate and carbamate analogues 33–44 contained
piperazines with the longest chain length (10.305–12.952 Å
(Table 2)) among the compounds examined in this study and
were found to be the most potent against T. cruzi. In general,

Table 9: Statistics for the regression model between observed pIC50
and predicted pIC50.

Multiple correlation coefficient 0.904
Coefficient R2 0.817
Adjusted R2 0.803
SE 0.256
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Figure 4: Contribution of each descriptor from model 02 to bi-
ological activity.
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Figure 5: Continued.

Table 10: Average values of descriptors.

Length Q_VSA_FPPOS Log P(o/w)
Most active molecules 10.155 0.183 3.904
Less active molecules 7.309 0.246 1.797
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it was observed that short substituent lengths, low Log P(o/
w), and high Q_VSA_FPPOS decrease the activity of aryl
molecules 45–54 to a level comparable to that of amides
3–17. &e average values of the descriptor relating to activity
are shown in Table 10.

Accessibility to the binding pocket, hydrophobicity, and
low positive polar surface area make carbamates the most
potent against T. cruzi, followed by sulfonamides. &e
structures of carbamates and sulfonamides contain high
electron density areas because of the presence of multiple

Interactions color code
van der Waals Conventional hydrogen bond

Carbon hydrogen bond Pi-sulfur

Alkyl; pi-alkyl Halogen-fluorine

Pi-pi stacked;
pi-sigma; pi-pi T-shaped

(e)

Interactions color code
van der Waals Conventional hydrogen bond

Carbon hydrogen bond Pi-sulfur

Alkyl; pi-alkyl Halogen-fluorine

Pi-pi stacked;
pi-sigma; pi-pi T-shaped

(f )

Interactions color code
van der Waals Conventional hydrogen bond

Carbon hydrogen bond Pi-sulfur

Alkyl; pi-alkyl Halogen-fluorine

Pi-pi stacked;
pi-sigma; pi-pi T-shaped

(g)

Interactions color code
van der Waals Conventional hydrogen bond

Carbon hydrogen bond Pi-sulfur

Alkyl; pi-alkyl Halogen-fluorine

Pi-pi stacked;
pi-sigma; pi-pi T-shaped

(h)

Figure 5: Predicted binding of ligand stereoisomers 3R, 3S, 18R, 18S, 33R, 33S, 45R, and 45S to the active site of sterol 14α-demethylase
(CYP51) from Trypanosoma cruzi. (a) Molecule 3(R). (b) Molecule 3(S). (c) Molecule 18(R). (d) Molecule 18(S). (e) Molecule 33(R).
(f ) Molecule 33(S). (g) Molecule 45(R). (h) Molecule 45(S).
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electronegative heteroatoms that facilitate the formation of
van der Waals contacts with the polar residues present at the
active site.

4.3. Docking. Stereochemistry plays a major role in bio-
logical activity; there is no scientific literature about the
activity of isolated stereoisomers of piperazine analogues of
fenarimol used in this paper. Docking is an in silico
methodology to evaluate interactions at the active site and
therefore three-dimensional structural properties such as
chirality. Docking was performed using the R and S ste-
reoisomers of the molecules with the best biological activity
for each substituent subtype, that is, amide 03, sulfonamide
18, carbamate 33, and aryl-substituted molecule 45. All
stereoisomers act on the active site reported in the literature.
Multiple interactions of the aromatic stacking type, π-π,
π-alkyl, and π-sulfur type were found for all tested molecules
(Figure 5). Hydrogen bonding was found only in 18(R)
stereoisomers (Figure 5).

Among the stereoisomers, those with the highest affinity
for the receptor are 3(R), 18(S), 33(S), and 45(S) (Table 11).

Stereoisomers with coordination distances to Fe between
2.62 and 2.80 Å display the strongest interacting confor-
mations. Stereoisomers with greater distances to Fe dem-
onstrated no possible coordination and were, by
comparison, weaker interacting conformations. Molecule 45
was an exception because the strongest interacting con-
formation was not coordinated to Fe (Table 11).

Experimental evaluations of the biological activities of
isolated stereoisomers in the series of piperazine analogues
of fenarimol are necessary to correlate the findings in this
paper. &e biological activity expressed as IC50 based on
currently available data was determined using racemic
mixtures of the molecules under study. &e spatial ar-
rangement and different coordination distances to Fe can
lead to different IC50 values depending on the type of R/S
stereoisomerism exhibited by the fenarimol analogues.
Stereoselectivity is one of the most important factors to
consider to improve drug safety and efficacy; therefore,
efforts to elucidate the relevance of stereoselectivity in the
inhibition of sterol 14α-demethylase (CYP51) from Trypa-
nosoma cruzi would benefit this research area.

Piperazine rings in stereoisomers 3(R)/(S) and 18(R)/(S)
are in a twisted boat conformation, whereas in stereoisomers
33(S)/(R) and 45(S)/(R), the adopted conformation is chair.
&e twisted boat and chair conformations orient toward
different residues in the active site. &e piperazine ring in
stereoisomers 3(R)/(S) interacts with Tyr103, whereas there
are no interactions of piperazine with any residues in ste-
reoisomers 18(R)/(S). Stereoisomers 33(S)/(R) also orient
towards Met106 and Leu356, respectively, with stereoiso-
mers 45(S)/(R) also oriented toward Met106.

By superimposing the more stable conformations
resulting from docking of molecules 18(S), 33(S), and 45 (S),
an almost perfect match is observed between piperidines,
piperazine, and lateral aromatic substituents except for

Table 11: Distance to Fe and scoring function values.

Molecule Distance to Fe (Å) Scoring function (Kcal/mole)
3(R) 2.68 −8.2
3(S) 6.02 −7.9
18(R) 10.79 −9.4
18(S) 2.80 −10.3
33(R) 5.53 −9.7
33(S) 2.78 −10.3
45(R) 2.62 −9.5
45(S) 4.74 −10.1

(a) (b)

Figure 6: (a) Superposed conformations of molecules 18(S) (violet), 33(S) (pale green), and 45(S) (blue). (b) Superposed conformations of
molecules 3(R) (yellow), 18(S), 33(S), and 45(S) in conventional atom color codes of the Discovery Data program.
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sulfonamide 18(S), which suffers a considerable deviation in
the piperazine ring (Figure 6(a)). On the contrary, molecule
3(R) does not coincide with the superimposed conforma-
tions due to its chiral arrangement (Figure 6(b)).

5. Conclusions

In this study, multiple linear regression (MLR) models
were developed to determine the molecular properties
relevant to the inhibitory activities of 54 fenarimol ana-
logues against Chagas disease. Twelve descriptors were
identified and statistically validated to build a QSAR
model. &e length, Q-VSA_FPPOS, and Log P(o/w) are
determinant descriptors in the prediction of biological
activity against Chagas disease. &e MLR model has
demonstrated that the most active compounds have low
values of Q-VSA_FPPOS and high values of length and
Log P(o/w). &e stability and robustness of the model are
supported by the statistical parameters and validation
tests applied, indicating that the strategy implemented in
this study can be used to predict the biological activity of
piperazine analogues of fenarimol and to adopt a rational
design for developing new analogues with improved ac-
tivity against Chagas disease. Stereoisomers 3(R), 18(S),
33(S), and 45(S) showed the highest affinity to the re-
ceptor, with coordination distances of approximately
2.62–2.80 Å that were found to have the strongest inter-
actions with the receptor. &e most frequently found
interactions with CYP51 active sites were aromatic
stacking, π-π, π-alkyl, and π-sulfur interactions. Experi-
mental determination of the biological activity of isolated
stereoisomers has not been reported in the literature for
piperazine analogues of fenarimol; therefore, this paper
makes an important contribution to the research needed
in this area. For virtual screening and computational
design of drugs against Chagas disease, it will be essential
to define stereoselectivity to improve drug safety and
efficacy. Knowledge of different pharmacokinetic and
pharmacodynamic profiles of stereoisomers could lead to
substantial development in this research area. Chirality in
drug design is an issue for both pharmaceutical industry
and regulatory authorities. Factors such as industrial
scale, production of stereoisomers, stereochemical sta-
bility, toxicological profile, and differential clinical results
highlight the importance of stereoselectivity in drug de-
sign. In the case of Chagas disease, a neglected tropical
disease with no effective treatment and high toxicity levels
of current therapeutics, it is of vital importance to explore
these issues in depth to find the most effective treatment.
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