Research Article

Degree-Based Topological Indices of Polysaccharides: Amylose and Blue Starch-Iodine Complex

Anam Rani1 and Usman Ali2,3

1Department of Basic Sciences, Deanship of Preparatory Year, King Faisal University Al Ahsa, Al Hofuf, Saudi Arabia
2Institute de Mathematiques de Jussieu-Paris Rive Gauche-Paris, France (Universite de Paris/Sorbonne Universite), Paris, France
3CASPAM, Bahauddin Zakariya University, Multan 60000, Pakistan

Correspondence should be addressed to Usman Ali; uali@bzu.edu.pk

Received 2 January 2021; Revised 15 March 2021; Accepted 19 March 2021; Published 2 April 2021

Academic Editor: Muhammad Faisal Nadeem

Copyright © 2021 Anam Rani and Usman Ali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Starch is a polymer of glucose where alpha-linkages are associated with glucopyranose units. It comprises a mixture of amylose and amylopectin. Furthermore, amylose is a linear chain of hundreds of glucose molecules. Starches are not allowed to be dissolved in water. They can be digested by breaking down alpha bonds (glycosidic bonds). Its cyclic degradation products, called cyclodextrins, are the best role models for amylose. They can be considered simple turns of the amylose propeller that has imploded into a circular path. Both humans and animals have amylases, which allow them to digest starches. The important sources of starch include potatoes, rice, wheat, and maize for human consumption. The production of starches is how plants store glucose. The blue colour of starch produced by an iodine solution or iodine reaction is used for its identification. Polysaccharides with a reduced degree of polymerization, known as dextrins, are produced in the starch’s partial acid hydrolysis. Complete hydrolysis leads to glucose. In this article, we compute the topological properties: Zagreb index \(M_1(\Gamma) \) and \(M_2(\Gamma) \), Randić index \(R_\alpha(\Gamma) \) for \(\alpha = -1/2 \), \(-1, 1/2, 1 \), atom-bond connectivity index \(ABC(\Gamma) \), geometric-arithmetic index \(GA(\Gamma) \), fourth atom-bond connectivity index \(ABC_4(\Gamma) \), fifth geometric-arithmetic index \(GA_5(\Gamma) \), and degree-based topological indices of a graph \(\Gamma \) representing polysaccharides, namely, amylose and blue starch-iodine complex. In the end, we compare these indices and depict their graphic behavior.

1. Introduction

Amylose has the most basic structure of all nutritional polysaccharides, composed purely of glucose polymers connected only by \(\alpha(1 \rightarrow 4) \) bonds. Notice that starch is, in fact, a combination of amylose and amylopectin. Amylose is not allowed to be dissolved in water and is more difficult to digest compared to amylopectin. The complexing of amylopectin with amylose facilitates its water—another view of amylose solubility and digestibility. Amylose plays an important role in the storage of plant energy, and as plants do not require glucose to explode, its dense structure and slow breakdown features are under plant’s growth. Another function of polysaccharides within cells refers to structural support. Besides, hemicelluloses are another group of polysaccharides located in plant cell walls.

In 1814, Colin and Claubry discovered the starch-iodine reaction, which is well renowned to any chemist from basic courses in qualitative and quantitative analysis. The first topological index was derived in 1947 when Wiener worked on the boiling point of paraffin alkanes. It was known as the Wiener number. Later on, it is called a path number. The work [1] described the M-polynomial and degree-based topological indices of graphs. The authors in [2, 3] discussed the symmetric divisor deg index of graphs, first Zagreb after 30 years in changed form and topological indices of molecular structure. The authors in [4] also discussed the \(\pi \) electron energy of hydrocarbons. In recent years, Hasni et al. computed the degree-based topological indices of the line graph of benzene ring embedded in P-type surface in the 2D network [5]. In [6], the authors calculated the index numbers for the edge version of the geometric-
arithmetic index of nanocones. Much research has been done to explain the nature of chromophore absorption at 620 nm that yields starch-iodine complex, the distinctive dark blue colour. Still, there seem to have been many disputes that might be addressed to some extent in recent decades.

Let Γ be connected simple graph with $V(\Gamma)$ a set of vertices and $E(\Gamma)$ a set of edges. Let $u \in V(\Gamma)$ and its degree is represented by R_k^u. The idea of degree-based topological indices began from Wiener index; in 1945, Wiener defined them while studying alkane’s boiling point cf. [7]. The first degree-based topological index is Randić index given by Milan Randić in [8] and is described as

$$R_{\alpha}(\Gamma) = \sum_{u \in V(\Gamma)} \left(\frac{R_u^u R_v^v}{R_{uv}} \right)^{\alpha}, \quad \alpha = 1, \frac{1}{2}, -1.$$ \hspace{1cm} (2)

Inverse generalized Randić index (denoted as $R_{R\alpha}(\Gamma)$) is described as:

$$RR_{\alpha}(\Gamma) = \sum_{u \in E(\Gamma)} \left(\frac{R_u^u R_v^v}{R_{uv}} \right)^{\alpha}. \hspace{1cm} (3)$$

In [4, 9, 10], Gutman and Trinajstić introduced and defined the first Zagreb index (denoted as $M_1(\Gamma)$) and second Zagreb index (denoted as $M_2(\Gamma)$) as

$$M_1(\Gamma) = \sum_{uv \in E(\Gamma)} (R_u^u + R_v^v), M_2(\Gamma) = \sum_{uv \in E(\Gamma)} (R_u^u R_v^v). \hspace{1cm} (4)$$

In [11], Estrada introduced and studied about the atom-bond connectivity index (denoted as $ABC(\Gamma)$). It is defined as follows:

$$ABC(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{R_u^u + R_v^v - 2 R_{uv}}. \hspace{1cm} (5)$$

Geometric-arithmetic index (denoted as $GA(\Gamma)$) was given by Vukičević cf. [12] and is defined as follows:

$$GA(\Gamma) = \sum_{uv \in E(\Gamma)} 2 \sqrt{R_u^u R_v^v}. \hspace{1cm} (6)$$

The fourth version of the ABC index (denoted as $ABC_4(\Gamma)$) was introduced by Ghorbani in [13] and is defined as

$$ABC_4(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{S_u + S_v - 2 S_{uv}}. \hspace{1cm} (7)$$

where $S_u = \sum_{v \in N(\Gamma)(u)} R_v^v$ and $N(\Gamma)(u) = \{v \in V(\Gamma) \mid uv \in E(\Gamma)\}$.

The fifth version of the GA index (denoted as $GA_5(\Gamma)$) was given by Graovac cf. [14] and is defined as

$$GA_5(\Gamma) = \sum_{uv \in E(\Gamma)} 2 \sqrt{S_u S_v}. \hspace{1cm} (8)$$

2. Result for Amylose

Starch is a polymer of glucose whose glucopyranose alpha bonds bind cells. It is a mixture of amylase and amylopectin. Amylose is a linear chain of hundreds of glucose molecules. Starches cannot be dissolved in water. They can be digested by breaking the alpha bonds (glycosidic bonds). Amylose is a polysaccharide composed of α-D-glucose units, linked by $\alpha(1 \rightarrow 4)$ glycosidic bonds. It is one of the two starch components that make up about 20 to 30 percent. Due to its tight spiral structure, amylase seems to be more resilient to digestion than other starch molecules and is, thus, a significant form of resistant starch [15] (see Figure 1 for a molecular structure of amylose and Figure 2 for its unit graph and the graph model corresponding to amylose for $n=4$, where n is the number of units). In amylose, there are three types of vertices having degrees 1, 2, and 3. For $n \geq 2$, amylose has four types of edge partitions as

$$E_{1,2}(\Gamma) = \{ R_u^u = 1, R_v^v = 2 \text{ and } u, v \in V(\Gamma) \},$$
$$E_{1,3}(\Gamma) = \{ R_u^u = 1, R_v^v = 3 \text{ and } u, v \in V(\Gamma) \},$$
$$E_{2,3}(\Gamma) = \{ R_u^u = 2, R_v^v = 3 \text{ and } u, v \in V(\Gamma) \},$$
$$E_{3,3}(\Gamma) = \{ R_u^u = 3, R_v^v = 3 \text{ and } u, v \in V(\Gamma) \}. \hspace{1cm} (9)$$

Theorem 1. For all $n \geq 2$, let Γ be the graph of amylose, then we have the following:

$$R_1(\Gamma) = 74n - 6,$$
$$R_{1/2}(\Gamma) = 29.1258n - 1.4349,$$
$$R_{-1/2}(\Gamma) = 5.2363n + 0.3382,$$
$$R_{-1}(\Gamma) = 2.4444n + 0.3334. \hspace{1cm} (10)$$

Proof. The general Randić connectivity index $R_{\alpha}(\Gamma)$ for $\alpha = 1$ is

$$R_1(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{R_u^u R_v^v}{R_{uv}}. \hspace{1cm} (11)$$

From Table 1 and equation (2), we get

$$R_1(\Gamma) = n(1 \times 2) + (2n + 2)(1 \times 3) + (5n - 2)(2 \times 3) + 4n(3 \times 3) = 74n - 6. \hspace{1cm} (12)$$

Now, for $\alpha = (1/2)$, the general Randić connectivity index $R_{\alpha}(\Gamma)$ is

$$R_{1/2}(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{R_u^u R_v^v}. \hspace{1cm} (13)$$

Again, from Table 1 and equation (2), we have
Figure 1: Molecular structure of amylose.

Figure 2: (a) Graph of amylose for \(n = 1 \) and (b) graph of amylose for \(n = 4 \).

Table 1: Edge partition of edges based on the degree of vertices.

<table>
<thead>
<tr>
<th>Types of edges</th>
<th>(E_{(1,2)})</th>
<th>(E_{(1,3)})</th>
<th>(E_{(2,3)})</th>
<th>(E_{(3,3)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges</td>
<td>(n)</td>
<td>(2n + 2)</td>
<td>(5n - 2)</td>
<td>(4n)</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Table 1 and equation (2), we get

\[
R_{(1,2)}(\Gamma) = \frac{n}{(1 \times 2)} + \frac{(2n + 2)}{(1 \times 3)} + \frac{(5n - 2)}{(2 \times 3)} + \frac{4n}{(3 \times 3)} \tag{14}
\]

\[
= 29.1258n - 1.4349.
\]

If \(\alpha = -(1/2) \), then

\[
R_{(-1/2)}(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{1}{\sqrt{R_u \cdot R_v}}. \tag{15}
\]

From Table 1 and equation (2), it follows that

\[
R_{(-1/2)}(\Gamma) = \frac{n}{\sqrt{(1 \times 2)}} + \frac{(2n + 2)}{\sqrt{(1 \times 3)}} + \frac{(5n - 2)}{\sqrt{(2 \times 3)}} + \frac{4n}{\sqrt{(3 \times 3)}} \tag{16}
\]

\[
= 5.2363n + 0.3382.
\]

Now, for \(\alpha = -1 \), we have

\[
R_{-1}(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{1}{\sqrt{R_u \cdot R_v}} \tag{17}
\]

From Table 1 and equation (2), we get

\[
R_{-1}(\Gamma) = \frac{n}{(1 \times 2)} + \frac{(2n + 2)}{(1 \times 3)} + \frac{(5n - 2)}{(2 \times 3)} + \frac{4n}{(3 \times 3)} \tag{18}
\]

\[
= 2.4444n + 0.3334. \quad \Box
\]

Theorem 2. For all \(n \geq 2 \), let \(\Gamma \) be the graph of amylose, then, we have the following:

\[
M_1(\Gamma) = 60n - 2,
\]

\[
M_2(\Gamma) = 74n - 6,
\]

\[
ABC(\Gamma) = 8.5423n + 0.2188,
\]

\[
GA(\Gamma) = 11.5738n - 0.2276. \tag{19}
\]

Proof. By using Table 1 and equation (4), we get

\[
M_1(\Gamma) = \sum_{uv \in E(\Gamma)} (\frac{R_u}{R_v} + \frac{R_v}{R_u})
\]

\[
= n(1 + 2) + (2n + 2)(1 + 3) + (5n - 2)(2 + 3)
\]

\[
+ 4n(3 + 3)
\]

\[
= 60n - 2,
\]

\[
M_2(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{R_u}{R_v} R_v
\]

\[
= n(1 \times 2) + (2n + 2)(1 \times 3) + (5n - 2)(2 \times 3)
\]

\[
+ 4n(3 \times 3)
\]

\[
= 74n - 6.
\]

\[
M_3(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{R_u}{R_v}
\]

\[
= n(1 \times 2) + (2n + 2)(1 \times 3) + (5n - 2)(2 \times 3)
\]

\[
+ 4n(3 \times 3)
\]

\[
= 74n - 6. \tag{20}
\]

By using Table 1 and equation (5), we get

\[
ABC(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{\frac{R_u + R_v - 2}{R_u R_v}} - \sqrt{\frac{R_u + R_v - 2}{R_u R_v}} - \sqrt{\frac{R_u + R_v - 2}{R_u R_v}}
\]

\[
= n\sqrt{\frac{1 + 2 - 2}{1 \times 2}} + (2n + 2)\sqrt{\frac{1 + 3 - 2}{1 \times 3}} \tag{21}
\]

\[
+ (5n - 2)\sqrt{\frac{2 + 3 - 2}{2 \times 3}} + 4n\sqrt{\frac{3 + 3 - 2}{3 \times 3}}
\]

\[
= 8.5423n + 0.2188.
\]

By using Table 1 and equation (6), we get
complexes, cyclodextrin molecules are positioned in and may be considered as single turns of the helix of known as cyclodextrins. They are obtained enzymatically. The main structure of amylose are cyclic degradants.

4. Results for Blue Starch-Iodine Complex

In Table 2, we give the edge partition centered on degree sum of end vertices for each edge.

\[\text{Theorem 3. For all } n \geq 2, \text{ let } \Gamma \text{ be the graph of amylose, then we have} \]
\[\text{ABC}_4(\Gamma) = 6.4972n + 0.2874, \]
\[\text{GA}_4(\Gamma) = 11.7142n - 0.123. \]

\[\text{Proof. By using Table 2 and equation (7), we get} \]
\[\text{By using Table 2 and equation (8), we get} \]
\[\text{By using Table 2 and equation (9), we get} \]

By using Table 2 and equation (10), we get

\[\text{3. Numerical and Graphical Representation} \]

The numeric representation of the results calculated above is illustrated in Tables 3 and 4, while the graphic representation is devoted to Figures 3 and 4.

4. Results for Blue Starch-Iodine Complex

The main structure of amylose are cyclic degradants known as cyclodextrins. They are obtained enzymatically and may be considered as single turns of the helix of amylose imploding into a circular path. In all of these complexes, cyclodextrin molecules are positioned in front to form dimers and they are piled together to generate large cylinders that resemble the amylose helix in its global structure. The most interesting one is (trimesic acid H$_3$O)$_6$HL$_6$ with linear polyiodide chain. This structural model was accepted, but, unfortunately, cannot shed light on the actual configuration of the polyiodide chain (see Figure 5 for the molecular structure of blue starch-iodine and Figure 6 for its unit graph and the graph model corresponding to blue starch-iodine for $n = 6$, where n is the number of units). In starch-iodine, there are three types of vertices having degrees 1, 2, and 3. For $n \geq 3$, blue starch-iodine complex has five types of edge partitions as
Table 2: Edge partition based on the degree sum of end vertices of each edge.

<table>
<thead>
<tr>
<th>Types of edges</th>
<th>(E_{(2,4)})</th>
<th>(E_{(3,6)})</th>
<th>(E_{(3,7)})</th>
<th>(E_{(4,7)})</th>
<th>(E_{(6,6)})</th>
<th>(E_{(6,7)})</th>
<th>(E_{(6,8)})</th>
<th>(E_{(7,7)})</th>
<th>(E_{(7,8)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of edges</td>
<td>(2, 4)</td>
<td>(3, 6)</td>
<td>(3, 7)</td>
<td>(4, 7)</td>
<td>(6, 6)</td>
<td>(6, 7)</td>
<td>(6, 8)</td>
<td>(7, 7)</td>
<td>(7, 8)</td>
</tr>
<tr>
<td>Frequency</td>
<td>(n)</td>
<td>(2n + 1)</td>
<td>(n)</td>
<td>(3n - 1)</td>
<td>(n - 1)</td>
<td>(2n + 1)</td>
<td>(2n - 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Numerical comparison of \(M_1(\Gamma) \), \(M_2(\Gamma) \), ABC(\(\Gamma \)), GA(\(\Gamma \)), \(R_1(\Gamma) \), \(R_{-1}(\Gamma) \), \(R_{1/2}(\Gamma) \), and \(R_{-1/2}(\Gamma) \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(M_1(\Gamma))</th>
<th>(M_2(\Gamma))</th>
<th>ABC((\Gamma))</th>
<th>GA((\Gamma))</th>
<th>(R_1(\Gamma))</th>
<th>(R_{-1}(\Gamma))</th>
<th>(R_{1/2}(\Gamma))</th>
<th>(R_{-1/2}(\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>68</td>
<td>8.7611</td>
<td>11.3462</td>
<td>68</td>
<td>2.7778</td>
<td>27.6909</td>
<td>5.5746</td>
</tr>
<tr>
<td>2</td>
<td>118</td>
<td>142</td>
<td>17.3034</td>
<td>22.92</td>
<td>142</td>
<td>5.2222</td>
<td>56.8166</td>
<td>10.8109</td>
</tr>
<tr>
<td>3</td>
<td>178</td>
<td>216</td>
<td>25.8457</td>
<td>34.4938</td>
<td>216</td>
<td>7.6667</td>
<td>85.9424</td>
<td>16.0474</td>
</tr>
<tr>
<td>4</td>
<td>238</td>
<td>290</td>
<td>34.388</td>
<td>46.0676</td>
<td>290</td>
<td>10.1111</td>
<td>115.0682</td>
<td>21.2837</td>
</tr>
<tr>
<td>5</td>
<td>298</td>
<td>364</td>
<td>42.9303</td>
<td>57.6414</td>
<td>364</td>
<td>12.5556</td>
<td>144.1939</td>
<td>26.5201</td>
</tr>
<tr>
<td>6</td>
<td>358</td>
<td>438</td>
<td>51.4726</td>
<td>69.2152</td>
<td>438</td>
<td>15</td>
<td>173.3197</td>
<td>31.7565</td>
</tr>
<tr>
<td>7</td>
<td>418</td>
<td>512</td>
<td>60.0149</td>
<td>80.789</td>
<td>512</td>
<td>17.4444</td>
<td>202.4455</td>
<td>36.9929</td>
</tr>
<tr>
<td>8</td>
<td>478</td>
<td>586</td>
<td>68.5572</td>
<td>92.3628</td>
<td>586</td>
<td>19.8889</td>
<td>231.5712</td>
<td>42.2293</td>
</tr>
<tr>
<td>9</td>
<td>538</td>
<td>660</td>
<td>77.0995</td>
<td>103.9366</td>
<td>660</td>
<td>22.3333</td>
<td>260.6969</td>
<td>47.4656</td>
</tr>
<tr>
<td>10</td>
<td>598</td>
<td>734</td>
<td>85.6418</td>
<td>115.5104</td>
<td>734</td>
<td>24.7778</td>
<td>289.8228</td>
<td>52.7020</td>
</tr>
</tbody>
</table>

Table 4: Numerical comparison of \(ABC_4(\Gamma) \) and \(GA_5(\Gamma) \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(ABC_4(\Gamma))</th>
<th>(GA_5(\Gamma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.785</td>
<td>11.591</td>
</tr>
<tr>
<td>2</td>
<td>13.282</td>
<td>23.305</td>
</tr>
<tr>
<td>3</td>
<td>19.779</td>
<td>35.019</td>
</tr>
<tr>
<td>4</td>
<td>26.276</td>
<td>46.734</td>
</tr>
<tr>
<td>5</td>
<td>32.773</td>
<td>58.448</td>
</tr>
<tr>
<td>6</td>
<td>39.271</td>
<td>70.162</td>
</tr>
<tr>
<td>7</td>
<td>45.768</td>
<td>81.876</td>
</tr>
<tr>
<td>8</td>
<td>52.265</td>
<td>93.5906</td>
</tr>
<tr>
<td>9</td>
<td>58.762</td>
<td>105.305</td>
</tr>
<tr>
<td>10</td>
<td>65.259</td>
<td>117.019</td>
</tr>
</tbody>
</table>

Figure 3: (a) Comparison of \(R_\alpha \) for \(\alpha = 1, -1, (1/2), -(1/2) \) and (b) comparison of \(M_1(\Gamma) \), \(M_2(\Gamma) \), ABC(\(\Gamma \)), and GA(\(\Gamma \))

Figure 4: Comparison of \(ABC_4(\Gamma) \) and \(GA_5(\Gamma) \)

Figure 5: Molecular structure of blue starch-iodine.

Theorem 4. For all \(n \geq 3 \), let \(\Gamma \) be the graph of blue starch-iodine complex, we have the following \(R_{\alpha}(\Gamma), \alpha \in R \):

\[
\begin{align*}
R_{1}(\Gamma) &= 39n^2 - n + 12, \\
R_{(1/2)}(\Gamma) &= 16.429n^2 - 1.0354 + 2.8695, \\
R_{(-1/2)}(\Gamma) &= 3.0272n^2 + .5585n - 0.6764, \\
R_{-1}(\Gamma) &= 0.75n^2 + 0.6944n - 0.6667.
\end{align*}
\]

Proof. For \(\alpha = 1 \), the general Randić connectivity index is

\[
R_{1}(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{1}{\sqrt{d_u d_v}}.
\]

From Table 5 (for edge partition) and equation (2), we get

\[
R_{1}(\Gamma) = 2n(1 \times 2) + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] (1 \times 3)
+ n(2 \times 2) + \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] (2 \times 3) + 4n(3 \times 3)
= 39n^2 - n + 12.
\]

Now, for \(\alpha = (1/2) \), we have

\[
R_{(1/2)}(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{d_u d_v}.
\]

By using Table 5 and equation (2), after simplification, we have

\[
\begin{align*}
R_{(1/2)}(\Gamma) &= 2n\sqrt{(1 \times 2)} + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] \sqrt{(1 \times 3)}
+ n\sqrt{(2 \times 2)} + \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] \sqrt{(2 \times 3)}
+ 4n\sqrt{(3 \times 3)}
= 16.429n^2 - 1.0354 + 2.8695.
\end{align*}
\]

For \(\alpha = -(1/2) \), we have

\[
R_{(-1/2)}(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{1}{\sqrt{d_u d_v}}.
\]

From Table 5 and equation (2), it follows that

\[
\begin{align*}
R_{(-1/2)}(\Gamma) &= \frac{2n}{\sqrt{(1 \times 2)}} + \frac{\left[\sum_{i=1}^{n-1} (n + 2) - 2 \right]}{\sqrt{(1 \times 3)}}
+ \frac{n}{\sqrt{(2 \times 2)}} + \frac{\left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right]}{\sqrt{(2 \times 3)}} + \frac{4n}{\sqrt{(3 \times 3)}}
= 3.0272n^2 + .5585n - 0.6764.
\end{align*}
\]

For \(\alpha = -1 \), we have

\[
R_{-1}(\Gamma) = \sum_{uv \in E(\Gamma)} \frac{1}{d_u d_v}.
\]

Again by using Table 5 and equation (2), we get

\[
\begin{align*}
R_{-1}(\Gamma) &= \frac{2n}{(1 \times 2)} + \frac{\left[\sum_{i=1}^{n-1} (n + 2) - 2 \right]}{(1 \times 3)} + \frac{n}{(2 \times 2)}
+ \frac{\left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right]}{(2 \times 3)} + \frac{4n}{(3 \times 3)}
= 0.75n^2 + 0.6944n - 0.6667.
\end{align*}
\]

Theorem 5. For all \(n \geq 3 \), let \(\Gamma \) be the graph of blue starch-iodine complex, then we have the following:

\[
\begin{align*}
M_{1}(\Gamma) &= 34n^2 - 2n + 4, \\
M_{2}(\Gamma) &= 39n^2 - n + 12, \\
ABC(\Gamma) &= 5.0591n^2 - 0.0523n - 0.4376, \\
GA(\Gamma) &= 6.7448n^2 - 3.0868n + 0.4552.
\end{align*}
\]

Proof. By using Table 5 and equation (4), we get
By using Table 5 and equation (5), we get

\[
M_1(\Gamma) = \sum_{uv \in E(\Gamma)} (\mathcal{R}_u + \mathcal{R}_v)
\]

\[
= 2n(1 + 2) + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] (1 + 3) + n(2 + 2)
\]

\[
+ \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] (2 + 3) + 4n(3 + 3)
\]

\[
= 34n^2 - 2n + 4,
\]

\[
M_2(\Gamma) = \sum_{uv \in E(\Gamma)} \mathcal{R}_u \mathcal{R}_v
\]

\[
= 2n(1 \times 2) + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] (1 \times 3) + n(2 \times 2)
\]

\[
+ \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] (2 \times 3) + 4n(3 + 3)
\]

\[
= 39n^2 - n + 12.
\]

(37)

By using Table 5 and equation (6), we get

\[
ABC(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{\mathcal{R}_u + \mathcal{R}_v - 2}
\]

\[
= 2n \sqrt{1 + 2 - 2 \over 1 \times 2} + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] \sqrt{1 + 3 - 2 \over 1 \times 3} + n \sqrt{2 + 2 - 2 \over 2 \times 2} + \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] \sqrt{2 + 3 - 2 \over 2 \times 3}
\]

\[
+ 4n \sqrt{3 + 3 - 2 \over 3 \times 3}
\]

\[
= 5.0591n^2 - 0.0523n - 0.4376.
\]

By using Table 5 and equation (6), we get

\[
GA(\Gamma) = \sum_{uv \in E(\Gamma)} 2\sqrt{\mathcal{R}_u \mathcal{R}_v \over \mathcal{R}_u + \mathcal{R}_v}
\]

\[
= 2 \left(2n \sqrt{1 \times 2 \over 1 + 2} + \left[\sum_{i=1}^{n-1} (n + 2) - 2 \right] \sqrt{1 \times 3 \over 1 + 3} + n \sqrt{2 \times 2 \over 2 + 2} + \left[\sum_{i=1}^{n-1} (6n - 2) + 2 \right] \sqrt{2 \times 3 \over 2 + 3} + 4n \sqrt{3 \times 3 \over 3 + 3} \right)
\]

\[
= 6.7448n^2 - 3.0868n + 0.4552.
\]
Theorem 6. For all \(n \geq 3 \), let \(\Gamma \) be the graph of blue starch-iodine complex, we have

\[
\text{ABC}_4(\Gamma) = 4.0798n^2 - 0.7682n + 0.04, \\
\text{GA}_5(\Gamma) = 7.8987n^2 - 3.1339n + 1.1727.
\]

Proof. By using Table 6 and equation (7), we get

\[
\text{ABC}_4(\Gamma) = \sum_{uv \in E(\Gamma)} \sqrt{S_u + S_v - 2 \over S_u S_v} \\
= n \sqrt{2 + 3 - 2 \over 2 \times 3} + n \sqrt{2 + 4 - 2 \over 2 \times 4} + n \sqrt{3 + 5 - 2 \over 3 \times 5} + (n - 2) \sqrt{3 + 6 - 2 \over 3 \times 6} + (n^2 - n - 1) \sqrt{3 + 7 - 2 \over 3 \times 7} \\
+ n \sqrt{4 + 8 - 2 \over 4 \times 8} + n \sqrt{5 + 7 - 2 \over 5 \times 7} + (n - 2) \sqrt{6 + 6 - 2 \over 6 \times 6} + (3n^2 - 5n + 4) \sqrt{6 + 7 - 2 \over 6 \times 7} \\
+ n \sqrt{6 + 8 - 2 \over 6 \times 8} + (2n - 4) \sqrt{7 + 7 - 2 \over 7 \times 7} + (4n^2 - 7n + 6) \sqrt{7 + 8 - 2 \over 7 \times 8} \tag{41}
\]

By using Table 6 and equation (8), we get

\[
\text{GA}_5(\Gamma) = \sum_{uv \in E(\Gamma)} 2 \sqrt{S_u S_v \over S_u + S_v} \\
= 2 \left(n \sqrt{2 \times 3 \over (2 + 3)} + n \sqrt{2 \times 4 \over (2 + 4)} + n \sqrt{3 \times 5 \over (3 + 5)} + (n - 2) \sqrt{3 \times 6 \over (3 + 6)} + (n^2 - n - 1) \sqrt{3 \times 7 \over (3 + 7)} + n \sqrt{4 \times 8 \over (4 + 8)} + n \sqrt{5 \times 7 \over (5 + 7)} \\
+ (n - 2) \sqrt{6 \times 6 \over (6 + 6)} + (3n^2 - 5n + 4) \sqrt{6 \times 7 \over (6 + 7)} + (n - 2) \sqrt{6 \times 8 \over (6 + 8)} + (2n - 4) \sqrt{7 \times 7 \over (7 + 7)} + (4n^2 - 7n + 6) \sqrt{7 \times 8 \over (7 + 8)} \right) \tag{42}
\]

\[
= 7.8987n^2 - 3.1339n + 1.1727.
\]
5. Numerical and Graphical Representation

Here, we give numeric and graphic representation for the results calculated in the above section (see Tables 7 and 8).

6. Conclusion

Amylose has a significant function in the storage of plant energy. It is not easy to digest compared to amylopectin; however, it occupies less space than amylopectin due to its spiral structure. Consequently, for storage in plants, it is the preferred starch. A mixture of iodine and potassium iodide in water is light orange-brown. When added to a sample containing starch, such as the bread pictured above, the colour will change to a deep blue (see the comparison of different indices in Figures 7 and 8). In this study, we have calculated degree-dependent topological indices of amylose and blue starch-iodine. We observed that $R_{-1/2}$ is closely related to geometric-arithmetic, R_1 is closely related to atom-bond connectivity, the second Zagreb is the first Randic index, while $R_{1/2}$ is approximately equal to the modified geometric-arithmetic of amylose. Similarly, other observations can take place from the graphical representations given in this paper.

Data Availability

All kinds of data and materials, used to compute the results, are provided in Section 1.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was sponsored by the Deanship of Scientific Research under Nasher Proposal no. 206152, King Faisal University.
References

