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*e inverse degree index is a topological index first appeared as a conjuncture made by computer program Graffiti in 1988. In this
work, we use transformations over graphs and characterize the inverse degree index for these transformed families of graphs. We
established bonds for different families of n-vertex connected graph with pendent paths of fixed length attached with fully
connected vertices under the effect of transformations applied on these paths. Moreover, we computed exact values of the inverse
degree index for regular graph specifically unicyclic graph.

1. Introduction and Preliminary Results

Graph theory has many applications in chemistry, physics,
computer sciences, and other applied sciences. Topological
indices are graph invariants used to study the topology of
graphs. Along with the computer networks, graph theory
considers as a powerful tool in other areas of research, such
as in coding theory, database management system, circuit
design, secret sharing schemes, and theoretical chemistry
[1]. Cheminformatics is the combination of technology,
graph theory, and chemistry. It develops a relationship
between structure of organic substances and their physi-
ochemical properties through some useful graph invariants
with the help of their associated molecular graph. *e
molecular graph is the combination of vertices and edges
which are representatives of atoms and bonds between
atoms of corresponding substance, respectively. *eoretical
study of underlying chemical structure by some useful graph
invariants is an attractive area of research in mathematical

chemistry due to its effective applications in the QSAR/
QSPR investigation [2, 3]. Topological indices among these
invariants have special place and used to estimate the
physiochemical properties of chemical compound. A to-
pological index can be considered as a function which maps
a graph to a real number.

*roughout this work, we used standard notations, G �

G(V, E) for graph, V(G) set of vertices, E(G) the set of
edges, dvi

degree of vertex vi (the number of edges incident to
vi), Δ and δ be the maximum and minimum degrees of fully
connected vertices, vertices with degree one are pendent
vertices, and path attached with fully connected vertices
taken as a pendent paths.

In the last five decades, after the Wiener index, many
topological indices had been introduced. Probably, the
Randić connectivity index [4]

R(G) � 􏽘
uv∈E(G)

1
����
dudv

􏽰 , (1)
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is one of the best predictive invariants among these topo-
logical indices.*e accuracy in predictability of indices is the
main interest of researchers which leads them to purpose a
new topological index.

*e zeroth-order general Randić index 0Rα(G) �

􏽐u∈V(G)d
α
u was conceived by Li and Zheng in their work [5].

0R1/2(G) � 􏽐u∈V(G)1/
��
du

􏽰
equivalent to 0Rα(G) for

α � − 1/2. Hu et al. in [6] and others [7–10] characterize 0Rα
for different values of α. For α � − 1, 0R− 1 � ID is modified
total adjacency index or inverse degree, first appears in the
conjecture over computer program Graffiti [11]. *e

ID(G) � 􏽘
v∈V(G)

1
dv

� 􏽘
uv∈E(G)

d
2
u + d

2
v

d
2
ud

2
v

, (2)

for graphs without isolated vertices are well discussed in
[12, 13]. Extremal characterization and bonds of ID(G) also
discussed at some extent in [14–18]. For more detail, one can
review survey [19].

In this work, we investigated the effect of transforma-
tions over families of graphs for ID and established in-
equalities for these transformed graphs. Graph
transformations are very important in chemistry, computer
designing, and animations. Moreover, we determined the
exact value of ID for somemajor families of graphs under the
effect of transformations over pendent paths.

2. Results and Discussion

In this section, we present some transformations over
pendent paths. *ese have solid effect over increase and
decrease of ID(G). *rough out this work, we considered

n0-vertex connected graph G0. Gl
k be the graph G0 with k

pendent paths of length l≥ 1 having order n � n0 + kl with
degree sequence d1 � δ ≤d2 ≤ d3 ≤ · · · ≤Δ + 1.

2.1. Graph Transformations. Let E′(G) ⊂ E(G), the
G1 � G − E′(G) be subgraph obtained by removing edges of
E(G′), and G1′ � G − V′(G) be the subgraph obtained by
deleting vertices set V′(G) ⊂ V(G) along with their incident
edges. We give following transformations using these
techniques which have solid effect on ID(G).

2.1.1. Transformation A. Let wj ∈ V(G0), dwj
≥ 3,

j � 1, 2, 3, . . . , k≤ n and wju
1
j , u1

ju2
j , u2

ju3
j , . . . , ul− 1

j ul
j􏽮 􏽯 be

the pendent paths attached with fully connected vertex wj of
G0 forms Gl

k. *en,

A G
l
k􏼐 􏼑 � G1 � G0 − 􏽘

k

j�1
u
2
ju

3
j , u

3
ju

4
j , . . . , u

l− 1
j u

l
j􏽮 􏽯

+ 􏽘
k

j�1
wju

2
j , u

2
ju

3
j , . . . , u

l− 1
j u

l
j􏽮 􏽯.

(3)

Figure 1 depicts successive application of transformation
A as Ai, i � 1, 2, 3, . . . , l − 1.

2.1.2. Transformation B. Let wj ∈ V(G0), dwj
≥ 3,

j � 1, 2, 3, . . . , k≤ n and wju
1
j , wju

1
j , wju

3
j , . . . , wju

l− i
j􏽮 􏽯 be

the leafs attached with fully connected vertex wj of G. *en,
for fixed vertex w1,

Gj
′ � G − u

1
j , u

2
j , u

3
j , . . . , u

l− q
j􏽮 􏽯∪ u

l− (q− 1)
j u

l− (q− 2)
j , u

l− (q− 2)
j u

l− (q− 3)
j , . . . , u

l− 1
j u

l
j􏽮 􏽯

+ w1u
1
j , w1u

1
j , w1u

3
j , . . . , w1u

l− q
j􏽮 􏽯∪ w1u

l− (q− 1)
j , u

l− (q− 1)
j u

l− (q− 2)
j , u

l− (q− 2)
j u

l− (q− 3)
j , . . . , u

l− 1
j u

l
j􏽮 􏽯.

(4)

Theorem 1. Let G0 be the graph of order n1 with maximum
degrees Δ and minimum δ. 8en,

ID G
l
k􏼐 􏼑≤ ID A G

l
k􏼐 􏼑􏼐 􏼑,

ID G
l
k􏼐 􏼑≤ ID B G

l
k􏼐 􏼑􏼐 􏼑.

(5)

Proof. Let Gl
k be the graph of order n � n1 + kl, minimum

degree δ, and maximum degree Δ + 1. Gl
k is the composition

of G0 and k pendent paths of length l. In Gl
k, there are at least

k vertices of degree 1 and k(l − 1) having 2 and n1 vertices
with degree dvs

+ 1, δ ≤dvs
+ 1≤Δ + 1:

ID G
l
k􏼐 􏼑 � 􏽘

n− k(l+1)

s�1

1
dvs

+ 􏽘
k

s�1

1
dvs

+ 1
+ k +

k(l − 1)

2
. (6)

*e transformation A transforms k vertices from degree
2 to 1 and another k vertices from ds + 1 to ds + 2 which have
an effect in ID as

ID A G
l
k􏼐 􏼑􏼐 􏼑 � 􏽘

n− k(l+1)

s�1

1
dvs

+ 􏽘
k

s�1

1
dvs

+ 2
+ 2k +

k(l − 2)

2
. (7)

So, from equations (6) and (7), we have

ID G
l
k􏼐 􏼑 − ID A G

l
k􏼐 􏼑􏼐 􏼑 � 􏽘

k

s�1

1
dvs

+ 1
−

1
dvs

+ 2
􏼠 􏼡 − k +

k

2

� 􏽘

k

s�1

1
dvs

+ 1􏼐 􏼑 dvs
+ 2􏼐 􏼑

−
k

2
.

(8)

Replace dvs
with minimum degree δ. It maximizes the

term 􏽐
k
s�1 1/((dvs

+ 1)(dvs
+ 2)), which implies

� 􏽘
k

s�1

1
(δ + 1)(δ + 2)

−
k

2
�

k

(δ + 1)(δ + 2)
−

k

2

�
k(2 − (δ + 1)(δ + 2))

(δ + 1)(δ + 2)
�

k − δ2 − 3δ􏼐 􏼑

(δ + 1)(δ + 2)
.

(9)
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It is clear from (9) that ID(Gl
k) − ID(A(Gl

k))≤ 0. Hence,

ID G
l
k􏼐 􏼑≤ ID A G

l
k􏼐 􏼑􏼐 􏼑. (10)

*e transformation B shown in Figure 2 decreases the
degree of one vertex and makes the same increase into the
degree of fixed selected vertex:

ID B G
l
k􏼐 􏼑􏼐 􏼑 � 􏽘

n− k(l+1)

s�1

1
dvs

+ 􏽘
k− 2

s�1

1
dvs

+ 1
+

1
dvk

+
1

dv(k− 1)
+ 2

+
k(l − 2)

2
+ k.

(11)

So, from equations (6) and (11), we get

ID G
l
k􏼐 􏼑 − ID B G

l
k􏼐 􏼑􏼐 􏼑 � 􏽘

k

s�1

1
dvs

+ 1
− 􏽘

k− 2

s�1

1
dvs

+ 1

−
1

dvk

−
1

dv(k− 1)
+ 2

,

(12)

to maximize the fraction involved in above expression re-
place dvs

, 0≤ s≤ k with δ, and we get

ID G
l
k􏼐 􏼑 − ID B G

l
k􏼐 􏼑􏼐 􏼑 �

2
δ + 1

−
1
δ

−
1

δ + 2

�
− 2δ − 2δ2 − 2

(δ)(δ + 1)(δ + 2)
≤ 0.

(13)

*e equation (13) implies

ID G
l
k􏼐 􏼑≤ ID B G

l
k􏼐 􏼑􏼐 􏼑. (14)

□

2.1.3. Transformation A
j
i . *e transformation A

j
i is com-

position of Ai, 0≤ i≤ l − 1 and Bj, 0≤ j≤ k − 1 which is

shown in Figure 3. Here, Ai, 0≤ i≤ l − 1 be the repetition of
transformation A and Bj, 0≤ j≤ k − 1 be the repetition of
transformation B.

For main results related to the transformation A
j
i shown

in Figure 3, we need to prove Propositions 1 and 2.

Proposition 1. Let g: N × W⟶ Q defined as
g(η, ζ) � 1/(η + ζ). 8en,

(1) g(η, ζ) + 1≥g(η, ζ − 1) + (1/2) for ζ ≥ 1
(2) For α, β≥ 0, g[η, (α + 1)(β + 1)] + g(η, 0)≥ [g[η, α

(β + 1)] + g(η, β + 1)]

Proof. (1) If transformation A applied on pendent path
attached with vertex wj of G having degree η + ζ. *e degree
of vertex wj increased by one with change of vertex having
degree 2 to leaf attached to wj. *is change has effect on ID
in the following way.

Let g(η, ζ) � 1/(η + ζ). *en,

g(η, ζ) + 1 − g(η, ζ − 1) +
1
2

􏼔 􏼕 �
1

η + ζ
+ 1 −

1
η + ζ − 1

−
1
2

�
1
2

−
1

(η + ζ)(η + ζ − 1)
.

(15)

It is clear from basic calculus that
(1/α)≥ (1/(α + β)); β≥ 0. So,

�
1
2

−
1

(η + ζ)(η + ζ − 1)
≥ 0, (16)

implies g(η, ζ) + ζ ≥g(η, ζ − 1).
(2)*e 2nd part of this preposition is related to the effect

of transformation A
j
i shown in Figure 3:

A A A Auk
1

Wk

W3

G0

W2
W1

Wk

W3

G0

W2

W1

Wk

W3

G0

W2

W1

Wk

W3

G0

W2

W1

G1 G2 Gl–1
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uk2
uk

3

uk
1
uk

2

uk3

u3
1

u3
2

u3
3

u2
1

u2
2

u2
3

u1
1
u1

2

u1
3ukl–1

uk
l–2

uk
l

uk
l–1

uk
l–2

uk
l

uk1
uk2
uk3

ukl–1

uk
l–2

ukl

uk1ukl–1
ukl–2

uk2
uk3

uk
1

u3
l–1

u3
l–2

u3
l

u3
1
u3

2
u3

3
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u3
l–2

u3
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l–2

u2
l
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u3
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l
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Figure 1: Transformation A.
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g[η, (α + 1)(β + 1)] + g(η, 0) − g[η, α(β + 1)] + g(η, β + 1)

�
1

(α + 1)β + η
+
1
η

−
1

α∗ β + η
−

1
β + η + 1

�
α2β3 + 3α2β2 + 3α2β + α2 + αβ3 + 2αβ2η + 3αβ2 + 4αβη + 3αβ + 2aη + α

η(β + η + 1)(α(β + 1) + η)(η + b + 1)
≥ 0.

(17)

*us, g[η, (α + 1)(β + 1)] + g(η, 0)≥g[η, α(β + 1)] +

g(η, β + 1). □

Proposition 2. Let f(η) � (1/η) + (3/2) and g(η) �

(1/(η + 1)) + 2, then for η≥ 1, g(η)≥f(η).

Proof

g(η) − f(η) �
1

η + 1
+ 2 −

1
η

+
3
2

􏼠 􏼡 �
1

η + 1
−
1
η

+
1
2

�
2η − 2(η + 1) + η(η + 1)

2η(η + 1)

�
(η − 1) + η2 − 1􏼐 􏼑

2η(η + 1)
≥ 0.

(18)

*is fraction is nonnegative for all η≥ 1 which implies
that g(η)≥f(η). □

Theorem 2. Let G be the graph of order n having p pendent
vertices. Gl

k is the graph having k pendent paths attached to
the fully connected vertices with maximum degree of a vertex
Δ + 1. 8en, for 0≤ i≤ l − 1 and α≤ β,

ID A
α
i G

l
k􏼐 􏼑􏼐 􏼑≤ ID A

β
i G

l
k􏼐 􏼑􏼐 􏼑. (19)

Proof. Let Gl
k be the graph with order n � n + kl, minimum

degree δ, and maximum degree Δ + 1. Using the fact of A
j

i

over Gl
k, we get

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 � k(i + 1) +

k[l − (i + 1)]

2
+ 􏽘

k− (j+1)

r�1

1
dvr

+(i + 1)

+ 􏽘

n− p− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

+ p,

(20)

for 1≤dr, ds ≤Δ≤ n − 1 and 0≤ i≤ l − 1, 0≤ j≤ k − 1. *en,
for α≤ β,

ID A
α
i G

l
k􏼐 􏼑􏼐 􏼑 − ID A

β
i G

l
k􏼐 􏼑􏼐 􏼑

� 􏽘

k− (α+1)

r�1

1
dvr

+ i + 1
+ 􏽘

n− p− k+α

s�1

1
dvs

+
1

dvr
+(α + 1)(i + 1)

− 􏽘

k− (β+1)

r�1

1
dvr

+ i + 1
+ 􏽘

n− p− k+β

s�1

1
dvs

+
1

dvr
+(β + 1)(i + 1)

⎡⎢⎣ ⎤⎥⎦

� 􏽘
k− α− 1

r�k− β

1
dvr

+ i + 1
− 􏽘

n− p− k+β

s�n− p− k+α+1

1
dvs

+
(i + 1)(β − α)

dvr
+(i + 1)(α + 1)􏼐 􏼑 dvr

+(i + 1)(β + 1)􏼐 􏼑
.

(21)

So, by using Proposition 1 and replacing Δwith dvr
and δ

with dvs
, it is clear that Δminimizes the positive terms and δ

maximizes the negative term. After simplification, we get

G G′

B

uk1

Wk

W3

G0

W2
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W1uk
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uk
1
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1
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2
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l
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l
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l
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l

u3
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u3
2

u3
3

u3
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u3
l–2

u3
1

u2
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u2
l
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u1
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l

u2
1

ul–2

u2
l–1
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l

Figure 2: Transformation B for q � 1.
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�
(β − α)(δ − Δ)(Δ +(i + 1)(β + 1))(Δ +(i + 1)(α + 1)) +(δ − Δ)(Δ + i + 1)(i + 1) − (i + 1)

2
(αΔ +(Δ +(i + 1)(α + 1))(β + 1))

(Δ + l(α + 1))(Δ + l(β + 1))δ(Δ + 1)
.

(22)

It is clear that for α≤ β, the nominator is a negative
number and denominator is positive which implies that

ID A
α
i G

l
k􏼐 􏼑􏼐 􏼑 − ID A

β
i G

l
k􏼐 􏼑􏼐 􏼑≤ 0. (23)

*us, for β≥ α,

ID A
α
i G

l
k􏼐 􏼑􏼐 􏼑≤ ID A

β
i G

l
k􏼐 􏼑􏼐 􏼑. (24)

□

In the following theorem, we determined bonds of ID for
graph Gl

k under the effect of transformation A
j
i by using

Propositions 1 and 2.

Theorem 3. Let G be the graph of order n having p pendent
vertices. Gl

k is the graph with maximum degree Δ + 1 having
order n + kl with k≤ n − p of pendent paths of length l. 8en,
for ID(A

j
i (Gl

k)); 0≤ i≤ l − 1, 0≤ j≤ k − 1,

(Δ + 1)[Δ(l + 1) + 2(pΔ + n − p − 1)] + 2Δ
2Δ(Δ + 1)

≤ ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑.

(25)

Equality holds for r-regular graph with i � 0, j � 0, and
k � 1. And

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑≤

(δ +(n − p)l)[δl(n − p) + n − 1 + pδ] + δ
((n − p)l + δ)δ

,

(26)

equality holds if under consideration graph is r-regular with
k � n − p pendent paths of length l and i � l − 1, j � k − 1.

Proof. Let G be the graph having order n≥ 3 with 0≤p≤ n −

1 pendent vertices with minimum degree δ and maximum
degree Δ. Gl

k is the graph with maximum degree Δ + 1 and

maximum number of pendent paths k � n − p of length l.
*en, by using equation (20),

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 � k(i + 1) +

k[l − (i + 1)]

2

+ 􏽘

k− (j+1)

r�1

1
dvr

+(i + 1)
+ 􏽘

n− p− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

+ p,

(27)

where 1≤ dr, ds ≤Δ≤ n − 1, and 0≤ i≤ l − 1, 0≤ j≤ k − 1.
*e order of Gl

k is fixed. So, the increase in pendent paths
causes to decrease their lengths l. *is fact increases the
number of pendent paths and decreases the vertices of
degree two. So, Proposition 2 clears that ID(A

j

i (Gl
k)) in-

creases with the increase in k. It is clear from*eorems 1 and
2 and Propositions 1 and 2 that the least value of
ID(A

j
i (Gl

k)) was obtained by setting i, j � 0, dr � ds � Δ,
and k � 1:

ID A
0
0 G

l
1􏼐 􏼑􏼐 􏼑≥ 1 +

1[l − 1]

2
+
1 − 1
Δ + 1

+
n − p − 1
Δ

+
1
Δ + 1

+ p.

(28)

After simplification, we get

(Δ + 1)[Δ(l + 1) + 2(pΔ + n − p − 1)] + 2Δ
2Δ(Δ + 1)

≤ ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑,

(29)

and equality holds in (28) for r-regular graph with the k � 1
pendent path of length l and i � 0, j � 0.

Now again from (20), setting i � l − 1, j � k − 1, dr �

ds � δ, k � n − p and using Proposition 1 and*eorems 1, 2,
we get maximal value of ID(A

j

i (Gl
k)) as

uk
1
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Figure 3: Transformation A
j
i .
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ID A
k− 1
l− 1 G

l
k􏼐 􏼑􏼐 􏼑≤ (n − p)(l − 1 + 1) +

(n − p)[l − (l − 1 + 1)]

2
+ 􏽘

n− (n− p)+(n− p)− 1

s�1

1
δ

+ 􏽘

(n− p)− ((n− p)− 1+1)

r�1

1
δ +(l − 1 + 1)

+
1

[δ +((n − p) − 1 + 1)(l − 1 + 1)]
+ p.

(30)

After simplification, we get maximal value of
ID(A

j

i (Gl
k)) as

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑≤

(δ +(n − p)l)[δl(n − p) + n − 1 + pδ] + δ
((n − p)l + δ)δ

,

(31)

in which equality holds for r-regular graph with k � n − p

pendent paths of length l and i � l − 1, j � k − 1.
Inequalities (29) and (31) complete the proof. □

Theorem 4. Let G be the graph without pendent vertices and
Gl

k for k> 1 be the graph with maximum degree Δ + 1. 8en,
for 0≤ i≤ l − 1, 0≤ j≤ k − 1, the lower bond of ID(A

j

i (Gl
k)) is

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑≥

(Δ + 1)[Δk(l + 1) + 2(n − k)] + 2kΔ
2Δ(Δ + 1)

.

(32)

Equality holds for r-regular graph with k pendent paths
of length l and i� 0, j� 0.

Proof. Let G be the graph of order n without pendent
vertices having minimum degree δ and maximum degree Δ.
Gl

k be the graph with maximum degreeΔ + 1 and k≥ 1 be the
count of pendent paths of length l. *en, by using (20),

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 � k(i + 1) +

k[l − (i + 1)]

2
+ 􏽘

k− (j+1)

r�1

1
dvr

+(i + 1)

+ 􏽘

n− k+j

s�1

1
dvs

+
1

dvr
+(j + 1)(i + 1)

,

(33)

where 1≤ dr, ds ≤Δ≤ n − 1, and 0≤ i≤ l − 1, 0≤ j≤ k − 1.
Using Propositions 1 and 2 and setting i, j � 0, dr � ds � Δ,
we get least value of ID(A

j
i (Gl

k)) as ID(A0
0(Gl

k)):

ID A
0
0 G

l
k􏼐 􏼑􏼐 􏼑 � k +

k[l − 1]

2
+

k − 1
Δ + 1

+
n − k

Δ
+

1
Δ + 1

. (34)

After simplification, we get minimal value as

(Δ + 1)[Δk(l + 1) + 2(n − k)] + 2kΔ
2Δ(Δ + 1)

≤ ID A
j

i G
l
k􏼐 􏼑􏼐 􏼑.

(35)

Equality for equation (3) holds for r-regular graph with k
pendent paths of length l and i � 0, j � 0. □

Theorem 5. Let G be theΔ-regular graph. ID(A
j

i (Gl
k)) be the

graph with k pendent paths of length l. 8en, for
0≤ i≤ l − 1, 0≤ j≤ k − 1:

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 �

[Δ +(i + 1)j](Δ + i + 1)[2(n − k + j) + k(i + l + 1)][2Δ(Δ +(i + 1)j)](k − j) + Δ(k − j − 1) + Δ(Δ + l)

2Δ(Δ + i + 1)(Δ + j(i + 1))
.

(36)

Proof. Let G be the Δ-regular graph and k be the count of
pendent paths of length l. *en, Gl

k is the graph with
maximum degree Δ + 1. *en, for 0≤ i≤ l − 1, 0≤ j≤ k − 1,
equation (20) takes the form

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 � k(i +1) +

k[l − (i +1)]

2
+ 􏽘

k− (j+1)

r�1

1
Δ+(i +1)

+ 􏽘

n− k+j

s�1

1
Δ

+
1

[Δ+(j +1)(i +1)]
.

(37)

After simplification, we get required result:

ID A
j
i G

l
k􏼐 􏼑􏼐 􏼑 �

[Δ +(i + 1)j](Δ + i + 1)[2(n − k + j) + k(i + l + 1)][2Δ(Δ +(i + 1)j)](k − j) + Δ(k − j − 1) + Δ(Δ + l)

2Δ(Δ + i + 1)(Δ + j(i + 1))
.

(38)□
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In Corollary 1, we determined exact values of ID for
unicyclic graphs with k pendent paths of length l under
transformation A

j
i . Figure 4(a) depicts transformed graph

A
j

i (Cl
n,k) for i � j � 1, k � 2 with fixed vertex w1 and

Figure 4(b) with fixed vertex w2.

Corollary 1. Let Cn be the unicyclic graph of order n. Cl
n,k is

the graph with k pendent paths of length l. 8en, for
0≤ i≤ l − 1, 0≤ j≤ k − 1,

ID A
j

G
l
k􏼐 􏼑􏼐 􏼑 �

(2 +(i + 1)j)(3 + i)[2(n − k + j) + k(i + l + 1)]4(2 +(i + 1)j)(k − j) + 2(k − j − 1) + 2(2 + l)

4(3 + i)(2 + j(i + 1))
. (39)

Proof. Cn is the unicyclic graph of order n. Cn is 2-regular
graph. *en, we get required result by replacing Δ by 2 in
*eorem 5:

ID A
j

G
l
k􏼐 􏼑􏼐 􏼑 �

(2 +(i + 1)j)(3 + i)[2(n − k + j) + k(i + l + 1)]4(2 +(i + 1)j)(k − j) + 2(k − j − 1) + 2(2 + l)

4(3 + i)(2 + j(i + 1))
. (40)

3. Conclusions

Topological indices and graph transformations play a signifi-
cant role in modern chemistry and computer networks. It is an
interesting problem to determine the bonds of the topological
index for different families of graphs [5, 6, 9, 16]. In this work,
we give graph transformations, A, B, and A

j

i for variable values
of i and j over pendent paths attached with the fully connected
vertices of graphs and characterized ID for these transformed
graphs. At first, we determined the effect of transformations A

and B over increase and decrease of ID individually. *en, we
established result for A

j
i for arbitrary values of i and j which

provides moving graphs such as animation. We also deter-
mined the exact result for Δ-regular graph under transfor-
mation effect. Moreover, we computed the exact formula for
the family of unicyclic graphs with pendent paths under the
action of transformation as an application of proved results.
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with fixed vertex w2.
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