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Spirulina platensis can synthesize a large amount of phycocyanin, which had been developed as a health food. At the same time,
Spirulina can absorb the nitrogen and phosphorus in wastewater and provide for its own growth. Here, we studied the optimal
nitrogen and phosphorus supply for the Spirulina production process. For the first time, 405 nm portable Raman spectrometer
was used to estimate phycocyanin content for real-time industrial applications. We obtained three Raman characteristic peaks of
phycocyanin through density functional theory combined with home-built Raman spectrometer, which were 1272, 1337, and
1432cm− 1. 0ere was a good linear correlation between the sum of the three peak intensities and the PCL concentration
(y� 18.887x+ 833.530, R2 � 0.890). 0e least squares support vector machine model based on the characteristic peaks was used to
estimate the concentration of phycocyanin and obtained good results with a correlation coefficient of prediction of 0.907 and
residual predictive deviation of 3.357. 0e results can provide decision-making for integration of Spirulina effluent treatment and
phycocyanin production and provide references for real-time Spirulina-based biorefinery applications.

1. Introduction

With the development of industry and agriculture, the living
standard has been continuously improved. However, it has also
produced a lot of wastewater, which has caused many pollution
problems. Due to the large amount of N and P in the waste-
water, the problemof eutrophication appears, which needs to be
effectively controlled and solved. Algae have strong hetero-
trophic and polytrophic capabilities, which can recycle nutrients
in wastewater and produce high value-added products. It is
therefore considered to be ideal biomaterials for the compre-
hensive utilization of wastewater. Since this century, the re-
search focused on wastewater treatment accounted for 25% of
the algae-related research [1]. Gao et al. [2] used a membrane
photobioreactor to develop a highly efficient algae cultivation
process for removing nutrients from wastewater.0e treatment
was generally to use the organic substances in the wastewater to
support growth for algae and then achieve the purpose of
purifying the wastewater. During the growth of algae, many

valuable products will be produced, such as phycocyanin, lipids,
and pigment [3]. Spirulina platensis can synthesize phycocyanin
and can be used for photosynthesis and heterotrophic culti-
vation [4]. As a rare water-soluble blue pigment-protein
complex, phycocyanin had wide application prospects in
beverage coloring, health food, biotechnology, and other in-
dustries [5]. Wang et al. [6] used livestock and poultry farming
wastewater as a medium to cultivate S. platensis. 0e results
showed it not only had rich biomass but also can remove the
nitrogen (N) and phosphorus (P) in wastewater effectively.
However, it will cause stress on the growth of S. platensis when
the concentration of N and P was not suitable [7, 8]. 0erefore,
it is particularly important to find a suitable concentration of N
and P that is conducive to the accumulation of the phycocyanin.
In this production process, dynamic and real-time monitoring
of phycocyanin content is very necessary. As commonly de-
tection methods, spectrophotometry and fluorophotometer
always have good accuracy but are of high cost [9]. Moreover,
these methods require complicated and destructive
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preprocessing, which are tedious and time-consuming. Besides,
the temperature and storage time will affect the stability of
phycocyanin. 0erefore, the development of rapid nonde-
structive methods for the detection of phycocyanin is very
significant for the development of dynamic cultivation strate-
gies.0e Raman technology was widely used in the detection of
biomacromolecules in microalgae, such as pigments [10, 11],
proteins [12], lipids [13, 14], and the mechanism of intracellular
biochemical reactions [15, 16]. 0e advantages of very weak
influence from aqueous solution and no pretreatment make it
possible for rapid in situ determination of phycocyanin during
the cultivation process. Jehlicka and Oren [17] used a handheld
Raman spectrometer to detect phycocyanin in cyanobacteria.
Ando et al. [18] used micro-Raman spectroscopy to obtain high
signal-to-noise ratio spectra of phycocyanin in a single living
cyanobacteria cell. At present, the detection of phycocyanin by
Raman spectroscopy was mainly focused on qualitative aspects,
but there were few studies on the quantitative detection of
phycocyanin. With the gradual expansion market of phyco-
cyanin, convenient and rapid quantitative monitoring methods
are needed to guide industrial production. 0e main analytical
procedure of this study is displayed in Figure 1, which include
the following: (1) to find the most suitable concentration of N
and P that can support the growth of Spirulina to achieve the
dual effects of wastewater purification and cost saving, (2) to
find the Raman characteristic peak of phycocyanin, and (3) to
achieve in situ rapid detection of phycocyanin by Raman
spectroscopy.

2. Materials and Methods

2.1. Algae Species and Culture Conditions. Spirulina platensis
(FACHB-882) was purchased from the Wildlife Germplasm
Bank of Chinese Academy of Sciences. Spirulina was culti-
vated in a triangular flask and expanded for cultivation using
the Spirulina medium (SP medium) [19] under controlled
conditions (25°C, 8000μmol (photon), 12 h day). According
to the previous analysis, wastewater containing N and P could
be used to cultivate Spirulina to accumulate phycocyanin.0e
experimentation was first carried out to investigate the ap-
propriate N and P supply for S. platensis cultivation. Chemical
reagent NH4Cl was supplied as the N source, while K2HPO4
was supplied as the P source. A blend of three N treatment
was used along with three different P levels, and the for-
mulation of these grades is presented in Table 1. Samples that
were cultivated using the SP medium were regarded to be the
control group, in which the concentration of NaNO3 was
2.5 g/L and the K2HPO4 was 0.5 g/L. During the experiment,
dry cell weight (DCW), phycocyanin content in liquid (PCL),
and phycocyanin content in dried Spirulina (PCD) were
measured 0, 4, 7, 11, 14, and 18 days after treatment.

2.2. Biochemical and Physiological Parameter Measurements.
DCW, a proxy of Spirulina biomass, was determined by the
gravimetric method. 0e algal muds of each sample were

wrapped in tin foil tray and dried at 40°C to stable weights.
0e DCW was calculated as

DCW �
m1 − m0( 

V
, (1)

where DCWwas the dry cell weight of Spirulina (g/L),m1 (g)
was the weight of the foil tray (g),m0 (g) was the total weight
of tin foil tray and dried algae mud, and V was the volume of
algal fluid (L).

Transfer the dried Spirulina to a centrifuge tube, and add
liquid nitrogen to freeze the cells in order to make the cell
walls more fragile. After complete evaporation of the liquid
nitrogen, the wall began to grind and crack. It was then
shaken to dissolve completely the phycocyanin, the mixture
was centrifuged at 8000 r/min, and take the supernatant as
the detection solution. 0e phycocyanin was detected by a
dual-beam ultraviolet spectrophotometer (TU-1901, Beijing
General Analysis, China). 0ere were two absorption peaks
at 348 and 620 nm (Figure 2(a)), which was consistent with
the result in some research studies [20]. 0e phycocyanin
standard curve (Figure 2(b)) was obtained at 620 nm. 0e
content of phycocyanin in liquid (PCL) was calculated as

PCL � 406.479A620 − 0.213( 
V1

V
, (2)

where PCL was the content of phycocyanin in liquid (mg/L),
A620 was the absorbance value at 620 nm, V1 was the volume
of phosphate buffer (L), and V was the volume of Spirulina
fluid (L).

0e phycocyanin content in dried Spirulina (PCD) was
calculated as

PCD �
PCL
DCW

, (3)

where PCD was the phycocyanin in dry algae (mg/g), PCL
was the content of phycocyanin in liquid (mg/L), and DCW
was the dry cell weight of Spirulina (g/L).

2.3. Raman Spectrum Acquisition. 0e portable Raman
spectrometer in this study was designed and built by our
own institute. 0e devices of this system (Figure 3) include a
405 nm Raman probe, a Raman spectrum detector, a liquid
sample cell with blackout cover, a laptop with XRaman
software, an optical fiber, and a shading box. Calibrate the
instrument by a 405 nm excitation wavelength before
spectrum acquisition. 0e parameters were set as follows: a
scanning range of 151 to 3000 cm−1, an integration time of
8000ms, and an average spectral value of twice. When
collecting the spectrum of samples, 1.5ml of Spirulina liquid
was added into a 2mL quartz bottle and then placed at a
liquid sample pool. Since the spectrum may be affected by
noise and fluorescence, we measured 4 replicates for each
sample. 96 spectral data were obtained, and it was divided
into a calibration set of 64 individuals and a prediction set of
32 individuals, before constructing the prediction model.
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2.4. Analytical Methods

2.4.1. Density Functional6eory. Density functional theory
(DFT) was a quantum mechanical method used to study
the electronic structure of multielectron systems with
varieties of calculation functions and basis sets [21]. In
order to explain mechanism behind the formation of these
absorption peaks, quantum chemistry calculations of the
phycocyanin chromophore molecule were carried out
using Gaussian.v09 (Gaussian, Inc., Wallingford, CT,
USA). 0e hybrid functional model of B3LYP with the 6-
311G basis set was used to optimize the single molecular

structure of phycocyanin and simulate its DFT spectrum.
0e molecular vibration modes of each peak were de-
termined by comparing the experimental and theoretical
spectra.

2.4.2. Predictive Model. In this step, least squares support
vector machine (LSSVM) was used to establish a quantitative
detection model of phycocyanin. LSSVM is a regression
method based on support vector machine (SVM) algorithm.
It has certain applications in qualitative and quantitative
analyses of spectra [22]. 0e LSSVM model transforms
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Figure 1: Schematic overview of the analytical procedure.

Table 1: Concentration of culture medium components in the experimental group.

Group NH4Cl (g/L) K2HPO4 (g/L)

N1P1 0.1 0.02
N1P2 0.1 0.42
N1P3 0.1 0.82
N2P1 0.2 0.02
N2P2 0.2 0.42
N2P3 0.2 0.82
N3P1 0.3 0.02
N3P2 0.3 0.42
N3P3 0.3 0.82
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inequality constraints of SVM into equality constraints,
which help to reduce the problem to solve linear equations.
0e LSSVM model was operated with the redial basis
function as a kernel function.0e sig2 (σ2) and gam (c) were
determined based on the grid search technique. 0e σ2
represents the bandwidth of redial basis function kernel. c

represented the tradeoff between minimizing model com-
plexity and minimizing the training error.

2.5. Evaluation of Model Performance. 0e performance of
LSSVM model was evaluated by calculating the coefficients of
determination in calibration sets (R2

cal) and prediction sets
(R2

pre), as well as root mean square error in calibration sets
(RMSEC) and prediction sets (RMSEP). 0e metric residual
predictive deviation (RPD) expresses the ratio of the standard
deviation of the data set and RMSEP, which can evaluate the
predictive ability of themodel. It is generally believed that when
1.75<RPD< 2.25, the model is valid; when 2.25<RPD< 3, the
model is more successful; 3<RPD< 4, the model is successful;
when RPD> 4, the model is very successful. 0erefore, the
larger the RPD value is, the better the model is.

2.6. Software. Matlab®2018b (0e Math-Works, Natick,
MA, USA) was used for regression model establishment and
calculation of model evaluation parameters. Gaussian.v09
(Gaussian, Inc., Wallingford, CT, USA) was used to do the
DFT calculation. 0e SPSS ver.22 (SPSS Inc., Chicago, IL,
USA) was used to analyze the biochemical and physiological
parameters. Comparisons of response value of DCW, PCD,
and PCL were made using ANOVA. 0e significance of
variables was determined using the F test (p< 0.01).

3. Results and Discussion

3.1. Environmental Impact of Spirulina Growth and
Phycocyanin Accumulation

3.1.1. Effects of Different N and P Levels on Spirulina Growth
and Phycocyanin Accumulation. DCW represented the
biomass of Spirulina, and its trend over time is shown in
Figure 4(a). In the control group and N1 group, the biomass
of Spirulina increased significantly over time. However, with
the increased N supply (N2 and N3), the DCW began to
decrease. 0ese results indicated that high N supply will
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Figure 3: Detection process of the portable Raman spectrometer.
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cause stress and hinder the growth of Spirulina [23]. In the
N1 group, the biomass in N1P2 and N1P3 was higher than
N1P1. In the N2 group, the biomass in N2P3 had a certain
increase, while the group with a lower concentration of P
(N2P1 and N2P2) showed a downward trend. In the N3
group, the higher the concentration of the P, the more
gradual the downward trend.0ese results may indicate that
when the Spirulinawas damaged by high concentration of N,
the high concentration of P can protect the Spirulina and
then increase the biomass [24]. 0e overall trend of PCL
(Figure 4(b)) was similar to DCW. When the concentration
of N was low, the biomass tended to increase. At higher N
concentrations, the PCL was gradually decreasing.0e trend

of PCD (Figure 4(c)) was obviously different fromDCW and
PCL. In the N1 group, the N1P1 remained unchanged, and
the NIP3 group continued to increase. In addition, the N1P2
continued to increase, while the curve was higher than the
normal group.0is indicated that when the concentration of
N was appropriate, the medium concentration of P wasmore
suitable for the accumulation of phycocyanin.

3.1.2. Research on Optimal Environment Conditions. On
the 18th day, the average response value of DCW, PCL, and
PCD of 9 experimental groups was analyzed by SPSS (Ta-
ble 2). For the average response values of DCW, PCL, and
PCD, the range of N (0.284, 58.858, and 96.093) was greater
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Figure 4: Change process of (a) dry cell weight (DCW), (b) the content of phycocyanin in liquid (PCL), and (c) the content of phycocyanin
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Journal of Chemistry 5



than the range of P (0.048, 14.004, and 43.496), which in-
dicated that the N had a greater impact on the growth of
Spirulina. In order to further analyze the extent of the effects
of N and P, we conducted an analysis of variance (Table 3).
0e influence of N on DCW (p< 0.001), PCL (p< 0.001),
and PCD (p � 0.001) was very significant, and all were
greater than P.0erefore, it can be considered that the N was
the main factor and the P was the secondary factor in this
experiment. According to the average of the response values
in Table 3, N1P3 was the best cultivation conditions.
However, the analysis of variance found that the influence of
P (p � 0.065) on PCL was not very significant, and multiple
comparison analysis was conducted (Table S1). 0e results
showed that P2 and P3 have little difference between the
experimental results. In Section 3.1.1, we had found that the
medium concentration of P wasmore suitable for the growth
of Spirulina when the concentration of N was appropriate.
0erefore, the optimal condition was finally determined as
N1P2 (NH4Cl 0.1 g/L and K2HPO4 0.42 g/L).

3.2. Research on Rapid Detection of Phycocyanin Based on
Raman Spectroscopy. As the phycocyanin market gradually
expanded, more convenient and efficient monitoring
methods will be required during the production process. 0is
study was the first in situ detection of phycocyanin using a
portable Raman spectrometer. 0e Spirulina was cultivated
under the optimal culture conditions obtained in Section 3.1.
A portable Raman spectrometer was used to collect infor-
mation on Spirulina fluid and combined with LSSVM to
establish a PCL concentration prediction model. A total of 96
spectral data were obtained. 0ere were fluctuations in
151–935 cm−1 and 1720–3000 cm−1(Figure S1), resulting in a
low signal-to-noise ratio. 0erefore, we select 935–1720 cm−1

(Figure 5(a)) for subsequent analysis. 0e Raman spectra
show that there are 7 characteristic absorption peaks for these
Spirulina fluid samples. Table 4 summarizes the assignment of
these characteristic peaks [25–29].

In order to explain mechanism behind the formation of
these absorption peaks, quantum chemistry calculations of
the phycocyanin molecules were carried out with theoretical
value calculated by DFT. 0e molecular vibration modes of
each peak were determined by comparing the experimental
and theoretical spectra. As shown in Figure 5(b), the
characteristic peaks that were measured at 1272, 1337, and
1432 cm−1 and which attributed to protein could be matched
with the simulated peaks at 1276, 1340, and 1431 cm−1,
respectively. It can be considered that these three peaks
represented phycocyanin in the data measured by Raman
spectrometer.

To further determine the relationship between the
concentration of PCL and the intensity of characteristic
peak, five different PCL concentrations were collected, and
the corresponding average Raman spectroscopy is shown in
Figure 6(a). 0e intensity decreased gradually with the
decrease in PCL concentration at the characteristic peaks
that attributed to phycocyanin (1272, 1337, and 1432 cm−1).
0e linear regression models between these three charac-
teristic peaks and the PCL concentration were established.
As shown in Figures 6(c)–6(e), the intensity of 1272, 1337,
and 1432 cm−1 had correlation coefficients (R2) of 0.789,
0.811, and 0.800, respectively. We further establish linear
regression model between the sum of the three peak in-
tensities and the PCL concentration. As shown in
Figure 6(b), the correlation coefficient (R2) was significantly
increased to 0.89, eliminating the influence of the error of a
single characteristic peak on the results.

It was worth noting in Figure 6(a) that the intensity of
1152 and 1518 cm−1 attributed to β-carotene also decreased
gradually with the decrease in PCL concentration. 0is
indicated that the intensity of all the seven characteristic
peaks had relationship with the concentration of PCL. 0en,
we implemented a simple correlation analysis between each
peak and their response to PCL concentration (Figure 7(a)).
Firstly, we can find that Pearson’s correlation coefficients of
the seven characteristic peaks with PCL concentration were

Table 2: 0e response value of dry cell weight (DCW), phycocyanin content in liquid (PCL), and phycocyanin content in dried Spirulina
(PCD) in different culture conditions.

N1 N2 N3 RN P1 P2 P3 RP

DCW 0.332 0.130 0.048 0.284 0.147 0.168 0.195 0.048
PCL 63.643 17.081 4.785 58.858 20.962 29.580 34.966 14.004
PCD 190.997 126.881 94.094 96.093 113.588 141.300 157.084 43.496
Each content was measured once. N1, N2, and N3 were different concentrations of NH4Cl (0.1, 0.2, and 0.3mg/L); P1, P2, and P3 were different con-
centrations of K2HPO4 (0.02, 0.42, and 0.82mg/L); RN and RP were the range of response value caused by different concentrations of N and P.

Table 3: Variance analysis of dry cell weight (DCW), phycocyanin content in liquid (PCL), and phycocyanin content in dried Spirulina
(PCD).

Source Type III sum of squares Df Mean square F P

DCW N 0.128 2 0.064 957.125 0.000
P 0.004 2 0.002 26.375 0.005

PCL N 5783.498 2 2891.749 113.351 0.000
P 299.361 2 149.680 5.867 0.065

PCD N 14575.954 2 7287.977 63.565 0.001
P 2908.944 2 1454.472 12.686 0.019
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Table 4: 0e assignment of characteristic Raman peaks of Spirulina.

Raman shift (cm− 1) Assignment Analytes
997 δ (ring) Phenylalanine
1152 δ (CH) β-Carotene
1272 Amide III, ] (C-N) Proteins

δ (CH3), δ (CH) β-Carotene
1337 Τ (CH3CH2), ω (CH3CH2) Proteins
1432 δ (CH2) Proteins, lipids
1518 C�C stretching β-Carotene
1599 C�C stretching β-Carotene
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higher than 0.8.0en, the peaks that attributed to β-carotene
displayed strong correlations with the characteristic peaks of
phycocyanin. 0e 1518 cm−1 displayed the strongest cor-
relation with the PCL, while it had no correspondence with
phycocyanin. β-Carotene is part of the pigment-protein
complex in microalgae and plays an important role in the
energy transfer process of photosynthesis. It can absorb the
strongest light in the blue region (400–500 nm) and transfer
the excitation energy to chlorophyll, making photosynthesis
effective in a wider wavelength range. 0erefore, β-carotene
can reflect the growth of Spirulina. 0e healthier the Spir-
ulina is, the more beneficial it is to the synthesis of phy-
cocyanin.0erefore, all seven characteristic peaks are helpful
for the study of PCL concentration.

LSSVM model was finally implemented to evaluate the
actual roles of these seven Raman characteristic peaks. 0e
optimized c and δ2 of LSSVM were set to 11.294 and 42.39,
respectively. 0e process and result are shown in Figure 7(b).
0e overall R2 was higher than 0.9. 0e R2

pre was 0.908,
RMSEP was 11.531, and RPD was higher than 3, which in-
dicated the model was successful [30]. 0erefore, the mod-
eling results indicated that the rapid detection of phycocyanin
by the 405 nm portable Raman spectrometer was feasible.

4. Conclusions

Overall, we demonstrated that appropriate concentration
of N and P is very important for the accumulation of
phycocyanin in the cultivation process of Spirulina. When
the high concentration of N causes significant damage to
Spirulina, the high concentration of P may have a certain
protective effect on the growth of Spirulina. When the
concentration of N is appropriate, the medium

concentration of P has a better effect on the synthesis of
phycocyanin. 0e study obtained the most suitable con-
ditions: NH4Cl, 0.1 g/L, and K2HPO4, 0.42 g/L. We also
detected the Spirulina by portable Raman spectrometer
and obtained the characteristic peaks of phycocyanin
(1272, 1337, and 1432 cm−1). 0ere was a good linear
correlation between the sum of the peak intensities and
the PCL concentration (y � 18.887x + 833.530,
R2 � 0.890). 0e LSSVMmodel based on the characteristic
peaks obtained good result, the R2

pre was 0.907, and the
RPD was 3.357. 0is study provides a method for real-
time monitoring of phycocyanin content in Spirulina,
which is of great significance for formulating dynamic
cultivation strategies.
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Figure 7: (a) Correlation coefficients between each characteristic wavenumber and their response to the content of phycocyanin content in
liquid (PCL); (b) least squares support vector machine (LSSVM) modeling process of characteristic peaks detected by the 405 nm portable
Raman spectrometer system.
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Supplementary Materials

0e Supplementary Materials can be found online. Figure
S1 : raw spectrum of Spirulina fluid detected by 405 nm
portable Raman spectrometer system; Table S1 :multiple
comparative analysis of the effect of different concentrations
of P on PCL. (Supplementary Materials)
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