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For the first time, Fe-zeolite 5A (Fe-Z5A) efficacy in the UV-assisted ozonation process to remove ciprofloxacin (CF) in
wastewater is investigated. FTIR, SEM, EDX, BET, and the mass transfer process for point of zero charge are used to
characterize the catalyst. Furthermore, the synergic process (UV/O3/Fe-Z5A) is compared with O3, O3/UV, and Fe-Z5A/O3
processes. The influence of catalyst dose, hydroxyl radical scavenger, and off-gas ozone released is discussed. The removal
efficiency of CF in wastewater (for the synergic process) is compared with a single ozonation process. The results indicate that
the synergic process was more efficient than others, with about 73% CF being removed (in 60 minutes) in the synergic process.
The results also show that synergic processes produce less off-gas ozone than other processes, suggesting more ozone
consumption in the synergic process, and confirmed by the radical scavenger effect and hydrogen peroxide decomposition
studies. The Fe-Z5A was found to operate through a hydroxyl mechanism in which Fe worked as an active site that promotes
the formation of hydroxyl radicals. Finally, the synergic process was more efficient than the ozonation process in the
wastewater matrix. Hence, Fe-Z5A/O3/UV pathway is highly efficient for the degradation of pharmaceuticals in wastewater.

1. Introduction

Photocatalytic ozonation processes are among the best
choices for advanced oxidation processes (AOPs) used in
wastewater treatment [1–6]. A variety of materials are
used as catalysts in these processes, such as activated car-
bons [7, 8], metal oxides [9–12], and organic-based photo-
catalysts [13–15]. Due to their stability and selectivity,
zeolites were found to be highly significant for practical
applications [16–22]. They have already been practically
implied as a catalyst, ion-exchanger, and adsorbent in dif-

ferent areas [23–26]. Their unique properties such as silica
to alumina ratios, shapes, surface area, and Lewis and
Bronsted acid sites make them quite useful option in
wastewater treatment [23–25, 27]. Zeolites of different
types were successfully studied in the past as catalysts in
catalytic ozonation processes, such as ZSM-5, Y-zeolites,
MCM-41, zeolite 4A, and natural zeolites [23–25, 27–30].

In recent few years, metal-loaded zeolites were exten-
sively implied as a catalyst in ozone-assisted processes and
were found to be highly efficient [31, 32]. Since each type
of zeolite may have unique properties and shapes compared
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to others, it is indeed important to investigate the ozone-
assisted processes in the presence of various types of zeolites.
This study is the continuation of the author’s previous stud-
ies to investigate the applicability and behavior of multiple
types and forms of zeolites in ozone-assisted catalytic pro-
cesses [28, 33]. In this investigation, a comparative study
was conducted between UV-assisted and catalytic ozonation
processes using iron-coated zeolite 5A (Z5A) as a potential
catalyst. To the best of the author’s knowledge, this is the
first report in which zeolite 5A was tested as a catalyst in
the UV-assisted catalytic ozonation process. González-
Labrada et al. [34] recently studied the degradation of cipro-
floxacin on Fe-MFI zeolites and found significantly higher
CF removal than ozonation alone, while the current investi-
gation is based on the UV-irradiated catalytic ozonation
process with iron-loaded zeolite and compared with simple
catalytic ozonation process. It is significant to mention here
that in hydroxyl radical-based catalytic ozonation processes,
the hydroxyl radicals in aqueous solutions may combine to
form hydrogen peroxide, which may have a negative effect
on overall removal efficiency [35]. Therefore, in the current
investigation, UV-assisted catalytic ozonation on Fe-Z5A
was considered to further decompose hydrogen peroxide
(through direct UV irradiation, ozone UV interactions, and
Fenton-like decomposition on catalyst surface). Therefore,
this study may further help to understand the applicability
of a different type of zeolites in natural conditions using a
UV-assisted process.

In the current investigation, the antibiotic ciprofloxacin
(CF) was selected as the target pollutant. The occurrence of
antibiotics was identified even in drinking water across the
world [36, 37]. The conventional biological wastewater treat-
ment methods failed to degrade antibiotics and other phar-
maceuticals completely, and they were found in their
effluents [38]. The continuous exposure of our environment
to antibiotics is not only hazardous to human and aquatic
organisms but it may result in the evolution of antibiotic-
resistant microorganisms in the future [39–42]. These
microbes may pose a severe threat to humanity; therefore,
it is essential to find novel methods that may be applied in
combination with biological processes to eliminate threats
to our future generations.

In the current investigation, UV-assisted catalytic ozon-
ation process using iron-loaded zeolite 5A was studied to
remove CF. The 5A type of molecular sieves is aluminosili-
cate Linde type A (LTA) form of zeolites that contain cal-
cium instead of sodium ion having diameter of 5Å. These
types of zeolites are well known for their ability to adsorb
pollutants. Therefore, in current investigation, 5A type zeo-
lites loaded with iron were used as catalyst in the ozonation
process. Moreover, the catalyst dose effect, hydroxyl radical
scavenger (t-butanol), and removal of CF in denoised and
wastewater were investigated.

2. Experimental

2.1. Materials and Reagents. The zeolite 5A, ciprofloxacin,
and t-butanol (used for hydroxyl radical scavenger effect)

were obtained from Sigma-Aldrich (UK). All chemicals were
of analytical grade and used without further purification.

2.2. Catalyst Preparation. The Z5A obtained from Sigma-
Aldrich (UK) was washed several times with ultrapure
deionized water to remove impurities (if any) from Z5A.
The iron-loaded Z5A was prepared by using the incipient
impregnation method [43–45]. In this method, a weighed
amount (6 g) of ferric nitrate nonahydrate (Fe(NO3).9H2O)
was taken in a beaker that contains 20mL ultrapure deion-
ized water. Then, Z5A (10 g) was placed into the beaker con-
taining iron salt and was continuously stirred at 120 rpm at
100°C till the water evaporated. Then, Fe-Z5A was calcined
at 500°C during 4 hrs [43–45]. The Fe-Z5A was dipped into
(0.1M) HNO3 for 24 hours to remove any unattached iron.
Then, it was filtered and washed several times with ultrapure
deionized water till the pH of washout water remains con-
stant. Finally, the catalyst was dried in an oven at 103°C
overnight [43–45].

2.3. Experimental Procedure. Experiments involving photo-
catalytic ozonation, catalytic ozonation, and single ozona-
tion were carried out in a semicontinuous reactor
(Figure 1). The reactor was installed with UV-light (UV rays
(20W), a wavelength of 254nm obtained from UV rod (Syl-
vania Pvt Ltd., Germany). In this study, 2.5 L working solu-
tion of ciprofloxacin (initial concentration = 50 ppm) was
placed in the reactor. The ozone was introduced (Sky Zone,
DA12025B12L, Karachi, Pakistan) continuously into the
reactor for 60 minutes. Samples were collected after fixed
time intervals and were then quenched with Na2CO3
(0.025M) to remove residual aqueous ozone [33]. Finally,
samples were analyzed at 284 nm on HPLC (Hitachi Elite
LaChrom L-2130) equipped with C18 column
(4:6 × 250mm, Poroshell 120). All the samples were also
scanned on a UV-Vis spectrophotometer (PerkinElmer
Lambda 35 double beam) between 200nm and 700nm to
observe any byproducts formed. The removal efficiencies of
CF were determined by using the following equation.

Ciprofloxacin removal %ð Þ = Ao − At

AO
× 100, ð1Þ

where At is the peak area time t, and Ao is the peak area at
t = o.

2.4. Analytical Procedures

2.4.1. Ozone Dose. The ozone dose was determined by using
the iodometric method described elsewhere [46]. Such ozone
was bubbled into two sets of flasks (Figure 1) containing 2%
KI solution (100mL). After the entire process, 5mL H2SO4
(2N) was added to each flask to liberate iodine. Then, the
solution was titrated against 0.005N Na2S2O3 using a starch
indicator [27] [46]. Ozone dose was calculated using the
following formula:

Ozone dose
mg
min

� �
=
Volume of titrant ∗ normality of titrant ∗ 24

Time
:

ð2Þ
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2.4.2. Analysis of Ciprofloxacin. Ciprofloxacin concentration
was quantified by determining the peak areas before and
after treatment using the HPLC system (Hitachi Elite
LaChrom L-2130) containing C18 column (4:6 × 250mm,
Poroshell 120). The method was developed before analysis,
and the mobile phase composition was 50 : 50 acetonitrile-
phosphate buffer (0.2M KH2PO4 and 0.2M NaOH). The
samples were analyzed by injecting a 10μL solution at a
mobile phase flow rate of 1mL/min.

2.4.3. Analysis of Hydrogen Peroxide. The amount of hydro-
gen peroxide was monitored by observing the resorufin fluo-
rescence spectrum using a fluorescence spectrometer (F-
4500 Japan) having 5nm slits. Fluorescence was monitored
at 587nm (a calibration curve was drawn by reacting H2O2
and Amplex Red reagent [35]).

3. Results and Discussion

3.1. Catalyst Characteristics. The zeolite 5A is a calcium zeo-
lite having the composition Ca4,5 [(AlO2)12(SiO2)12]
nH2O. The catalyst was loaded with Fe+3 by the impregna-
tion method [47], and the presence of iron on the catalyst
was confirmed by FTIR analysis, using PerkinElmer (USA)
spectrum 400 analyzer. The results presented in Figure 2
clearly show the iron loading on Z5A. The spectra indicate
that a sharp peak at about 970 cm–1 reflects stretching vibra-
tions of Si–O and Al–OH [45]. A comparative study shows
that a new peak at about 1,442 cm–1 is due to iron loading
and corresponds to Fe–OH stretching vibrations [45]. The
Fe-Z5A surface morphology (Figure 3) and elemental analy-
sis were investigated by SEM–EDX using Tescan, (UK),
Vega LMU. The iron was found to be 5%. The SEM image
(Figure 2) shows that the surface of the catalyst was smooth
and porous. The surface area and pore size were quantified
by the BET method. The nitrogen adsorption at 77K was

determined by using adsorption isotherms (Figure 4). The
Kelvin equation and BJH method were adopted for the
determination of porosities [28]. The surface area of Fe-
Z5A was 93.25m2/g, and the pore size was 5Å. The mass
titration method was used to determine the point of zero
charge of Fe-Z5A [48] and was found to be 6.6.

3.2. Comparison of Studied AOPs. The results presented in
Figure 5 indicate the comparison between various advanced
oxidation processes under similar conditions. The highest
removal efficiency was observed for the synergic (O3/Fe-
Z5A/UV) process. For example, the removal efficiencies (in
60 minutes) were 73.4%, 65.6%, 57.1%, and 49.3% for O3/
Fe-Z5A/UV, O3/Fe-Z5A, O3/UV, and O3, respectively
(Figure 4). The synergic process (catalytic ozonation with
UV irradiation) involves various reactions leading to the
production of hydroxyl radicals (equations (3)–(7)). These
reactions involves the interaction of ozone with the active
sites of catalyst (Fe) leading to the production of hydroxyl
radicals (equations (3)–(7)) [35, 49, 50]. In addition, the cat-
alyst may be activated by UV irradiation resulting in the for-
mation of hydroxyl radicals (equation (8)) [51]. The
interactions of molecular ozone with UV radiations may also
facilitate the production of hydroxyl radicals (equations (9)
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Figure 1: Schematic of semicontinuous reactor for the treatment of
ciprofloxacin by the catalytic ozonation process.
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Figure 2: FTIR spectra of Z5A and Fe-Z5A.

Figure 3: SEM image of Fe-Z5A.
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and (10)) [52] that reacts with CP leading to its degradation
(equation (11)).

Z5A − Fe −OH +O3 ⟶O2 + Z5A − Fe −HO2
o, ð3Þ

Z5A − Fe −HO2
o ⟶ Z5A − Fe + oO2

− +H+, ð4Þ
Z5A − Fe −HO2

o + O3 ⟶ Z5A − Fe −HO3
o + O2, ð5Þ

Z5A − Fe −HO3
o ⟶ Z5A − Fe + oO3

− +H+, ð6Þ
oO3

− +H2O⟶ oOH +OH− + O2, ð7Þ

Fe3+ + H2O + hυ⟶ Fe2++oOH +H+, ð8Þ

hυ + O3 + H2O⟶H2O2 + O, ð9Þ

H2O2 + hυ⟶ 2oOH, ð10Þ

CF + oOH⟶ CO2 + H2O: ð11Þ
Additionally, the significantly higher removal efficiency

of the O3/UV process compared to O3 alone (Figure 5) sug-
gested that UV-rays were involved in the decomposition of
ozone, resulting in the production of active oxygen species,
and enhance the removal [52].

The adsorption of pollutants on the catalyst surface may
also play an important role in the overall removal efficiency
of pollutants in water. Therefore, the charge on the pollutant
and catalyst may be important in such studies. The point of
zero charge of catalyst and pKa values of pollutants may help
to identify charges on them while comparing with the initial
pH of water [50, 53, 54]. Therefore, in catalytic processes,
the point of zero charge of catalyst and pKa values of CF
plays an important role [55]. Since the pKa1 (6.0) of CF is
near the point of zero charge (pH = pHpZc) of Fe-Z5A,
pKa2 (8.8) is more than the pH of the CP solution (CP solu-
tion: pH = 6:5 ± 0:2). Thus, at the analyzed pH, the CF may
acquire a positive charge (PKa2 is more than solution pH,
while the zeolite surface may have a slight negative charge
(as pHpzc of zeolite is slightly above CP solution pH)); this
further aids in the adsorption of CF on the catalyst surface
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and has a positive impact on the removal performance as
compared to processes without catalyst [50, 53, 54].

It is worth mentioning that gaseous ozone (unreacted)
released from the reactor was measured (Figure 6). It was
also observed that the synergic process produced the least
amount of ozone (mg/min). For example, 0.14mg/min,
0.16mg/min, 0.2mg/min, and 0.23mg/min were quantified
for O3/Fe-Z5A/UV, O3/Fe-Z5A, O3UV, and O3 processes,
respectively (Figure 6). The results exhibit an important cor-
relation between the CF removed and off-gas ozone released
in various processes. The off-gas ozone resealed in above-
mentioned processes was in the opposite order to the
removal efficiency of CF in the various processes (Figures 5
and 6). The synergic process was found to have the least
off-gas ozone release. It is hypothesized that more ozone
decomposition may result in the production of active oxygen
species compared to others in the synergic process.

3.3. Catalyst (Fe-Z5A) Dose Effect. It is essential to investi-
gate the role of the proposed catalyst in UV and O3; there-
fore, the catalyst dose effect is studied. The results
presented in Figure 7 indicate that with an increase in cata-
lyst dose, the removal efficiency of CF improved for both
UV/O3/Fe-Z5A and O3/Fe-Z5A processes. Hence, it is sug-
gested that a higher catalyst dose increases the number of
active sites, leading to more decomposition of aqueous
ozone and the generation of hydroxyl radicals.

3.4. Ciprofloxacin Removal in Municipal Wastewater. In this
study, the CF was spiked in municipal wastewater samples to
investigate the removal efficiency of the synergic process in a
real wastewater matrix. In most of the previous findings,
aqueous solutions of pharmaceuticals were prepared to
investigate the processes. However, it is indeed essential to
test a catalytic process in real conditions since the wastewa-
ter matrix is more complex and contains inhibitors such as
turbidity, radical scavengers, bacteria etc.

The results presented in Figure 8 show that the removal
efficiency of the synergic process was decreased significantly

in wastewater. This may be due to the presence of inhibitors
in wastewater [56]. Furthermore, the COD in wastewater
due to organic pollutants may also compete with the
removal of CF. Interestingly, when the results were com-
pared with single ozonation, it was observed that the effi-
ciency of CF removal was significantly higher in catalytic
ozonation process as compared with ozonation alone in both
the deionized water and wastewater (Figure 8). For example,
the removal efficiency (in 60 minutes) of CF was 49.3%,
37.5%, and 25.9% for synergic process in wastewater, single
ozonation in wastewater, and single ozonation in deionized
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water, respectively (Figure 7). Therefore, the results suggest
that the synergic process (UV/O3/Fe-Z5A) is even effective
in real conditions for the removal of pharmaceuticals in
wastewater. The UV scan of CF spiked wastewater before
and after treatment with a synergic process (Figure 9) also
clearly indicates the removal of organic pollutants in the
presence of the synergic process.

3.5. Mechanism of Synergic Process

3.5.1. Radical Scavenger Effect. The t-butanol, due to its
high rate of reaction with hydroxyl radicals, was found
to be effective in investigating the production of hydroxyl
radicals in AOPs [57]. The current investigation results
(Figure 10) suggested that the synergic process involves
the radical-based mechanism. Moreover, in the synergic
process, more decrease in removal efficiency was observed
with TBA than other studied processes. This further sup-
ports our hypothesis that the synergic process is highly
effective compared to others because it leads to the more
decomposition of aqueous ozone, leading to hydroxyl rad-
icals (Figure 10). Interestingly, the findings presented in
Figure 10 agree with the results of off-gas ozone shown
in Figure 5.

When the results were compared to single ozonation, the
results indicate that in the Z5A/O3 process, no significant
decrease in CP efficiency was observed in the presence of
TBA. This suggested that Z5A/O3 removes CF through a
nonradical mechanism [28, 33]. In contrast, iron-loaded
zeolites follow a radical mechanism (Figure 10). Therefore,
the current investigation also helps further to understand
the importance of iron loading on zeolites. Since wastewater
is a complex media in which various kinds of radical scaven-
gers such as phosphates and sulfates may be present in sig-
nificant amounts, it is critical to select such catalysts that
may follow radical and selectively nonradical mechanisms.

Therefore, zeolites are among the unique catalysts that may
follow both mechanisms, and metal loadings on them may
be significant in the generation of hydroxyl radicals [32, 49].

3.5.2. Formation of Hydrogen Peroxide. Understanding the
mechanism of the synergic pathway and verifying its effec-
tiveness, the production of H2O2 in various processes was
investigated. The hydrogen peroxide may form either by
the combination of two hydroxyl radicals in bulk or by UV
irradiation of ozone in the presence of water molecules
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[52] as shown in the following equations.

hυ + O3 + H2O⟶H2O2 + O, ð12Þ

oOH + oOH⟶H2O2: ð13Þ
Therefore, in the catalytic ozonation process (without

UV) and single ozonation process, many hydroxyl radicals
may combine to form stable H2O2 with low reactivity with
organic pollutants. Hence, in the current investigation,
UV-based catalytic ozonation process may decompose the
formed H2O2 by either a Fenton-like mechanism [58] or
by UV irradiation (Figures 11 and 12).

Figure 11 indicates that H2O2 production was the high-
est in the synergic process in the first 20 minutes. On the
other hand, its decomposition was also the highest in the
case of the synergic process. A higher H2O2 was formed in
the synergic process and the generation of more oOH radi-
cals (Figure 11). Experiments further confirmed this in the
presence of hydroxyl radical scavengers (Figure 9).

Interestingly, Figure 11 also shows that the formation of
H2O2 markedly decreased after 20 minutes when the syner-
gic process was used. This is attributed to Fenton-like
decomposition on catalyst surface (Figure 11) and H2O2
due to UV-rays in bulk (equation (4)), leading to the gener-
ation of reactive oxygen species. Consequently, it elaborates
that the effectiveness of the synergic process was due to the
decomposition of H2O2 causing the formation of hydroxyl
radicals that further leads to degradation of CF. Mechanism
of UV-assisted catalytic ozonation on Fe-Z5A is fully
described in Figure 12.

4. Conclusions

Based on the results, it is concluded that the synergic process
(UV/O3/Fe-Z5A) was the most efficient process as compared
to other studied processes (O3, O3/UV, and O3/Fe-Z5A pro-
cesses). The TBA effect suggested that the Fe-Z5A/O3 pro-
cess degrades ciprofloxacin via hydroxyl radical-based
mechanism. The synergic process was also influential in real
wastewater in removing ciprofloxacin as compared with sin-

gle ozonation process. The synergic process effectively
decomposes hydrogen peroxide leading to the production
of fewer hydroxyl radicals than other studied processes.
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