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This research is aimed at predicting the physical stability for amorphous solid dispersion by utilizing deep learning methods. We
propose a prediction model that effectively learns from a small dataset that is imbalanced in terms of class. In order to overcome
the imbalance problem, our model performs a hybrid sampling which combines synthetic minority oversampling technique
(SMOTE) algorithm with edited nearest neighbor (ENN) algorithm and reduces the dimensionality of the dataset using
principal component analysis (PCA) algorithm during data preprocessing. After the preprocessing, it performs the learning
process using a carefully designed neural network of simple but effective structure. Experimental results show that the
proposed model has faster training convergence speed and better test performance compared to the existing DNN model.
Furthermore, it significantly reduces the computational complexity of both training and test processes.

1. Introduction

Amorphous solid dispersion (ASD) has been widely used in
pharmaceutical industry for the enhancement of solubility
and bioavailability of poorly water-soluble drugs. ASD relies
on the concept of dispersing drug molecules into polymer
carriers through constraints to form homogeneous amor-
phous systems. Since drugs exist in the state of separated
molecules in this dispersion system, lattice energy to be
overcome during decomposition can be completely avoided,
and thus the solubility can be increased. Despite the utility of
ASD, physical stability remains a challenging issue for for-
mulation scientists.

Unraveling the chemical properties of substances is a key
problem and challenge for drug development. Current phar-
maceutical formulation development still strongly relies on
the traditional trial-and-error methods of pharmaceutical
scientists. This approach is a time-consuming and costly
process. Indeed, to ensure both patient safety and drug effec-

tiveness, prospective drugs must undergo a competitive and
long procedure. For instance, the physical stability test of
amorphous solid dispersion (ASD) needs at least three
months to six months by trial-and-error experiments. More-
over, the mechanism of physical stability of ASD is still
poorly understood and the theoretical approaches need large
amount of physicochemical information of each component
and plenty of professional knowledge.

Machine learning has the potential to facilitate data-
driven decision making, accelerates processes, and reduces
failure rates. For this reason, machine learning has been used
in many pharmaceutical applications from drug discovery to
drug development. In the drug discovery, one of the early
areas in which machine learning is applied is quantitative
structure activity relationship (QSAR). QSAR is a strategy
based on the idea that when we change a structure of a mol-
ecule then also the activity or property of the substance will
be modified. Since QSAR research involves complex and
nonlinear characteristics, various machine learning tools
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such as artificial neural network (ANN), support vector
machine (SVM), decision tree (DT), random forest (RF),
radial basis function neural network (RBFNN), and k-near-
est neighbors (KNN) are widely used [1, 2]. The process of
drug development can be divided into pre-formulation and
formulation stage. In the preformulation stage, the physico-
chemical properties of a drug substance are assessed. Deter-
mining the physicochemical properties of a drug substance
is very importance because it governs various parameters,
such as its solubility, stability, interaction with excipients,
and bioavailability [3]. In this area, important progress has
been achieved in utilizing the emerging machine learning
techniques such as ANN for solubility prediction [4] and
transfer learning and multitask learning for pharmacokinetic
parameter prediction [5]. In the formulation stage, pure
drug substances are formulated into drug products to be
administered by patients. Neural networks including the
deep neural network (DNN) have gained significant interest
in this area. As an example, a DNN architecture was pro-
posed for predicting the disintegrating time of oral disinte-
grating films and oral disintegrating tablets [6].

For poorly soluble orally administered drugs, the absorp-
tion rate is often controlled by the dissolution rate of the
drug in the gastrointestinal tract. Various techniques have
been used to improve the dissolution rate of sparingly solu-
ble drugs in water. Among them, ASD technique is widely
used to obtain the amorphous state of drug and improves
the dissolution rate of drugs, hence increasing bioavailabil-
ity. However, amorphous drug is generally unstable and eas-
ily crystallized. Thus, the stability of ASD has become the
key issue to hinder the commercialization of this technique.
The physical stability test for ASD needs at least three
months to six months by trial-and-error experiments, which
is a time-consuming and costly process. In addition, the
mechanism of physical stability of ASD is still poorly under-
stood [7]. In recent years, several theories about the ASD
stability were discussed in [8]. However, these theoretical
models need large amount of physicochemical information
of each component and plenty of professional knowledge.
Moreover, the prediction capability of these models was
quite limited with the uncontrolled error due to the mathe-
matic hypothesis.

Recently, to improve efficiency and accuracy of ASD for-
mulation development, an intelligent system for the stability
prediction of ASD by machine learning approaches was pro-
posed in [9]. The outcomes suggested that the DNN model
has the best performance among their machine learning
models. However, for small and imbalanced data, the DNN
model may cause overfitting problem and the test perfor-
mance deterioration due to its inefficient structure.

In this paper, we investigate deep learning methods for
stability prediction of ASD and propose a new architecture
of prediction model. One of the main contributions is that
the proposed model can effectively learn from small dataset
with imbalanced input space due to the limited experimental
data. Another contribution is that our model is suitable for
avoiding overfitting. As a result, our model shows better test
performance with fewer training parameters and epochs
than the existing DNN model in [9].

2. Methodology

2.1. Dataset. An open dataset [10] is used for fair perfor-
mance comparison. The data were collected from the
“Web of Science” database and regenerated by extracting
only samples with the same features. The dataset contains
four parts: formulations, process parameters, experimental
conditions, and stability results. The experimental condi-
tions include the environmental temperature and relative
humidity. The dataset is split into the training set and test
set. The training set has 103 data samples with 15 features
such as molecular weight, melting point, XLogP3, hydrogen
bond donor count, hydrogen bond acceptor count, rotatable
bond count, topological polar surface area, heavy atom count,
complexity, logS, polymers, drug loading ratio, hot melt extru-
sion, temperature, and relative humidity. The test set has 20
data samples with the same features above. The stability results
are individually given for two labels of 3 months and 6
months. Each label is represented as the numbers “1” for stable
and “0” for unstable until the corresponding period.

Unfortunately, the mechanism of physical stability of
ASD is not yet well understood, and how the relationship
between features affects the stability prediction has not been
theoretically established. Therefore, we need an effective
model design that enables the prediction by extracting linear
as well as non-linear characteristics from the given input
data.

2.2. Data Preprocessing. It is worth noting that the stability
results were classified into four in [9]. Dual binary classifica-
tion work was performed through multitask learning to pre-
dict the stability after 3 and 6 months. However, it is
practically impossible to become unstable after 3 months
and stable after 6 months, so considering the corresponding
class leads to the performance degradation. In this paper, we
reformulate the stability results as three classes: (1) a class
that the stability is not maintained until 3 months, (2) a class
that the stability is maintained until 3 months, but not until
6 months, and (3) a class that the stability is maintained
until 6 months.

In the dataset, the number of samples is not the same for
all the classes. The data imbalance problem could be one of
the main causes that degrade the performance of classifica-
tion task. To address this problem, an oversampling tech-
nique may be used to generate samples of a class with a
relatively insufficient number of samples. Synthetic Minority
Oversampling TEchnique (SMOTE) [11] and ADAptive
SYNthetic sampling (ADASYN) [12] are used as representa-
tive oversampling techniques. Using these techniques, we
obtained a dataset containing about 200 samples for each
class. In addition, we considered undersampling techniques,
Tomek Links (TL) [13], one-sided selection (OSS) [14], and
edited nearest neighbor (ENN) [15], and condensed nearest
neighbor (CNN) [16], for removing a few samples at class
boundaries to further improve classification performance.
To obtain both the advantages of oversampling and under-
sampling, we also considered hybrid sampling techniques,
SMOTE+ENN [17] and SMOTE+TL [18]. Finally, we
selected a hybrid sampling technique, SMOTE+ENN, that
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Figure 2: The relative importance of the features obtained by XGBoost.
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Figure 1: The correlation of the features in the training set.
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has the best performance. After the sampling, we apply stan-
dard scaler to standardize the features so that they are cen-
tered around 0 with a standard deviation of 1.

As the next step, we reduce the dimensionality of the fea-
tures using principal component analysis (PCA) [19]. This
algorithm is based on the search of orthogonal directions
explaining as much variance of the data as possible. It
reduces the dimension of a dataset and increase the speed
of the training. In order to determine the amount of the
reduction, we calculate the correlation of the features in
the training set. It is presented in Figure 1. We also measure
the relative importance of the features using eXtreme Gradient
Boosting (XGBoost) [20]. XGBoost is an advanced implemen-
tation of gradient boosting framework. Boosting algorithms
iteratively learn weak classifiers and then add them to a final
strong classifier. In this process, we can calculate the relative
importance of features. The relative importance obtained by
XGBoost is presented in Figure 2. From the results, we can
see that a feature of low importance is highly correlated with
one another. For example, the least important feature,
XLogP3, is strongly correlated with molecular weight. Based
on these observations, we reduce the dimensionality of the fea-
tures from 15 to 13 using PCA. As a result, we can not only
reduce the computational cost of the classification model but
also improve the performance of the model.

2.3. Model Architecture. The neural network architecture
used in [9] is shown in Figure 3. A multitask learning tech-
nique was adopted to extract the common information in
the low-level features among the 3-month and 6-month
tasks. This network contained two parts: the first part was
the shared layers, and the second part was the task layers.
Four shared layers with 512, 256, 128, and 32 neurons were
implemented to extract the common features from the raw
data. The task layers with two branches were implemented
to extract the specific features for the 3- and 6-month stabil-
ity predictions, respectively. Each subpart of the task layers
contained 3 layers of 32 neurons. For the layers, weights
are initialized with Glorot uniform distribution [21] and
biases are initialized to zero. In the network, hyperbolic tan-

gent function was chosen as the activation function in the
hidden layers and sigmoid in the output layers. The loss
weights for two tasks were 0.5. The Adam optimizer [22]
was adopted with parameters, α = 0:00001, β1 = 0:9, and β
2 = 0:999. The batch gradient descent took 1400 epochs.

The proposed neural network architecture is shown in
Figure 4. The neural network included two hidden layers;
the first layer containing 512 neurons and the second layer
containing 128 neurons. For the layers, both weights and
biases are initialized randomly with standard normal distri-
bution. The two hidden layers used Sigmoid function as
the activate function, while the last output layer used Soft-
max function for the multiclass classification. The Adam
optimizer was adopted with parameters, α = 0:0001, β1 =
0:9, and β2 = 0:999. The batch gradient descent took 100
epochs. Note that the number of epochs in the proposed
model is only 7.14% of the number of epochs in the model
used in [9], and the number of training parameters is also
significantly reduced.

3. Results and Discussion

3.1. Model Performance Criterion. The common evaluation
metrics for machine learning models are accuracy, precision,
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recall, and F1-score. The metrics derive from four types of
outcomes for prediction: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN). TP means
that data samples labelled as positive are actually positive. FP
means that data samples labelled as positive are actually neg-
ative. TN means that data samples labelled as negative are
actually negative. FN means that data samples labelled as
negative are actually positive.

Accuracy is a ratio of corrected predictions to total pre-
dictions. It is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
: ð1Þ

If a dataset is asymmetric, that is, the numbers of posi-
tive and negative samples are different, it is proper to con-

sider other metrics, such as precision, recall, and F1-score,
as well.

Precision is a ratio of corrected positive predictions to
total positive predictions. Therefore, precision measures
how many predictions are correct among all samples
labelled as positive. The definition of precision is as follows:

Precision =
TP

TP + FP
: ð2Þ

Recall is a ratio of corrected positive predictions to total
actual samples. Therefore, recall measures how many actual
samples the model can label. The definition of recall is as
follows:

Recall =
TP

TP + FN
: ð3Þ
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F1-score is the harmonic mean of precision and recall.
It is defined as follows:

F1‐score = 2 ∗ Precision ∗ Recallð Þ
Precision + Recall

: ð4Þ

In multiclass classification, the performance of a classi-
fier is usually evaluated by microaverage and macroaver-
age. Macroaverage computes a metric independently for
each class and then take the average (hence treating all
classes equally), whereas microaverage aggregates the contri-
butions of all classes to compute the average metric. Since
our dataset is imbalanced, we only use the microaverage for
each of the above metrics. Note that micro- and macroaverage
values are the same for a balanced dataset.

3.2. Performance Comparison. In this section, we evaluate
and compare the performance of the proposed model and
the existing models in [9]. The evaluation metrics are preci-
sion, recall, F1-score, and accuracy. Figures 5–8 show the
original data samples and the number of samples generated
by each sampling method used in the experiment. Figure 5
confirms that the data imbalance problem is very serious
in the original dataset. In addition, it is confirmed through
Figures 6–8 that the imbalance problem is alleviated through
the sampling technique.

Table 1 shows that the performance comparison of
models applying various sampling techniques to the pro-
posed neural network architecture. At first, we divided the
training set and the test set at a 103/20 ratio. After the sam-
pling, we performed 5-fold cross-validation for verification
and parameter tuning. In this case, we used a stratified k
-fold with random shuffling. Comparing oversampling tech-
niques, SMOTE outperforms ADASYN on both the training
set and test set. Because undersampling is trained on a rela-
tively small number of samples than oversampling tech-
niques, it is more prone to overfitting problems. However,
among them, ENN is showing relatively good performance.

However, among them, TL and ENN are showing relatively
good performance. Therefore, the performance of SMOTE
+ENN combining oversampling SMOTE and undersampling
ENN and SMOTE+TL combining oversampling SMOTE and
undersampling TL were compared. As a result, it was con-
firmed that SMOTE+ENN had the best performance.

Figure 9 shows the change in the loss value as the num-
ber of epochs increases in the learning process for each sam-
pling technique. In the figure, the blue curve is the result of
the training set and the green curve is the result of the vali-
dation dataset. Note that the larger the difference between
the two curves, the more overfitting problems arise. From
the result, we can expect that SMOTE+ENN ensures the
most stable performance by avoiding overfitting.

Given the small size of the dataset, complex deep learn-
ing models are prone to overfitting. To verify the perfor-
mance of the proposed deep learning model, we compared
the performance by applying sampling techniques to ensem-
ble machine learning methods, random forest (RF), and light
gradient boosting machine (lightGBM) that showed excel-
lent performance in [9]. Tables 2 and 3 show the perfor-
mance of RF and lightGBM, respectively. We also
compared the performance of the machine learning models
without sampling as an ablation study. As a result, it was
confirmed that there is a limitation in prediction perfor-
mance due to the data imbalance when any sampling
method is not used. Among the sampling methods, hybrid
samplings show the best performance as in the proposed
model. However, they still show worse performance than
that of the proposed model.

Table 4 shows the performance comparison of the final
proposed model and the existing DNN model [9]. From
the results summarized in Table 4, it is confirmed that the
proposed model significantly outperforms the existing
DNN model [9] for all the four evaluation metrics intro-
duced above. In particular, the proposed model obtained
100% accuracy in the training set and 95% accuracy even
in the test set.
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4. Conclusions

In this paper, we proposed a deep learning-based stability
prediction model that can replace the conventional ASD sta-
bility test that takes a long time and requires expensive costs.
The proposed model guarantees superior performance and
low complexity compared to the existing technique. For effi-
cient model design, unnecessary class was removed, and the
data imbalance problem was solved through the sampling
technique. Moreover, remarkable performance was finally
obtained through reducing the dimensionality of features
through the correlation analysis and PCA technique and
designing effective neural network architecture. The pro-
posed technique is expected to be utilized in predicting the
properties of various substances for the development of
new drugs in the future.
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