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Kiwifruit (Actinidia spp.) postharvest decay is common in China, which can cause serious economic losses to kiwifruit industry. In
order to further clarify the pathogen of kiwifruit rot disease in Guizhou Province, the rotten fruits of kiwifruit (cultivar “Jinyan”)
were collected, and the pathogenic fungi were identi�ed by isolation and puri�cation, pathogenicity test, morphological
characteristics, and analysis of rDNA-ITS sequences. �e results showed that the pathogenic fungi of kiwifruit rot disease were
Diaporthe phaseolorum and Fusarium tricinctum. Meanwhile, the results showed that all the tested agents had a certain inhibitory
e�ect on Diaporthe phaseolorum and Fusarium tricinctum. Among them, 33.5% quinolone SC had the best inhibitory e�ect on
Diaporthe phaseolorum with an EC50 value of 9.67mg/L, and 25% ¢udioxonil SC had the best inhibitory e�ect on Fusarium
tridentatus with the EC50 value of 13.13mg/L. �e results will provide a reference for the control of kiwifruit rot disease.

1. Introduction

Kiwifruit (Actinidia spp.) has soft meat, sour and sweet taste,
rich in vitamin C, sugars, and a variety of essential amino
acids for human body. It has a high nutritional and eco-
nomic value and is deeply loved by consumers, which is
known as “super fruit” and “king of fruit.” Kiwifruit is native
to China, and more than 30 countries have engaged in large
scale and industrialized arti�cial cultivation of kiwifruit
industry. In 2020, the planting area of kiwifruit in China was
about 193000 hectares and the output was about 2.291
million tons, accounting for more than 68% and 50% of the
world, respectively [1]. Guizhou Province is located in the
west of China, and its geographical and climatic conditions
are suitable for the growth of kiwifruit and have been one of
the main kiwifruit planting areas in China. By 2020, the
cultivated area has reached 4.51× 104 hm2 [2].

In recently years, with the rapid expansion of the ki-
wifruit planting area, the problem of rot disease has become
increasingly prominent [3–5]. At present, postharvest rot
disease of kiwifruit occurs widely around the world, causing
serious economic losses during fruit storage, transportation,
and sales [6, 7]. Kiwifruit rot disease mainly occurs in the

postharvest period and storage stage of the fruit. Its main
symptoms are the formation of round or oval brown lesions
on the peel, a water-stained ring on the edge of the lesion,
and the color of the ¢esh of the lesion. It is milky white, and
the pulp at the junction between disease and health is water-
stained, often forming perforated rot. In severe cases, the
whole fruit rots completely [8, 9]. �e pathogenic micro-
organism of kiwifruit rot is rich in diversity. At present, the
pathogenic microorganism that have been reported are
mainly Botryosphaeria dothidea [10, 11], Phomopsis spp.
[12, 13], and Pestalotiopsis spp. [7, 10]. Alternaria alternata,
Plectosphaerella cucumerina, Neofusicoccum parvum, Pho-
mopsis spp., and Fusarium oxysporum have been reported as
pathogens of kiwifruit rot in Guizhou Province, China
[10, 14–17]. However, research studies on rot disease of
Guizhou kiwifruit are basically concentrated on “Guichang”
kiwifruit and “Hongyang” kiwifruit varieties, and there are
few reports on Guizhou “Jinyan” kiwifruit varieties.

2. Materials and Methods

2.1. Isolation and Puri�cation of the Pathogens. �e rotten
kiwifruit was collected from Gubao town (106.525230°E,
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26.852491°N), Maijia town (106.626288°E, 26.711823°N), and
Machang town (106.223953°E, 26.447156°N) in Guizhou
Province, China. A total of 290 samples were collected,
packaged in a clean ziplock bag, and then taken back to the
laboratory store in a 4°C refrigerator for pathogen isolation.
,e kiwifruit is first rinsed with tap water and then dried.
,e infected tissues (0.5× 0.5 cm size) were soaked in 75%
alcohol for about 30 s, rinsed with sterile water 3 s, and then
plated the tissues on the PDA plates. After that, the PDA
plates were maintained in a constant temperature incubator
at 26°C without light. After culturing for 3 days, all the
strains were cultured three times on the new PDA plates
using a single spore technique to ensure purity. Finally, the
purified strains were stored at 4°C for further use.

2.2. Pathogenicity Test. Pathogenicity tests were performed
by inoculating the fungus on the puncture site of the surface
of healthy and nearly mature kiwifruits, and the kiwifruits
were incubated in an incubator in a 26°C constant tem-
perature incubator with a humidity of 60% and a photo-
period of 14 L :10D. ,e surface of healthy and nearly
mature kiwifruits inoculated with sterile water served as a
control. After 12 days of inoculation, some symptoms have
been observed on the surface. ,e causal fungus in the
infected kiwifruit surface was reisolated on the PDA plate as
described above. ,e characteristics of the reisolated fungus
were used to compare with its original culture.

2.3. Morphological and Molecular Identification.
Individual colony was inoculated on the PDA plate and
maintained in a constant temperature incubator at 26°C
without light for 8 days. ,en, the morphology was iden-
tified by both eyes and an inverted microscopy (ECLIPSE
Ni-E, Nikon Corporation, Japan). ,e total DNA of the
tested strain was extracted with the Ezup column fungal
genomic DNA extraction kit (B518259-0050, Sangon Cor-
poration Shanghai, China), and the rDNA-ITS sequence was
amplified by primers ITS1 (5′-TCCGTAGGTGAACCTG
CGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′).
,e total reaction volume is 25 μL: 12.5 μL 2xEs Taq Mix,
1 μL each primer, 1 μL DNA, and 9.5 μL ddH2O. ,e po-
lymerase chain reaction (PCR) reaction conditions were
predenaturation at 94°C for 5min, 35 cycles of 94°C for 30 s,
56°C for 1min, 72°C for 1min, and final extension at 72°C for
7min. After amplification, the PCR product was sequenced
at Sangon Corporation (Shanghai, China) and searched for
sequence similarity with the National Center of Biotech-
nology Information (NCBI) database.

2.4. In Vitro Antifungal Activity Test. ,e in vitro antifungal
activities of 11 kinds of fungicides, 33.5% quinolone SC
(ShanghaiHulian biopharmaceuticalCo., Ltd., China), 250 g/
L propiconazole EC (Shandong Xinxing pesticide Co., Ltd.,
China), 25%myclobutanil EC (ZhejiangYifan Biotechnology
Group Co., Ltd., China), 25% fludioxonil SC (Jiangsu Syn-
genta Nantong crop protection Co., Ltd., China), 0.3% eu-
genol AP (Jiangsu Nantong Shenyu green Pharmaceutical

Co., Ltd., China), 80%ethylicin EC (HenanKebangChemical
Co., Ltd., China), 100 g/L cyazofamid SC (HenanGuangnong
pesticide factory, China), 1% Osthol AP (Inner Mongolia
Qingyuanbao Biological Technology Co., Ltd., China) 25%
cupric-ammonium complexion (Henan Anyang Guofeng
Pesticide Co., Ltd., China), 430 g/L tebuconazole SC (Jiangsu
Renxin Crop Protection Technology Co., Ltd., China), and
80% zinebWP (ShandongXinxing PesticideCo., Ltd., China)
and 5 kinds of essential oils (patchouli essential oil
(GuangzhouBiotechnologyCo., Ltd., China), fennel essential
oil (Beijing Maosi Trading Co., Ltd.), garlic essential oil
(Beijing Maosi Trading Co., Ltd.), clove essential oil (Beijing
Maosi Trading Co., Ltd.), and benzoin essence oil (Beijing
Maosi TradingCo., Ltd.) were tested [18].,e inhibition rates
I (%) are calculated by the following formula, where C (cm)
and T (cm) represent the fungi diameters of the CK and
treated PDA plates, respectively. Meanwhile, the EC50 values
of 11 kinds of fungicides and 5 kinds of plant essential oils
against Diaporthe phaseolorum and Fusarium tricinctum
were calculated with the SPSS 19.0 software.

Inhibition rate, I (%) �
(C − T)

(C − 0.4)
× 100. (1)

3. Result

3.1.Morphological Identification. ,ehyphae of strain F1 are
fluffy and white in the early stage of growth.,e center of the
hyphae appears yellowish-brown, and the edges are white on
the 3rd day. On the 8th day, the diameter of the colony is
overgrown in the Petri dish. ,e hypha on the front is dark
gray (Figure 1(a)), the back of the PDA medium is dark
brown (Figure 1(b)), and the hyphae are transparent with
many branches and segments (Figure 1(c)).

,e hyphae of strain F2 are fluffy, appearing white at the
initial stage of growth, with irregular edges and slow growth.
Onthe3rdday, themyceliumproducespinkpigment.,en,on
the 10th day, the diameter of the colony grows over the Petri
dish, and the color of the bottom of the medium gradually
changes to rose red on the front (Figure 1(d)), with yellow on
theback (Figure1(e))andmanyhyphaebranches (Figure1(f)).

3.2. ITS Sequence Identification. ,e sequences of F1 and F2
strains were uploaded to NCBI to obtain the GenBank
numbers of ON566024 and ON566025. Phylogenetic trees of
the ITS sequence were constructed based on the N-J andM-L
methods, as shown inFigure 2, and the strain F1was classified
asDiaporthe phaseolorumwith the similarity of 99%and85%,
respectively.Meanwhile, Figure 3 shows that the strainF2was
classified as Fusarium tricinctum with bootstrap values of
both 100% ((N-J method) and (M-L method)).

3.3. Pathogenicity Determination. Pathogenicity was deter-
mined by the stab inoculation method, and the results are
shown in Figure 4. Figure 4 shows that the Diaporthe
phaseolorum (strain F1) and Fusarium tricinctum (strain F2)
can cause kiwifruit rot. Among them, the diameter of ki-
wifruit rot disease caused by F1 was 3.93 cm (Figure 4(b)),
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(a) (b) (c)

(d) (e) (f )

Figure 1: Morphological characteristics of F1 and F2 strains. (a)–(c) �e front, back, and hyphal morphology of F1 colonies, respectively;
(d)–(f) �e front, back, and hyphal morphology of F2 colonies, respectively.

52

97

89

89

99

100

100

100

N-J

98

99

MN685280.1Dothiorellagregaria

MN429228.1Dothiorellagregaria

MT089981.1Dothiorellagregaria

MK100821.1Dothiorellagregaria

MN982314.1Dothiorellagregaria

MW130133.1Botryosphaeriadothidea

MH329650.1Botryosphaeriadothidea

JN809914.1Botryosphaeriadothidea

EU847423.1Botryosphaeriadothidea

MH003453.1Diaporthephaseolorum

F1

MT497039.1Diaporthephaseolorum

MT497041.1Diaporthephaseolorum

HM347702.1Diaporthephaseolorum

HM347705.1Diaporthephaseolorum

M-L

100

100

100

100

63

88

85

MN685280.1Dothiorellagregaria

MN429228.1Dothiorellagregaria

MT089981.1Dothiorellagregaria

MK100821.1Dothiorellagregaria

MN982314.1Dothiorellagregaria

MW130133.1Botryosphaeriadothidea

MH329650.1Botryosphaeriadothidea

JN809914.1Botryosphaeriadothidea

EU847423.1Botryosphaeriadothidea

MH003453.1Diaporthephaseolorum

F1

MT497039.1Diaporthephaseolorum

MT497041.1Diaporthephaseolorum

HM347702.1Diaporthephaseolorum

HM347705.1Diaporthephaseolorum

Figure 2: Phylogenetic trees of the ITS sequence of strain F1 constructed based on the N-J and M-L methods.
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Figure 3: Phylogenetic trees of the ITS sequence of strain F2 constructed based on the N-J and M-L methods.
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and F2 caused kiwifruit rot disease with a diameter of
4.25 cm (Figure 4(e)). ,e diseased kiwifruit was reisolated,
and the strains with the same morphological characteristics
as the original inoculated strains were obtained, which met
the requirements of Koch’s law.

3.4. In Vitro Antifungal Activity. It can be seen from Table 1
that the test fungicides and plant essential oils revealed
different degrees of inhibition on the growth of Diaporthe
phaseolorum and Fusarium tricinctum. Especially, 33.5%
quinolone SC showed the best inhibitory effect against
Diaporthe phaseolorum with the EC50 value of 9.67mg/L;
meanwhile, 25% fludioxonil SC had an EC50 value of
13.13mg/L against Fusarium tricinctum, which were even
better than those of other fungicides and plant essential oils.

4. Discussion

Postharvest rot disease of kiwifruit occurs globally, which
has a significant impact on the quality and flavor of kiwifruit.

(a) (b) (c)

(d) (e) (f )

Figure 4:,e symptoms of F1 and F2 strains in the pathogenicity test. (a)-(b),e pathogenicity test by F1 strain. (c) CK group for strain F1.
(d)-(e) Pathogenicity test by F2 strain. (f ) CK group for strain F2.

Table 1: ,e EC50 values of the test fungicides and plant essential
oils against Diaporthe phaseolorum and Fusarium tricinctum.

Treatment
EC50 (mg/L)

Diaporthe
phaseolorum

Fusarium
tricinctum

33.5% quinolone SC 9.67 34.53
250 g/L propiconazole EC 12.55 59.71
25% myclobutanil EC 16.54 13.66
25% fludioxonil SC 18.54 13.13
0.3% eugenol AP 48.81 111.32
80% ethylicin EC 85.10 82.55
100 g/L cyzzofamid SC 91.66 30.83
430 g/L tebuconazole SC 103.78 58.89
80% zineb 106.27 642.17
1% osthol AP 215.36 15.52
25% cupric-ammonium
complexion 430.73 49.04

Patchouli essential oil 115.00 122.89
Fennel essential oil 131.48 109.57
Garlic essential oil 156.11 101.74
Clove essential oil 163.87 132.96
Benzoin essence oil 163.96 136.67
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At present, it has caused significant economic losses to the
kiwifruit industry. ,erefore, the identification of pathogens
of kiwifruit postharvest rot disease is of great significance for
industrial development. In this study, 2 pathogens classified
as Diaporthe phaseolorum and Fusarium tricinctum were
obtained from the rotten fruits of kiwifruit (cultivar “Jin-
yan”) which were collected from Guizhou Province, China.
Diaporthe phaseolorum has a higher separation rate, and the
asexual form of the fungus is Phomopsis spp. [19]. Phomopsis
spp. has also been reported many times in other varieties in
Guizhou Province, for example, “Guichang” kiwifruit
[12, 20] and “Hongyang” kiwifruit [21]. Our results showed
that the main pathogen of kiwifruit (cultivar “Jinyan”) rot
disease in Guizhou Province was related to other strains. In
addition, Phomopsis spp. was an important pathogen of
kiwifruit rot disease in other regions, such as “Xuxiang”
kiwifruit in Hubei and Shaanxi [22], “Jinyu” kiwifruit in
Hubei, and “Golden” kiwifruit in Wuhan. ,e “Jinmei”
kiwifruit [23] detected Phomopsis spp. as an important
pathogen. It indicated that Phomopsis spp. was an important
pathogen of kiwifruit rot disease among different strains and
regions, and it caused harm to various strains of kiwifruit in
the whole country.

Fusarium tricinctum is the first pathogenic fungus found
in the identification of kiwifruit rot disease pathogens in
Guizhou Province. ,is pathogen has not been found to
infect kiwifruit in previous studies. Fusarium is widely
distributed in nature and is one of the most important
phytopathogens discovered so far [24]. It can cause a variety
of plants and their fruits to rot. Among them, Fusarium
tricinctum can cause apple moldy heart disease [25], garlic
root rot [26], lily Fusarium wilt [27], and potato dry rot [28].
Yang et al. [29] found that there were significant differences
in the pathogenicity and severity of Fusarium in different
provinces and between different places in the same province.
Because Fusarium tricinctum are more harmful to fruits and
fruit trees and have a wide range of damage; they should be
paid attention to in field prevention and control.

In recent years, the prevention and treatment of ki-
wifruit fruit rot disease gradually attracted the attention
of the world kiwifruit industry. In this study, the in vitro
inhibitory effects of 16 kinds of fungicides and plant
essential oils against Diaporthe phaseolorum and Fusa-
rium tricinctum were determined.,e results showed that
all the tested agents had a certain inhibitory effect on the
four pathogenic fungi. Among them, 33.5% quinolone SC
had the best inhibitory effect on Diaporthe phaseolorum
and 25% fludioxonil SC had the best inhibitory effect on
Fusarium tricinctum. At present, there are many
screening studies on the prevention and control of ki-
wifruit rot disease. ,e commonly used agents are mainly
carbendazim, tebuconazole, prohydan, flusilazole, ben-
omyl, and thiophanate-methyl. Previous studies have
shown that ethylicin could significantly inhibit the my-
celial growth of P. macrospore, Botryotinia fuckeliana,
Botryosphaeria dothidea, and Fusarium proliferatum [30].
42.4% azole ether-fluranil SC, 40% flusilazole EC, and
other three kinds of fungicides had a significant inhibi-
tory effect on Pestalotiopsis gracilis [31]. Curcumin has a

significant inhibitory effect on the growth of Diaporthe
phaseolorummycelium [32]. But serious pesticide residue
problems will come with the long-term use of pesticides
[33], for example, pesticide residues are the main bot-
tleneck for my country’s kiwifruit export volume and
price increase [34]. ,erefore, there is an urgent need for
research and development to find alternatives to pesti-
cides [35]. To sum up, the optimal control agents for
various pathogens are different; this may be related to
kiwifruit varieties and local geographic climate. Based on
the results of the abovementioned in vitro screening of
fungicides against kiwifruit rot pathogens, the field
control effect tests of 33.5% quinolone SC and 25% flu-
dioxonil SC against kiwifruit rot disease can be carried
out in our next work, so as to provide an effective pre-
vention and control method of kiwifruit rot disease in
Guizhou Province.

5. Conclusion

In conclusion, our results showed that Diaporthe phaseo-
lorum and Fusarium tricinctum were the pathogenic fungi of
kiwifruit (cultivar “Jinyan”) rot disease in Guizhou Province.
Meanwhile, 33.5% quinolone SC had the best inhibitory
effect onDiaporthe phaseolorum and 25% fludioxonil SC had
the best inhibitory effect on Fusarium tricinctum. Our study
could provide a theoretical basis for the effective control
method of kiwifruit rot disease in Guizhou Province.
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