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From the chemical investigations of the root bark of Uapaca guineensis, nine distinct compounds (1–9) have been isolated and
characterized as lupeol, betulin, betulinic acid, β-amyryl acetate, physcion, quercetin, rutin, β-sitosterol, and β-sitosterol-3-O-
β-D-glucopyranoside, respectively. �e structures of all the isolated compounds have been established using their NMR data as
well as the comparison of those data with the ones reported in the literature. Interestingly, to the best of our knowledge, except for
the lupane-type triterpenoids (1–3) and compounds 4 and 9, all the other compounds are reported for the �rst time from this
genus. Since the plant is widely used for the treatment of skin diseases, leishmaniasis and in�ammatory diseases, the anti-
leishmanial and anti-in�ammatory potencies of all the isolated compounds have been computationally validated through their
ability to inhibit the receptors 1QCC and 2XOX (for the antileishmanial studies) and 6Y3C and 1CX2 (for the anti-in�ammatory
studies). Furthermore, the ADMET studies of compounds have been done to evaluate their drug-likeness. Results demonstrate
that all the isolated compounds showed a better a�nity for both receptors’ binding sites than the standard drugs miltefosine and
aspirin. Moreover, the compounds would not cause addiction when used as lead molecules whereas, aspirin is predicted to violate
the BBB over a long term of usage as a drug. �is study gives additional information on the chemistry of U. guineensis and its
classi�cation as a potential source of good leads for the development of potent antileishmanial and anti-in�ammatory drugs.

1. Introduction

Leishmaniasis has been classi�ed in 2018 as one of the most
neglected tropical diseases infecting one billion people in 149
countries around the world due to its high incidence,
morbidity, and mortality [1]. It is a vector-borne disease
caused by one of the 29 species of the protozoan Leishmania
spp. including Leishmania donovani and Leishmania
infantum, which are transmitted by the bites of the female
phlebotomine sand�y and are responsible for the more
severe forms of the diseases leading to the high rates of death
[2]. �e current existing and prescribed drugs are toxic,

expensive in cost, not su�ciently e�cient, long duration of
treatment, and face parasite resistance in many cases [3].
Furthermore, the literature reveals that the mechanism of
the development of the pathogenicity of the parasite
Leishmania spp. in its host is done through the inhibition of
proin�ammatory responses and the suppression of nitric
oxide (NO) production [4]. However, in�ammation-related
chronic diseases like arthritis and irritable bowel syndrome
represent an important concern for public health a¥ecting a
larger and ever-growing population [5]. �e nonsteroidal
anti-in�ammatory drugs, which are mostly prescribed as
therapeutics, display several side e¥ects, including
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gastrointestinal, cardiovascular, or renal complications [6].
All this evidence highlights the actual need for developing
prototype drugs that are more effective and less toxic to
complement or replace the existing ones. For several de-
cades, medicinal plants have been demonstrated to be a good
reservoir of potent leads in the development of new effective
drugs [7, 8].

Uapaca guineensis is a tree whose wood is traded under
the name “Rikio.” )e tree is up to 30m high, 80 cm in
diameter, and has a bole straight, irregular, and up to 15m
long with large ascending branches carrying leaves which
are simple, alternate, erect, and grouped at the ends of the
branches. )e male flowers consist of 6–9 whitish or
greenish bracts surrounding stamens while the female ones
do not have petals, but their globose ovary is surmounted by
3 styles. )e fruits are globose drupes up to 3 cm in di-
ameter, weighing about 7 g, greenish-yellow when ripe, then
brown [9]. )e plant is used in traditional popular medicine
for the treatment of several infections including skin dis-
eases like leprosy, eczema, and leishmaniasis; for the
management of inflammatory diseases like rheumatism and
joint pains, as well as purgative, gastrointestinal troubles,
antiabortive, aphrodisiac, or the treatment of malaria [10].
)erefore, based on its traditional uses, the plant might be a
good source of specialized metabolites with antileishmanial
and anti-inflammatory potencies. As part of our program of
investigations of Cameroonian medicinal plants for their
bioactive compounds, we have chemically investigated the
root bark ofU. guineensis and computationally validated the
antileishmanial and anti-inflammatory potencies of the
isolated compounds. In addition, their ADMET (absorp-
tion, distribution, metabolism, excretion, and toxicity)
studies have been performed in order to provide more
insights into how those compounds are processed by a
living organism.

2. Experimental

2.1. General Instrumentation. EI-MS was recorded on a
Finnigan LCQ with a Rheos 4000 quaternary pump (Flux
Instrument). )e 1H and 13C-NMR spectra were recorded
on a Bruker Advance III 500MHz NMR spectrometer
(Bruker, Rheinstetten, Germany) equipped with a 5mm
cryogenic DCH (1H/13C) probe. Chemical shifts are reported
in parts per million (δ) using tetramethylsilane (TMS)
(Sigma-Aldrich, Munich, Germany) as the internal standard,
while coupling constants (J) were measured in Hz. Column
chromatography was carried out on silica gel 230–400 mesh,
Merck, (Merck, Darmstadt, Germany) and silica gel 70–230
mesh (Merck). )in layer chromatography (TLC) was
performed on Merck precoated silica gel 60 F254 aluminium
foil (Merck), and spots were detected using diluted sulphuric
acid spray reagent before heating. All reagents used were of
analytical grade.

2.2. Plant Material. )e root bark of Uapaca guineensis
Müll. Arg. (Phyllanthaceae) was harvested in June 2021
along the borders of the river Nyong at Mengueme (GPS

coordinates: Latitude 3°15′28″N, Longitude 11°08′28″E,
Elevation: 343m), Centre Region of Cameroon. )e plant
was identified by a specialist of the National Herbarium of
Cameroon in Yaounde and compared with a voucher for-
merly kept under the registration number No. 41501/HNC.

2.3. Extraction and Isolation. )e air-dried and powdered
root bark (1800 g) of U. guineensis was extracted twice with
methanol (7 L) for 72 h and 48 h, respectively. After de-
cantation, filtration, and evaporation of the solvent under
reduced pressure, 88.4 g of crude extract were obtained,
dissolved in water and successively partitioned with ethyl
acetate and n-butanol to obtain two fractions labelled A
(40.3 g) and B (19.4 g), respectively.

)e main fraction A was subjected to a silica gel column
chromatography eluting with a stepwise gradient of hexane-
ethyl acetate (1 : 0⟶ 0 :1, v/v), followed by ethyl acetate -
methanol (1 : 0⟶ 8 : 2, v/v) to afford six subfractions la-
belled S1–S6, along with eight compounds including β-si-
tosterol (8) (12mg, hexane/ethyl acetate 19 :1), β-amyryl
acetate (4) (8mg, hexane/ethyl acetate 37 : 3), lupeol (1)
(14mg, hexane/ethyl acetate 9 :1), physcion (5) (4mg,
hexane/ethyl acetate 17 : 3), betulin (2) (20mg, hexane/ethyl
acetate 8 : 2), betulinic acid (3) (7mg, hexane/ethyl acetate
13 : 7), quercetin (6) (5mg, hexane/ethyl acetate 2 : 3), and
β-sitosterol-3-O-β-D-glucopyranoside (9) (10mg, hexane/
ethyl acetate 1 : 4).

Furthermore, the two subfractions S5 and S6 showed
similar TLC profiles to the fraction B.)e three extracts were
combined and further purified by silica gel column chro-
matography eluting with a stepwise gradient of ethyl ace-
tate–methanol (1 : 0⟶ 7 : 3, v/v) to afford β-sitosterol-3-O-
β-D-glucopyranoside (9) (10mg, ethyl acetate) and rutin (7)
(4mg, ethyl acetate/methanol 19 :1).

2.4. Physico-chemical Properties of Isolated Compounds.
)e physical aspects and the 1D-NMR (1H and 13C) data of
all the isolated compounds are presented as follows:

Lupeol (1)–White powder. 1H NMR (CDCl3, 500MHz)
δ: 4.71 (1H, d, J� 4.0Hz, H-29b), 4.69 (1H, d, J� 4.0Hz,
H-29a), 3.21 (1H, dd, J� 11.5, 4.7Hz, H-3), 2.41 (1H,m,
H-19), 1.93 (1H, m, H-21b), 1.70 (3H, s, H-30), 1.69
(1H, m, H-15b), 1.67 (3H, m, H-1b, H-12b, H-13), 1.62
(1H, m, H-2a), 1.59 (1H, m, H-2b), 1.52 (1H, m, H-6a),
1.47 (1H, m, H-16b), 1.43 (1H, m, H-11a), 1.42 (1H, m,
H-6b), 1.41 (2H, m, H-7), 1.40 (1H, m, H-22b), 1.39
(1H, m, H-18), 1.38 (1H, m, H-16a), 1.33 (1H, m,
H-21a), 1.28 (1H, m, H-9), 1.23 (1H, m, H-11b), 1.21
(1H,m, H-22a), 1.07 (3H, s, H-26), 1.05 (1H,m, H-12a),
0.99 (1H, m, H-15a), 0.97 (3H, s, H-27), 0.95 (3H, s,
H-28), 0.92 (1H,m, H-1a), 0.86 (3H, s, H-25), 0.81 (3H,
s, H-24), 0.78 (3H, s, H-23), 0.72 (1H, m, H-5); 13C
NMR (CDCl3, 125MHz) δ: 148.2 (C-20), 109.5 (C-29),
79.0 (C-3), 55.1 (C-5), 53.9 (C-18), 50.1 (C-9), 48.7 (C-
17), 47.9 (C-19), 44.2 (C-22), 42.3 (C-14), 41.7 (C-8),
40.2 (C-16), 38.9 (C-1), 38.7 (C-4), 37.1 (C-10), 33.4 (C-
7), 32.7 (C-13), 28.0 (C-23), 27.4 (C-2, C-21, C-15), 23.9
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(C-12), 20.9 (C-11), 19.6 (C-30), 18.4 (C-6), 16.9 (C-
28), 16.6 (C-25), 15.9 (C-26), 15.4 (C-24), 15.1 (C-27).
Betulin (2)–White amorphous powder. 1H NMR
(CDCl3, 500MHz) δ: 4.67 (1H, d, J� 4.0Hz, H-29b),
4.51 (1H, d, J� 4.0Hz, H-29a), 3.79 (1H, d, J� 10.8Hz,
H-28b), 3.31 (1H, d, J� 10.8Hz, H-28a), 3.16 (1H, dd,
J� 10.5, 5.0Hz, H-3), 1.69 (3H, s, H-30), 1.64 (1H, m,
H-2a), 1.62 (1H, m, H-1b), 1.60 (1H, m, H-2b), 1.01
(3H, s, H-27), 0.99 (3H, s, H-26), 0.96 (3H, s, H-23),
0.91 (1H, m, H-1a), 0.82 (3H, s, H-25), 0.76 (3H, s,
H-24), 0.66 (1H,m, H-5); 13C NMR (CDCl3, 125MHz)
δ: 150.5 (C-20), 109.8 (C-29), 79.0 (C-3), 60.5 (C-28),
53.3 (C-5), 50.5 (C-9), 48.8 (C-19), 47.9 (C-18), 47.7 (C-
17), 42.6 (C-14), 41.1 (C-8), 39.7 (C-1), 38.8 (C-4), 37.3
(C-13), 37.1 (C-10), 34.4 (C-7), 34.0 (C-22), 29.7 (C-21),
29.3 (C-16), 28.0 (C-23), 27.6 (C-2), 27.4 (C-15), 25.3
(C-12), 20.9 (C-11), 19.6 (C-30), 18.4 (C-6), 16.1 (C-
27), 16.1 (C-25), 16.1 (C-24), 16.0 (C-26).
Betulinic acid (3)–White powder. 1H NMR
(CD3OD+CDCl3, 500MHz) δ: 4.71 (1H, m, H-29a),
4.58 (1H, m, H-29b), 3.31 (1H, ddd, J� 5.0, 16.9,
10.5Hz, H-19), 3.21 (1H, dd, J� 11.5, 4.7Hz, H-3), 2.35
(1H, m, H-13), 2.24 (1H, m, H-16b), 1.94 (1H, m,
H-15b), 1.69 (3H, s, H-30), 1.67 (1H, m, H-1b), 1.64
(1H, m, H-12b), 1.61 (1H, m, H-18), 1.58 (2H, m, H-2),
1.52 (1H, m, H-6a), 1.42 (1H, m, H-6b), 1.41 (1H, m,
H-11a), 1.40 (1H, m, H-16a), 1.39 (2H, m, H-7), 1.35
(1H,m, H-15a), 1.29 (1H,m, H-9), 1.25 (1H,m, H-11b),
1.07 (3H, s, H-26), 1.03 (1H, m, H-12a), 1.01 (3H, s,
H-27), 0.97 (3H, s, H-26), 0.97 (3H, s, H-23), 0.92 (1H,
m, H-1a), 0.86 (3H, s, H-25), 0.85 (3H, s, H-25), 0.81
(3H, s, H-24), 0.78 (3H, s, H-23), 0.76 (3H, s, H-24),
0.72 (1H, m, H-5); 13C NMR (CD3OD+CDCl3,
125MHz) δ: 179.7 (C-28), 152.2 (C-20), 110.8 (C-29),
78.9 (C-3), 57.5 (C-17), 56.1 (C-5), 50.5 (C-9), 49.2 (C-
19), 46.9 (C-18), 42.3 (C-14), 40.7 (C-8), 38.8 (C-4),
38.7 (C-13), 38.7 (C-1), 37.1 (C-10), 37.0 (C-22), 34.4
(C-7), 32.3 (C-16), 30.4 (C-15), 29.7 (C-21), 28.0 (C-
23), 27.9 (C-2), 25.3 (C-12), 20.9 (C-11), 19.6 (C-30),
18.4 (C-6), 15.9 (C-26), 15.8 (C-25), 15.4 (C-24), 15.0
(C-27).
β-amyryl acetate (4)–White powder. 1H NMR (CDCl3,
500MHz) δ: 5.03 (1H, t, J� 4.0Hz, H-12), 4.32 (1H, m,
H-3), 2.13 (3H, s, H-2′), 1.75 (1H, dd, J� 13.6Hz,
4.6Hz, H-18), 0.93 (3H, s, H-27), 0.82 (3H, s, H-28),
0.72 (3H, s, H-25), 0.71 (3H, s, H-26), 0.65 (3H, s,
H-30), 0.64 (3H, s, H-29), 0.64 (3H, s, H-24), 0.63 (3H,
s, H-23). 13C NMR (CDCl3, 125MHz) δ: 171.9 (C-1′),
144.3 (C-13), 122.4 (C-12), 79.8 (C-3), 55.4 (C-5), 47.5
(C-9), 42.5 (C-18), 41.7 (C-14), 39.8 (C-8), 37.5 (C-4),

35.8 (C-22), 34.5 (C-10), 33.2 (C-29), 30.9 (C-17), 28.3
(C-24), 28.1 (C-1), 26.1 (C-28), 25.9 (C-27), 25.5 (C-15),
23.6 (C-2), 23.0 (C-23), 21.9 (C-16), 20.8 (C-2′), 16.8
(C-26), 16.6 (C-30), 15.6 (C-25).

Physcion (5)–Yellowish powder. 1H NMR (CDCl3,
500MHz) δ: 12.25 (1H, s, OH-8), 12.05 (1H, s, OH-1),
7.56 (1H, d, J� 2.0Hz, H-4), 7.30 (1H, d, J� 2.1Hz,
H-5), 7.02 (1H, d, J� 2.0Hz, H-2), 6.62 (1H, d,
J� 2.1Hz, H-7), 3.87 (3H, s, OMe-7), 2.38 (3H, s, Me-
3). 13C NMR (CDCl3, 125MHz) δ: 190.8 (C-9), 182.0
(C-10), 166.5 (C-6), 165.1 (C-8), 162.5 (C-1), 148.4 (C-
3), 135.2 (C-11), 133.2 (C-14), 124.5 (C-2), 121.3 (C-4),
113.6 (C-13), 110.2 (C-12), 108.2 (C-5), 106.7 (C-7),
56.0 (OMe-6), 22.1 (Me-3).

Quercetin (6)–Yellowish powder. 1H NMR (CD3OD,
500MHz) δ: 7.74 (1H, d, J� 1.9Hz, H-2′), 7.64 (1H, dd,
J� 8.6Hz, H-6′), 6.91 (1H, d, J� 8.6Hz, H-5′), 6.39 (1H,
d, J� 1.8Hz, H-8), 6.23 (1H, d, J� 1.8Hz, H-6). 13C
NMR (CD3OD, 125MHz) δ: 175.6 (C-4), 164.9 (C-7),
160.7 (C-5), 156.9 (C-8a), 147.4 (C-4′), 146.7 (C-2),
144.6 (C-3′), 135.7 (C-3), 122.9 (C-1′), 120.7 (C-6′),
115.3 (C-5′), 114.7 (C-2′), 103.2 (C-4a), 98.4 (C-6), 93.8
(C-8).

Rutin (7)–Yellowish powder. 1H NMR (CD3OD,
500MHz) δ: 7.68 (1H, d, J� 1.8Hz, H-2′), 7.65 (1H, dd,
J� 7.9Hz, 1.8Hz, H-6′), 6.89 (1H, d, J� 7.9Hz, H-5′),
6.42 (1H, d, J� 2.0Hz, H-8), 6.23 (1H, d, J� 2.0Hz,
H-6), 5.13 (1H, d, J� 8.2Hz, H-1″/Glu), 4.53 (1H, d,
J� 7.9Hz, H-1‴/Rha), 3.82 (1H, m, H-6b″/Glu), 3.64
(1H, m, H-2‴/Rha), 3.47 (1H, m, H-2″/Glu), 3.46 (1H,
m, H-5‴/Rha), 3.42 (1H, m, H-6a″/Glu), 3.29 (1H, m,
H-4‴/Rha), 1.18 (3H, d, J� 6.8Hz, H-6‴/Rha). 13C
NMR (CD3OD, 125MHz) δ: 178.0 (C-4), 164.7 (C-7),
161.5 (C-5), 157.9 (C-2), 157.1 (C-8a), 148.4 (C-4′),
144.4 (C-3′), 134.2 (C-3), 122.1 (C-6′), 121.6 (C-1′),
116.2 (C-2′), 114.6 (C-5′), 104.1 (C-4a), 98.5 (C-6), 93.4
(C-8); 6-O-Glucosyl: 103.2 (C-1″), 76.7 (C-3″), 74.3 (C-
2″), 70.8 (C-5″), 69.9 (C-4″), 67.1 (C-6″); 1-O-
Rhamnosyl: 101.0 (C-1‴), 75.8 (C-3‴), 72.5 (C-4‴),
70.6 (C-2‴), 68.3 (C-5‴), 16.4 (C-6‴).
β-sitosterol (8)–White powder. 1H NMR (CDCl3,
500MHz) δ: 5.34 (1H, t, J� 6.4, H-6), 3.51 (1H, dd,
J� 4.5, 4.2Hz, H-3), 1.23 (3H, s, H-19), 1.15 (3H,s,
H-18), 1.02 (3H, d, J� 6.5Hz, H-26), 0.92 (3H, d,
J� 6.3Hz, H-27), 0.92 (3H,m, H-29), 0.86 (3H, d,
J� 6.3Hz, H-21). 13C NMR (CDCl3, 125MHz) δ: 141.1
(C-5), 121.6 (C-6), 72.2 (C-3), 57.9 (C-14), 56.6 (C-17),
50.4 (C-9), 46.4 (C-24), 42.7 (C-13), 42.6 (C-4), 38.9 (C-
12), 37.7 (C-1), 36.8 (C-10), 36.5 (C-20), 34.5 (C-22),

Table 1: Vina search space specified for receptor-ligand docking in this study.

S/N Receptors code Dimension (Å) Center (Å)
1 1QCC.pdb X: 20.14, Y: 20.14, Z: 20.14 X: 22.84, Y: 23.66, Z: 12.557
2 2XOX.pdb X: 22.34, Y: 22.35, Z: 22.35 X: 36.64, Y: 43.22, Z: 19.11
3 6Y3C.pdb X: 40.21, Y: 40.21, Z: 40.21 X: − 47.97, Y: -53.19, Z: − 2.632
4 1CX2.pdb X: 39.35, Y: 39.35, Z: 39.35 X: 28.02, Y: 13.50, Z: 39.54
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Table 2: Docked scores of isolated compounds.

Compounds
Antileishmanial Anti-inflammatory

1QCC (kcal/mol) 2XOX (kcal/mol) 6Y3C (kcal/mol) 1CX2 (kcal/mol)
1 − 7.0 − 6.6 − 8.0 − 7.9
2 − 6.3 − 6.0 − 7.7 − 7.4
3 − 6.6 − 5.9 − 7.5 − 7.3
4 − 7.3 − 5.8 − 8.5 − 8.3
5 − 6.6 − 7.8 − 8.5 − 8.2
6 − 7.4 − 7.7 − 8.7 − 8.8
7 − 7.7 − 8.3 − 8.9 − 9.4
8 − 5.7 − 6.4 − 6.7 − 7.5
9 − 7.3 − 5.2 − 8.6 − 8.5
Miltefosine − 4.3 − 5.0 − 6.5 − 7.1
Aspirin − 5.3 − 5.7 − 6.6 − 6.9
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32.3 (C-7), 32.3 (C-8), 32.1 (C-2), 29.7 (C-25), 28.7 (C-
16), 26.5 (C-23), 24.4 (C-15), 23.7 (C-28), 21.4 (C-11),
20.3 (C-26), 19.7 (C-27), 19.5 (C-19), 19.2 (C-21), 12.5
(C-29), 12.4 (C-18).
β-sitosterol-3-O-β-D-glucopyranoside (9)–White
powder. 1H NMR (CD3OD+CDCl3, 500MHz) δ: 5.32
(2H,m, H-6), 4.22 (1H, d, J� 6.5Hz, H-1′), 3.67 (1H,m,
H-6′b), 3.47 (1H, m, H-3), 3.44 (1H, m, H-6′a), 3.12
(1H, d, J� 7.5Hz, H-3′), 3.10 (1H, m, H-5′), 3.06 (1H,
m, H-4′), 2.90 (1H, t, J� 7.0Hz, H-2′), 2.12 (1H, m,
H-20), 1.93 (2H, m, H-4), 1.80 (4H, m, H-15, H-16),
1.80 (2H, m, H-7), 1.63 (1H, m, H-27), 1.50 (6H, m,
H-8, H-9, H-11, H-12), 1.50 (4H, m, H-24, H-26), 1.39
(2H, m, H-2), 1.24 (2H, m, H-1), 1.24 (1H, m, H-17),
1.15 (2H, m, H-25), 1.15 (1H, m, H-14), 0.99 (3H, d,
J� 6.9Hz, H-29), 0.95 (3H, s, H-19), 0.90 (3H, d,
J� 6.4Hz, H-21), 0.82 (3H, s, H-18), 0.76 (3H, m,
H-28). 13C-NMR (CD3OD+CDCl3, 125MHz) δ: 141.0
(C-5), 121.9 (C-6), 102.6 (C-1′), 78.6 (C-3), 78.4 (C-3′),
78.2 (C-5′), 75.4 (C-2′), 71.8 (C-4′), 63.0 (C-6′), 57.0
(C-14), 56.2 (C-17), 51.5 (C-24), 50.4 (C-9), 42.4 (C-4,
C-13), 40.8 (C-20), 39.4 (C-12), 37.5 (C-1), 37.0 (C-10),
34.8 (C-22), 32.2 (C-2, C-7), 32.1 (C-8, C-25), 29.3 (C-
16), 26.8 (C-23), 25.7 (C-28), 24.6 (C-15), 21.3 (C-21),
19.5 (C-11, C-26), 19.3 (C-27), 19.2 (C-19), 12.5 (C-29),
12.2 (C-18).

2.5. Computational Methodology

2.5.1. Ligands Preparations. A total of nine (9) compounds
isolated fromUapaca guineensis extract were modelled using
Chemdraw® ultra software [11] and optimized at the Mo-
lecular Mechanics Force Field ‘99 (MMFF99) level via the
Avogadro® software [12]. Ligands (in an explicit hydrogen
state) were then saved in PDBQTformat. )e standards (i.e.,
registered drugs), were chosen for comparative analysis with
the isolated compounds. Miltefosine® was chosen for the
antileishmanial study while Aspirin® was chosen for the
anti-inflammation study.

2.5.2. Receptor Preparations. Two receptors namely adenine
phosphoribosyltransferase (APRT) (PDB ID: 1QCC) [13]
and pteridine reductase (PTR1) (PDB ID: 2XOX) from
Leishmania donovani [14] were selected for the anti-
leishmanial studies while the receptors human cyclo-
oxygenases 1 and 2 (COX-1 and COX-2) having PDB codes
6Y3C and 1CX2, respectively, were used for the anti-in-
flammation studies [15, 16]. All four receptors were
downloaded from the RCSB database at https://www.rcsb.
org. )e receptors were pretreated by removing crystallized
water molecules and adding polar hydrogens and polar
charges using the BIOVIA DS® software 2021 version [17].
)e final files were then saved in PDBQT docking-ready
format.

2.5.3. Docking Protocol. )e binding sites of all four re-
ceptors were obtained from their respective associating

literature which has been deposited at the Protein Data Bank
web servers by the crystallographers.

2.5.4. Molecular Docking. Molecular docking was done
using the vina/PyRx® software applications [18, 19]. )e
prepared ligands and prepared receptors were introduced
receptor-by-receptor into the PyRx GUI using the vina
importing tool.

)e mode of docking simulation was specific docking
with a flexible method. A search space for the specific
docking process was specified for vina. )e search space
dimensions specified for each receptor are shown in Table 1.
)e binding affinities of isolated compounds of the Uapaca
guineensis to the receptors are recorded in Table 2.

2.5.5. Graphical Illustrations. )e ligand interaction
graphics from the Vina score were snipped from the BIO-
VIA® DS version 2021 software package [17]. All graphical
plots were obtained using the ggplot2® package library [20]
in the R statistical programming language.

2.5.6. ADMET Property-Prediction. )e absorption, distri-
bution, metabolism, excretion, and toxicity property pre-
dictions were obtainable from the SMILES index formula of
each isolated compounds in the ADMETLab 2.0 [21] web

-9
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 (k

ca
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)
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Figure 3: Graphical relationship between isolated compounds and
binding energy or binding affinity (BE).
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server. Table 1S (supplementary information file) shows the
isolated compound and their smile notations used for the
ADMET prediction in this study.

3. Results and Discussion

3.1. Phytochemical Study. )e phytochemical investigation
of the root bark of Uapaca guineensis led to the isolation and
identification of nine compounds (Figure 1). )eir

structures have been established using their spectrometric
and spectroscopic data in comparison with those reported in
the literature.)us, the nine compounds have been classified
into four triterpenoids including lupeol (1) [22, 23], betulin
(2) [24], betulinic acid (3) [25, 26], β-amyryl acetate (4) [27];
one anthraquinone named physcion (5) [28], two flavonoids
identified as quercetin (6) and rutin (7) [29], as well as two
common steroids β-sitosterol (8) and its glucoside β-si-
tosterol-3-O-β-D-glucopyranoside (9) [30].
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Figure 4: Docking poses of selected compounds at the 1QCC receptor binding site‒(a) compound 3, (b) compound 5, (c) compound 6, (d)
compound 7, (e) miltefosine, and (f) aspirin.
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To the best of our knowledge, all the isolated compounds
are reported herein for the first time from this plant species. It is
well reported that the genus Uapaca is a good source of
betulinic acid (3) whichmight be considered as a chemomarker
of the genus [31]. Together with its congeners lupeol (1) and
betulin (2), it has been previously isolated from the species
U. paludosa [32]. Additionally, β-amyryl acetate (4), β-sitos-
terol-3-O-β-D-glucopyranoside (9), and lupeol (1) have been
obtained from U. togoensis and evaluated for their cytotoxicity
towards multifactorial drug-resistant cancer cell lines [33].
Some glucosylated flavonoids namely naringenin-7-O-gluco-
side and kaempferol-3-O-glucoside are structurally close to
quercetin (6) and rutin (7) and have been recently isolated for
the first time from the ethyl acetate extract ofU. heudelotti [34].
)is study supports the taxonomy of the plant through its
chemical constituents and enriches the chemistry of the genus.

3.2. Molecular Docking. )e nine isolated compounds have
been computationally evaluated using a molecular docking
assay for their potential inhibitory effects on four target
proteins involved in leishmaniasis and inflammation using
Miltefosine® (SD1) and Aspirin® (SD2) as reference drugs
(Figure 2). For instance, the protein APRT (PDB ID: 1QCC)
is an enzyme causing the pyrophosphorolysis in the se-
quencing and amplification of nucleic acids in the protein
synthesis of Leishmania donovani while the enzyme PTR1
(PDB ID: 2XOX) significantly acts in the metacyclogenesis
of Leishmania [14, 35]. Additionally, human cyclo-
oxygenases 1 and 2 (COX-1 and COX-2) are among themost
important mediators of inflammation and have been asso-
ciated with numerous human diseases including cancer,
neurological, and neurodegenerative diseases as well as heart
failure.

Table 3: Conventional hydrogen-bonds of the docked ligand-receptor-interaction.

Compounds
Conventional hydrogen-bonds (length in Å)

1QCC 2XOX 6Y3C 1CX2

3 VAL:148 (4.93), SER:146 (4.19), GLU:454 (5.38), ASN:382 (4.93),
THR:154 (4.34) ASN:147 (4.24) GLN:203 (6.17) THR:212 (3.86)

5
ARG:37 (5.22), GLY:13 (3.44), GLN:203 (4.35), THR:208 (5.13)
ALA:150 (3.74), ARG:39 (4.77) ASN:283 (4.88)
THR:154 (3.99)

6

ALA:81 (3.57), ARG:39 (4.96), ASN:382 (4.13) —
ARG:82 (2.69), HIS:36 (3.64),
ASP: 147 (4.89), LEU:66 (4.26)
VAL:148 (4.12),
THR:151 (3.68)

7
THR:154 (3.51) SER:40 (3.96), THR:313 (4.23), HIS:214 (5.13),

LYS:16 (3.83), ASN:382 (4.25) HIS:207 (4.66)
ASN:147 (3.33)

Miltefosine ALA:81 (4.39), SER:146 (4.16) VAL:349 (5.23) HIS:207 (5.25)
ARG:82 (3.31)

Aspirin

THR:154 (3.54), SER:146 (4.40), THR:206 (4.58) TRP:387 (5.49),
GLY:153 (3.56), SER:146 (3.74) ALA:202 (4.33)
ALA:150 (3.62),
GLY:152 (3.36)

Table 4: Predicted ADMET property parameters for the isolated compounds and the selected standards.

Absorption and distribution 1 2 3 4 5 6 7 8 9 SD1 SD2
BBB (±) − − − − − − − − − − +
GIA (±) + + + + + + + + - + −

Log S − 6.13 − 5.74 − 6.32 − 6.79 − 4.55 − 3.12 − 4.21 − 6.88 − 4.62 0.051 − 1.65
CYP450 2C19 inhibitor NO NO NO NO NO NO NO NO NO YES NO
CYP450 1A2 inhibitor NO NO NO NO YES YES NO NO NO NO NO
CYP450 3A4 inhibitor YES NO NO NO YES NO NO YES NO YES NO
CYP450 2C9 inhibitor NO NO NO YES NO YES NO NO NO NO NO
CYP450 2D6 inhibitor NO NO NO NO YES NO NO NO NO NO NO
Toxicity
AMES mutagenesis NO NO NO NO NO NO NO NO NO NO NO
Acute oral toxicity rating III III III III III III III III III II II
hERG toxicity NO NO NO NO NO NO NO YES YES YES NO
Carcinogenicity NO NO NO NO NO NO NO NO NO NO NO
Lipinski violation? NO NO NO NO NO YES NO YES NO YES YES
SD1, miltefosine, SD2, aspirin.
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Figure 6: Docking poses of selected compounds at the 6Y3C receptor binding site‒(a) compound 3, (b) compound 5, (c) compound 6, (d)
compound 7, (e) miltefosine, (f ) aspirin.
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Figure 7: Docking poses of selected compounds at the 1CX2 receptor binding site‒(a) compound 3, (b) compound 5, (c) compound 6, (d)
compound 7, (e) miltefosine, and (f) aspirin.
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)e data presented in Table 2 are the molecular docking
scores of the isolated compounds for both antileishmanial
and anti-inflammatory receptors. Figure 3 reveals the
stacked graphical plot of docking scores. Results revealed
that the entire isolated compounds from Uapaca guineensis
exhibit a better affinity to both antileishmanial receptors’
binding sites than Miltefosine® (the standard drug). Like-
wise, the isolated compounds show a significantly improved
affinity to the anti-inflammatory receptors’ binding sites
compared to Aspirin®.Figures 4‒7 display the binding relationship of four
selected compounds (3, 5, 6, and 7), and the two standard
drugs with the antileishmanial (1QCC.pdb and 2XOX.pdb)
and anti-inflammatory (6Y3C.pdb and 1CX2.pdb) receptors
while Table 3 reports their contacting residues. Close
analysis of the complete docking poses of all 9 compounds
(Table 2S in supplementary information file) led to the
conclusion that the high receptor-binding affinity of isolated
compounds such as 5, 6, 7, and 9 was due to the increase in
the hydrogen bonding due to an increase in the number of
O-atoms greater than that of the standards. It was also
observed that, since nonbonded electrons are far apart from
each other, in 5, 6, 7, and 9 hydrogen bonding interactions
are seen to be shorter compared to the standard. )is result
validates the reason for their lower binding energies.

3.3. ADMET Studies. )e absorption, distribution,
metabolism, excretion, and toxicity (ADMET) studies of
the isolated compounds in Table 4 show that the isolated
compounds 1–8 did not cross the blood brain barrier
(BBB violation) which implies that compounds 1–8
would not cause addiction when used as lead molecules,
whereas aspirin is predicted to violate the BBB over a long
term of usage as a drug [36]. )e water solubility of all the
compounds is seen to fall within the range of − 3 to − 7
better than that of miltefosine (0.051) and aspirin
(− 1.650). All isolated compounds are also predicted to
have no inhibitors of cytochrome450. Toxicity predic-
tions infer that all the selected compounds are not
blockers of the human either–a–go–a–go heart function
and they are predicted to be nontoxic if applied as drugs.
)e toxicity ratings for all isolated compounds can
therefore be improved during the further drug design
optimization process, as it was done with miltefosine and
aspirin.

4. Conclusion

During the chemical investigations of the root bark of
Uapaca guineensis, nine compounds have been isolated
and characterized as lupeol (1), betulin (2), betulinic acid
(3), β-amyryl acetate (4), physcion (5), quercetin (6), rutin
(7), β-sitosterol (8), and β-sitosterol-3-O-β-D-glucopyr-
anoside (9), respectively. Although all the compounds are
reported for the first time from the species U. guineensis,
the lupane-type triterpenoids 1–3 have been obtained
from U. paludosa, while compounds 4 and 9 have been
reported from U. togoensis, and some structurally close

flavonoids to 6 and 7 have been obtained from
U. heudelotti. )is study strengthens the taxonomy of the
plant based on its chemical markers and enriches the
chemistry of the plant genus Uapaca. Furthermore, all the
isolated compounds have been computationally evaluated
for their ability to inhibit the receptors 1QCC and 2XOX
(for the antileishmanial studies) and 6Y3C and 1CX2 (for
the anti-inflammatory studies). )e results showed that all
the compounds have a better affinity to both receptor’s
binding sites than the standard drugs miltefosine and
aspirin and might not cause addiction when used as lead
molecules, whereas aspirin is predicted to violate the BBB
over a long term of usage as a drug. Although in vitro and
in vivo studies are important to support the in silico re-
sults, the current results are important in supporting the
use of the plant in traditional medicine for the treatment
of skin diseases, leishmaniasis, and inflammatory diseases
as well as giving further insights into the development of
new potent drugs.
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)e molecular docking data of all the isolated compounds
and their spectroscopic (1H and 13C NMR) data used to
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supplementary information file.
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Section A: Molecular docking data. Figure 1S: Graphical
relationship between isolated compounds and binding af-
finity (or binding energy). Table 1S: Simile notations of the
isolated compounds used for ADMETstudies. Table 2S: 2D-
plot binding interactions between isolated compounds and
selected receptors. Section B: NMR spectra of isolated
compounds. Figure 2S: 1H NMR spectrum of lupeol (1) in
CDCl3. Figure 3S: 13C NMR spectrum of lupeol (1) in
CDCl3. Figure 4S: 1H NMR spectrum of betulin (2) in
CDCl3. Figure 5S: 13C NMR spectrum of betulin (2) in
CDCl3. Figure 6S: 1H NMR spectrum of betulinic acid (3) in
CD3OD+CDCl3. Figure 7S: 13C NMR spectrum of betulinic
acid (3) in CD3OD+CDCl3. Figure 8S: 1H NMR spectrum
of β-amyryl acetate (4) in CDCl3. Figure 9S: Enlarged 1H
NMR spectrum of β-amyryl acetate (4) in CDCl3.
Figure 10S: 13C NMR spectrum of β-amyryl acetate (4) in
CDCl3. Figure 11S: 1H NMR spectrum of physcion (5) in
CDCl3. Figure 12S: 13C NMR spectrum of physcion (5) in
CDCl3. Figure 13S: 1H NMR spectrum of quercetin (6) in
CD3OD+CDCl3. Figure 14S: 13C NMR spectrum of
quercetin (6) in CD3OD+CDCl3. Figure 15S: 1H NMR
spectrum of rutin (7) in CD3OD. Figure 16S: 13C NMR
spectrum of rutin (7) in CD3OD. Figure 17S: 13C DEPT 135
NMR spectrum of rutin (7) in CD3OD. Figure 18S: 1H NMR
spectrum of β-sitosterol (8) in CD3OD. Figure 19S: EI-MS

Journal of Chemistry 19



spectrum of β-sitosterol (8). Figure 20S: 1H NMR spectrum
of daucosterol (9) in CD3OD+CDCl3. Figure 21S: 13C NMR
spectrum of daucosterol (9) in CD3OD+CDCl3. Figure 22S:
13C DEPT 135 NMR spectrum of daucosterol (9) in
CD3OD+CDCl3. (Supplementary Materials)
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